Jump to content

NASA Knows: How Does the Sun Behave? (Grades 5-8)


Recommended Posts

  • Publishers
Posted

This article is for students grades 5-8.

The Sun is the star of our solar system. Its gravity holds Earth and our planetary neighbors in its orbit. At 865,000 miles (1.4 million km) in diameter, it’s the largest object in our solar system. On Earth, its influence is felt in our weather, seasons, climate, and more. Let’s learn about our dynamic star and its connections to life on Earth.

What is the Sun, and what is it made of?

The Sun is a yellow dwarf star. It is approximately 4.5 billion years old and is in its “main sequence” phase. This means it is partway through its lifecycle with a few billion more years ahead of it.

The Sun is made of hydrogen and helium gases. At its core, hydrogen is fused to form helium. This nuclear reaction creates the Sun’s heat and light. That energy moves outward through the Sun’s radiative zone and convective zone. It then reaches the Sun’s visible surface and lower atmosphere, called the photosphere. Above the photosphere lies the chromosphere, which forms the Sun’s middle atmosphere, and beyond that is the corona, the Sun’s outermost atmosphere.

Spherical diagram of the sun, with a corner area cut out and different internal layers shown in various colors and labeled. Layers, from outer layer to center, are chromosphere, photosphere, subsurface flows, convection zone, radiative zone, core. Surface features labeled include prominence, coronal hole, corona, flare, sun spots
The Sun is a yellow dwarf star with a complex series of layers and features.
NASA

What is the solar cycle?

The Sun goes through a pattern of magnetic activity known as the solar cycle. During each cycle, the Sun experiences a very active period called “solar maximum” and a less active period called “solar minimum.”

During solar maximum, increased magnetic activity creates sunspots. These appear as darker, cooler spots on the Sun’s surface. The more sunspots we can see, the more active the Sun is.

The solar cycle begins at solar minimum, peaks at solar maximum, and then returns to solar minimum. This cycle is driven by the Sun’s magnetic polarity, which flips – north becomes south, and vice versa – every 11 years. It takes two cycles – or 22 years – to complete the full magnetic cycle where the poles return to their original positions.  

A side-by-side view of the rotating Sun, showing solar minimum on the left with a quiet, uniform surface, and solar maximum on the right with multiple solar flares and bright spots visible across the Sun’s surface
The Sun’s level of magnetic activity changes throughout its 11-year solar cycle. During each cycle, the Sun experiences a less-active period called “solar minimum” (left) and a very active period called “solar maximum” (right).
NASA

Wait. The Sun’s magnetic poles can flip??

Yes! Like Earth, the Sun has north and south magnetic poles. But unlike Earth, the Sun’s poles flip regularly. Each 11-year solar cycle is marked by the flipping of the Sun’s poles. The increased magnetic activity during solar maximum makes the north and south poles less defined. As the cycle moves back to solar minimum, the polarization of the poles returns – with flipped polarity.

View of the Sun with magnetic lines around it, blue on top and red on the bottom, with a rectangular magnet in the center with a South pole at the top and North pole at the bottom
Unlike Earth, the Sun’s poles regularly flip with each 11-year solar cycle.
NASA

What is space weather?

Space weather includes phenomena such as solar wind, solar storms, and solar flares. When space weather conditions are calm, there may be little noticeable effect on Earth. But when the Sun is more active, space weather has real impacts on Earth and in space.

Let’s explore these phenomena and how they affect our planet.

Illustration of solar energy radiating from the Sun into space towards Earth, with a blue magnetic field around our planet to protect it
Periods of increased solar activity can cause noticeable effects on Earth and in space.
NASA

What is solar wind?

Solar wind is a stream of charged particles that flow outward from the Sun’s corona. It extends far beyond the orbit of the planets in our solar system. When solar wind reaches Earth, its charged particles interact with Earth’s magnetic field. This causes colorful streams of moving light at Earth’s north and south poles called aurora.

Animation of charged solar particles streaming out into space past Earth. Our planet’s magnetic shield acts as a barrier redirecting particles out and around Earth
Earth’s magnetic field protects our planet from the charged solar particles of the solar wind.
NASA

What are solar storms, solar flares, and coronal mass ejections?

The Sun’s magnetic fields are a tangle of constant motion. These fields twist and stretch to the point that they snap and reconnect. When this magnetic reconnection occurs, it releases a burst of energy that can cause a solar storm.

Solar storms can include phenomena such as solar flares or coronal mass ejections. They happen more frequently around the solar maximum of the Sun’s cycle. A solar flare is an intense burst of light and energy from the Sun’s surface. Solar flares tend to happen near sunspots where the Sun’s magnetic fields are strongest. A coronal mass ejection is a massive cloud of material flowing outward from the Sun. These can occur on their own or along with solar flares.

Bright flashes and ribbons of super-heated materials snake around the Sun’s surface and arc out into space in this pair of close-up videos of solar flares
The Sun’s magnetic field is strongest near sunspots. These active regions of the Sun’s surface release energy in the form of solar flares and coronal mass ejections like these.
NASA

How do these phenomena affect Earth?

