Jump to content

Hubble Data Suggest Galaxies Have Giant Halos


HubbleSite

Recommended Posts

low_STSCI-H-p9522a-k-1340x520.png

NASA's Hubble Space Telescope has helped solve a two-decade-old cosmic mystery by showing that mysterious clouds of hydrogen in space may actually be vast halos of gas surrounding galaxies.

"This conclusion runs contrary to the longstanding belief that these clouds occur in intergalactic space," says Ken Lanzetta of the State University of New York at Stony Brook.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      As the hub of human spaceflight, NASA’s Johnson Space Center in Houston holds a variety of unique responsibilities and privileges. Those include being the home of NASA’s astronaut corps.

      One of those astronauts – Nick Hague – is now preparing to launch to the International Space Station along with Roscosmos cosmonaut Aleksandr Gorbunov on the ninth rotational mission under NASA’s Commercial Crew Program. This will be the third launch and second mission to the space station for Hague, who was selected as a NASA astronaut in 2013 and has spent 203 days in space.

      NASA’s SpaceX Crew-9 Commander Nick Hague smiles and gives two thumbs up during the crew equipment interface test at SpaceX’s Dragon refurbishing facility at Kennedy Space Center in Florida.SpaceX Hague was born and raised in Kansas but has crisscrossed the country for college and career. He earned degrees from the United States Air Force Academy in Colorado and the Massachusetts Institute of Technology in Cambridge, and he attended the U.S. Air Force Test Pilot School at Edwards Air Force Base in California. Hague’s military career has taken him to New Mexico, Colorado, Virginia, and Washington, D.C., and included a five-month deployment to Iraq. Hague transferred from the Air Force to the U.S. Space Force in 2020 after serving as the Space Force’s director of test and evaluation at the Pentagon.

      No stranger to new places, Hague vividly recalls making his first trip to Johnson when he was interviewing to join NASA’s astronaut corps. “I had no idea what to expect, and it was a bit overwhelming. I knew everyone was watching me and judging me,” he said. “Luckily, even though I wasn’t selected then, I got another chance a few years later. It’s a pretty magical place.”

      Hague completed his astronaut training in July 2015 as part of NASA’s 21st astronaut class. He was the first astronaut from that group to be assigned to a mission, which launched in October 2018 but was aborted shortly after takeoff. His next spaceflight occurred in 2019, when he joined three of his classmates – NASA astronauts Jessica Meir, Christina Koch, and Andrew Morgan – aboard the International Space Station for Expeditions 59 and 60.
      NASA astronaut Nick Hague suits up for spacewalk training in the Neutral Buoyancy Laboratory. NASA/James Blair Hague has made many memories at Johnson, but one that stands out is his experience working onsite amid the 2013 government shutdown. “I’m active-duty military so I still came to work,” he explained. “I remember being onsite and the center being completely empty. Being able to ride around an empty campus on the free-range bikes – it was peaceful and surreal.” It was also a preview of what many Johnson employees experienced during the pandemic and how NASA maintains round-the-clock support for spaceflight operations regardless of extenuating circumstances.

      Hague now looks ahead to another journey to low Earth orbit. NASA and SpaceX officials currently plan to launch the Crew-9 mission no earlier than Wednesday, Sept. 25. The crew will lift off from Launch Complex 40 from the Cape Canaveral Space Force Station in Florida aboard a SpaceX Falcon 9 rocket and Dragon spacecraft.

      Roscosmos cosmonaut Aleksandr Gorbunov (left) and NASA astronaut Nick Hague during a visit to Kennedy Space Center for training. SpaceX Hague and Gorbonov will become members of the Expedition 72 crew aboard the station. They will join NASA astronauts Butch Wilmore, Suni Williams, and Don Pettit, and Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner, and will spend about six months conducting scientific research in microgravity and completing a range of operational activities before returning home.

      More details about the mission and crew can be found by following the Crew-9 blog, @commercial_crew on X, or commercial crew on Facebook. You can also follow @astrohague on X and Instagram.
      View the full article
    • By NASA
      ESA/Hubble & NASA, M. Koss, A, Barth This NASA/ESA Hubble Space Telescope image features the spiral galaxy IC 4709 located around 240 million light-years away in the southern constellation Telescopium. Hubble beautifully captures its faint halo and swirling disk filled with stars and dust bands. The compact region at its core might be the most remarkable sight. It holds an active galactic nucleus (AGN).
      If IC 4709’s core just held stars, it wouldn’t be nearly as bright. Instead, it hosts a gargantuan black hole, 65 million times more massive than our Sun. A disk of gas spirals around and eventually into this black hole, crashing together and heating up as it spins. It reaches such high temperatures that it emits vast quantities of electromagnetic radiation, from infrared to visible to ultraviolet light and X-rays. A lane of dark dust, just visible at the center of the galaxy in the image above, obscures the AGN in IC 4709. The dust lane blocks any visible light emission from the nucleus itself. Hubble’s spectacular resolution, however, gives astronomers a detailed view of the interaction between the quite small AGN and its host galaxy. This is essential to understanding supermassive black holes in galaxies much more distant than IC 4709, where resolving such fine details is not possible.
      This image incorporates data from two Hubble surveys of nearby AGNs originally identified by NASA’s Swift telescope. There are plans for Swift to collect new data on these galaxies. Swift houses three multiwavelength telescopes, collecting data in visible, ultraviolet, X-ray, and gamma-ray light. Its X-ray component will allow SWIFT to directly see the X-rays from IC 4709’s AGN breaking through the obscuring dust. ESA’s Euclid telescope — currently surveying the dark universe in optical and infrared light — will also image IC 4709 and other local AGNs. Their data, along with Hubble’s, provides astronomers with complementary views across the electromagnetic spectrum. Such views are key to fully research and better understand black holes and their influence on their host galaxies.
      View the full article
    • By NASA
      Hubble Space Telescope Home NASA’s Hubble Finds More… Missions Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities   4 Min Read NASA’s Hubble Finds More Black Holes than Expected in the Early Universe
      The Hubble Ultra Deep Field of nearly 10,000 galaxies is the deepest visible-light image of the cosmos. The image required 800 exposures taken over 400 Hubble orbits around Earth. The total amount of exposure time was 11.3 days, taken between Sept. 24, 2003 and Jan. 16, 2004. Credits:
      NASA, ESA, S. Beckwith (STScI) and the HUDF Team With the help of NASA’s Hubble Space Telescope, an international team of researchers led by scientists in the Department of Astronomy at Stockholm University has found more black holes in the early universe than has previously been reported. The new result can help scientists understand how supermassive black holes were created.
      Currently, scientists do not have a complete picture of how the first black holes formed not long after the big bang. It is known that supermassive black holes, that can weigh more than a billion suns, exist at the center of several galaxies less than a billion years after the big bang.
      “Many of these objects seem to be more massive than we originally thought they could be at such early times — either they formed very massive or they grew extremely quickly,” said Alice Young, a PhD student from Stockholm University and co-author of the study  published in The Astrophysical Journal Letters.
      This is a new image of the Hubble Ultra Deep Field. The first deep imaging of the field was done with Hubble in 2004. The same survey field was observed again by Hubble several years later, and was then reimaged in 2023. By comparing Hubble Wide Field Camera 3 near-infrared exposures taken in 2009, 2012, and 2023, astronomers found evidence for flickering supermassive black holes in the hearts of early galaxies. One example is seen as a bright object in the inset. Some supermassive black holes do not swallow surrounding material constantly, but in fits and bursts, making their brightness flicker. This can be detected by comparing Hubble Ultra Deep Field frames taken at different epochs. The survey found more black holes than predicted. NASA, ESA, Matthew Hayes (Stockholm University); Acknowledgment: Steven V.W. Beckwith (UC Berkeley), Garth Illingworth (UC Santa Cruz), Richard Ellis (UCL); Image Processing: Joseph DePasquale (STScI)
      Download this image