When a solar storm erupts towards Earth, our atmosphere and magnetic field protect us from significant harm. However, some impacts are possible, both on Earth and in space. For example, strong solar storms can cause power outages and radio blackouts. GPS signals can be disrupted. Satellite electronics can be affected. And astronauts working outside of the International Space Station could be exposed to dangerous radiation. NASA monitors and forecasts space weather to protect the safety and health of astronauts and spacecraft.

Colorful aurora in hues of green, yellow, purple, and pink seem to cascade over the landscape near Saskatoon in Saskatchewan, Canada
When charged particles from intense solar storms interact with Earth’s magnetic fields, colorful auroras like this one captured in Saskatchewan, Canada, can occur.
NASA

Learn more about the Sun

NASA’s Parker Solar Probe launched in 2018 on the first-ever mission to fly into the Sun’s corona. Since its first pass through the corona in 2021, every orbit has brought it closer to the Sun. On Dec. 24, 2024, it makes the first of its three final, closest solar approaches of its primary mission. Test your knowledge with NASA’s new quiz, Kahoot! Parker Solar Probe trivia.

Visit these resources for more details about the Sun:

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      LIVE NOW: Live Close Up Video Of The Sun = Backyard Astronomy Sunday 6th April
    • By Amazing Space
      LIVE NOW: Live Close Up Video Of The Sun = Saturday 5th April
    • By Amazing Space
      LIVE NOW: Live Close Up Video Of The Sun 3rdApril
    • By NASA
      An electron microscopy images of multicellular magnetotactic bacteria that featured on the covers of the 2022 edition of The ISME Journal. The image was produced by Schaible and co-workers under the group’s NASA awards.Roland Hatzenpichler / Montana State University In a recent study, NASA-supported researchers gained new insight into the lives of bacteria that survive by grouping together as if they were a multi-cellular organism. The organisms in the study are the only bacteria known to do this in this way, and studying them could help astrobiologists explain important steps in the evolution of life on Earth.
      The organisms in the study are known as ‘multicellular magnetotactic bacteria,’ or MMB. Being magnetotactic means that MMB are part of a select group of bacteria that orient their movement based on Earth’s magnetic field using tiny ‘compass needles’ in their cells. As if that wasn’t special enough, MMB also live bunched up in collections of cells that are considered by some scientists to exhibit ‘obligate’ multicellularity, which is the trait the new study is focused on.
      In biology, obligate means that an organism requires something for survival. In this case, it means that single cells of MMB cannot survive on their own. Instead, cells live as a consortium of multiple cells that behave in many ways like a single multicellular organism. This requirement to live together means that when MMB reproduce, they do so by replicating all the cells in the consortium at once, doubling the total number of cells. This large group of cells then splits into two identical consortia.
      Electron microscopy image and cartoon of a MMB consortium, highlighting its characteristics features that includes a hollow space at the center of the cell consortium.George Shaible et al. PLOS Biology 2024 MMB are the only example of bacteria that are known to live like this. Many other bacteria clump together as simple aggregates of single cells. For instance, cyanobacteria clump together in colonies and form structures like stromatolites or biofilms that are visible to the naked eye. However, unlike MMB, these cyanobacteria can also survive as single, individual cells.
      In the new study, scientists have revealed even more complexity in the relationships between MMB cells. First, contrary to long-held assumptions, individual cells within MMB consortia are not genetically identical, they differ slightly in their genetic blueprint. Further, cells within a consortium exhibit different and complementary behavior in terms of their metabolism. Each cell in an MMB consortium has a role that contributes to the survival of the entire group. This behavior is similar to how individual cells within multicellular organisms behave. For example, human bodies are made up of tens of trillions of cells. These cells differentiate into specific cell types with different functions. Bone cells are not the same as blood cells. Fat cells that store energy are different from the nerve cells that store and transmit information. Each cell has a role to play, and together they make up a single living body. 
      The proposed life cycle of multicellular magnetotactic bacteria (MMB). Credit: George ShcaibleGeorge Schaible The evolution of multicellularity is one of the major transitions in the history life on our planet and had profound effects on Earth’s biosphere. In the wake of its appearance, life developed novel strategies for survival that led to entirely new ecosystems. As the only example of bacteria that exhibit obligate multicellularity, MMB provide an important example of possible mechanisms behind this profound step in life’s evolutionary history on Earth.
      The study, “Multicellular magnetotactic bacteria are genetically heterogeneous consortia with metabolically differentiated cells,” was published in PLOS Biology. The work was supported through the NASA Exobiology program and the Future Investigators in NASA Earth and Space Science and Technology (FINESST) program.
      For more information on NASA Astrobiology, visit:
      https://astrobiology.nasa.gov
      -end-
      News Media Contacts
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      Explore More
      6 min read NASA’s Curiosity Rover Detects Largest Organic Molecules Found on Mars
      Article 1 week ago 5 min read NASA’s Apollo Samples Yield New Information about the Moon
      Article 2 months ago 5 min read NASA Study Shows Ferns Facilitate Recovery from Environmental Disaster 
      NASA-supported scientists have shown how ferns might help ecosystems recover from disasters.
      Article 3 months ago View the full article
    • By Amazing Space
      LIVE NOW: Live Close Up Video Of The Sun - 1st April
  • Check out these Videos

×
×
  • Create New...