      Black holes play an important role in the lifecycle of all galaxies, but there are major uncertainties in our understanding of how galaxies evolve. In order to gain a complete picture of the link between galaxy and black hole evolution, the researchers used Hubble to survey how many black holes exist among a population of faint galaxies when the universe was just a few percent of its current age.
      Initial observations of the survey region were re-photographed by Hubble after several years. This allowed the team to measure variations in the brightness of galaxies. These variations are a telltale sign of black holes. The team identified more black holes than previously found by other methods.
      The new observational results suggest that some black holes likely formed by the collapse of massive, pristine stars during the first billion years of cosmic time. These types of stars can only exist at very early times in the universe, because later-generation stars are polluted by the remnants of stars that have already lived and died. Other alternatives for black hole formation include collapsing gas clouds, mergers of stars in massive clusters, and “primordial” black holes that formed (by physically speculative mechanisms) in the first few seconds after the big bang. With this new information about black hole formation, more accurate models of galaxy formation can be constructed.
      “The formation mechanism of early black holes is an important part of the puzzle of galaxy evolution,” said Matthew Hayes from the Department of Astronomy at Stockholm University and lead author of the study. “Together with models for how black holes grow, galaxy evolution calculations can now be placed on a more physically motivated footing, with an accurate scheme for how black holes came into existence from collapsing massive stars.”
      Image Before/After Astronomers are also making observations with NASA’s James Webb Space Telescope to search for galactic black holes that formed soon after the big bang, to understand how massive they were and where they were located.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Ray Villard
      Space Telescope Science Institute, Baltimore, MD
      Science Contact:
      Matthew Hayes
      Stockholm University, Stockholm, Sweden
      Share








      Details
      Last Updated Sep 17, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Black Holes Goddard Space Flight Center Hubble Space Telescope Missions The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Science Highlights



      Hubble Online Activities



      Hubble Focus: Dark Universe


      View the full article
    • By European Space Agency
      With the help of the NASA/ESA Hubble Space Telescope, an international team of researchers led by scientists in the Department of Astronomy at Stockholm University has found more black holes in the early Universe than has previously been reported. The new result can help scientists understand how supermassive black holes were created.
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      As students head back to school, teachers have a new tool that brings NASA satellite data down to their earthly classrooms.
      The My NASA Data homepage categorizes content by areas of study called spheres and also Earth as a system. NASA/mynasadata.larc.nasa.gov For over 50 years of observing Earth, NASA’s satellites have collected petabytes of global science data (that’s millions and millions of gigabytes) – with terabytes more coming in by the day. Since 2004, the My NASA Data website has been developing ways for students and teachers of grades 3-12 to understand, and visualize NASA data, and to help incorporate those measurements into practical science lessons.
      “We have three different types of lesson plans, some of which are student-facing and some are teacher-facing,” said Angie Rizzi, My NASA Data task lead, based at NASA’s Langley Research Center in Hampton, Virginia. “Teachers can download complete lesson plans or display a wide variety of Earth data. There are also lessons written for students to interact with directly.”
      An image from My NASA Data’s Earth System Data Explorer visualization tool showing the monthly leaf index around the world as measured by NASA satellites in August 2020. Data parameters for this visualization were set to biosphere under the sphere dropdown and vegetation as a category.  NASA/mynasadata.larc.nasa.gov A key component of the My NASA Data site is the newly updated Earth System Data Explorer visualization tool, which allows users to access and download NASA Earth data. Educators can explore the data then create custom data tables, graphs, and plots to help students visualize the data. Students can create and investigate comparisons between  land surface temperatures, cloud cover, extreme heat, and a wide range of other characteristics for a specific location or region around the globe.
      An image from My NASA Data’s visualization tool showing various searchable categories under the atmosphere dataset selection. NASA/mynasadata.larc.nasa.gov “The Earth System Data Explorer tool has a collection of science datasets organized by different spheres of the Earth system,” explained Desiray Wilson, My NASA Data scientific programmer. The program highlights six areas of study: atmosphere, biosphere, cryosphere, geosphere, hydrosphere, and Earth as a system. “The data goes as far back as the 1980s, and we are getting more daily datasets. It’s really good for looking at historical trends, regional trends, and patterns.”
      My NASA Data had over one million site visits last year, with some of the most popular searches focusing on temperatures, precipitation, water vapor, and air quality.
      My NASA Data program leaders and instructors collaborating with educators from the North Carolina Space Grant at NASA’S Langley Research Center June 26, 2024. Teachers were at NASA Langley as part of the North Carolina Space Education Ambassadors (NCSEA) program and were given demonstrations of the My NASA Data website. NASA/David C. Bowman Natalie Macke has been teaching for 20 years and is a science teacher at Pascack Hills High School in Montvale, New Jersey. Teachers like Macke help shape the lessons on the site through internships with the My NASA Data team. Teachers’ suggestions were also incorporated to enhance the visualization tool by adding new features that now allow users to swipe between visual layers of data and make side-by-side comparisons. Users can also now click on a location to display latitude and longitude and variable data streamlining the previous site which required manual input of latitude and longitude.
      “The new visualization tool is very much a point-and-click layout like our students are used to in terms of just quickly selecting data they want to see,” said Macke. “Instantaneously, a map of the Earth comes up, or just the outline, and they can get the satellite view. So if they’re looking for a specific city, they can find the city on the map and quickly grab a dataset or multiple datasets and overlay it on the map to make visual comparisons.”
      Map of the East Coast of the United States from the My NASA Data visualization tool from August 2023 before adding layers of atmospheric satellite data. The image below shows the same map layered with atmospheric measurements.NASA/mynasadata.larc.nasa.gov The East Coast of the United States shown with monthly daytime surface (skin) temperatures from August 2023 overlayed from Earth-observing satellite data using the My NASA Data Earth System Data Explorer visualization tool. The image above shows the same region without the data layer added.NASA/mynasadata.larc.nasa.gov/ Even more valuable than creating visualizations for one specific lesson, elaborated Macke, is the opportunity My NASA Data provides for students to understand the importance of interpreting, verifying, and using datasets in their daily lives. This skill, she said, is invaluable, because it helps spread data literacy enabling users to look at data with a discriminating eye and learn to discern between assumptions and valid conclusions.
      “Students can relate the data map to literally what’s happening outside their window, showing them how NASA Earth system satellite data relates to real life,” said Macke. “Creating a data literate public – meaning they understand the context and framework of the data they are working with and realizing the connection between the data and the real world – hopefully will intrigue them to continue to explore and learn about the Earth and start asking questions. That’s what got me into science when I was a little kid.”
      Read More My NASA Data
      Earth System Data Explorer
      Join the My NASA Data Educator Community
      About the Author
      Charles G. Hatfield
      Earth Science Public Affairs Officer, NASA Langley Research Center
      Share
      Details
      Last Updated Sep 16, 2024 Related Terms
      For Educators Aerosols Climate Change Clouds Earth Earth's Atmosphere For Kids and Students Grades 5 – 8 Grades 5 – 8 for Educators Grades 9 – 12 Grades 9-12 for Educators Grades K – 4 Grades K – 4 for Educators Learning Resources NASA STEM Projects Partner with NASA STEM Space Grant STEM Engagement at NASA Explore More
      3 min read NASA Mobilizes Resource for HBCU Scholars, Highlighted at Conference
      Article 4 hours ago 1 min read NASA Moon to Mars Architecture Art Challenge
      Article 4 days ago 5 min read NASA Finds Summer 2024 Hottest to Date
      Article 5 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      The My NASA Data homepage categorizes content by areas of study called spheres and also Earth as a system. View the full article
  • Check out these Videos

×
×
  • Create New...