Members Can Post Anonymously On This Site
NASA’s Spot the Station App Developed by and for the People
-
Similar Topics
-
By NASA
Caption: Expedition 70 Flight Engineer Nikolai Chub from Roscosmos is pictured during a spacewalk to inspect a backup radiator, deploy a nanosatellite, and install communications hardware on the International Space Station’s Nauka science module.Credit: NASA NASA will provide live coverage as two Roscosmos cosmonauts conduct a spacewalk outside of the International Space Station on Thursday, Dec. 19.
NASA’s live coverage begins at 9:45 a.m. EST, Thursday on NASA+. Learn how to watch NASA content through a variety of platforms, including social media. The spacewalk is scheduled to begin at approximately 10:10 a.m. and last about six and a half hours.
Expedition 72 crewmates Alexey Ovchinin and Ivan Vagner will venture outside the station’s Poisk module to install an experiment package designed to monitor celestial x-ray sources and new electrical connector patch panels and remove several experiments for disposal. The two cosmonauts also will relocate a control panel for the European robotic arm, which is attached to the Nauka multipurpose laboratory module. Roscosmos cosmonaut Alexsandr Gorbunov will operate the arm during the spacewalk from inside the station.
Roscosmos spacewalk 63 will be the second for Ovchinin and the first for Vagner. Ovchinin will wear an Orlan spacesuit with red stripes, and Vagner will wear a spacesuit with blue stripes. It will be the 272nd spacewalk in support of space station assembly, maintenance, and upgrades.
Get breaking news, images, and features from the space station on the station blog, Instagram, Facebook, and X.
Learn more about the International Space Station at:
https://www.nasa.gov/station
-end-
Claire O’Shea / Josh Finch
Headquarters, Washington
202-358-1100
claire.a.o’shea@nasa.gov / joshua.a.finch@nasa.gov
Sandra Jones
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov
Share
Details
Last Updated Dec 17, 2024 LocationJohnson Space Center Related Terms
International Space Station (ISS) ISS Research Missions View the full article
-
By NASA
X-ray: NASA/CXC; Infrared: ESA/Webb, NASA & CSA, P. Zeilder, E.Sabbi, A. Nota, M. Zamani; Image Processing: NASA/CXC/SAO/L. Frattare and K. Arcand Since antiquity, wreaths have symbolized the cycle of life, death, and rebirth. It is fitting then that one of the best places for astronomers to learn more about the stellar lifecycle resembles a giant holiday wreath itself.
The star cluster NGC 602 lies on the outskirts of the Small Magellanic Cloud, which is one of the closest galaxies to the Milky Way, about 200,000 light-years from Earth. The stars in NGC 602 have fewer heavier elements compared to the Sun and most of the rest of the galaxy. Instead, the conditions within NGC 602 mimic those for stars found billions of years ago when the universe was much younger.
This new image combines data from NASA’s Chandra X-ray Observatory with a previously released image from the agency’s James Webb Space Telescope. The dark ring-like outline of the wreath seen in Webb data (represented as orange, yellow, green, and blue) is made up of dense clouds of filled dust.
Meanwhile, X-rays from Chandra (red) show young, massive stars that are illuminating the wreath, sending high-energy light into interstellar space. These X-rays are powered by winds flowing from the young, massive stars that are sprinkled throughout the cluster. The extended cloud in the Chandra data likely comes from the overlapping X-ray glow of thousands of young, low-mass stars in the cluster.
X-ray: NASA/CXC/SAO; Optical: Clow, M.; Image Processing: NASA/CXC/SAO/L. Frattare and K. Arcand In addition to this cosmic wreath, a new version of the “Christmas tree cluster” is also now available. Like NGC 602, NGC 2264 is a cluster of young stars between one and five million years old. (For comparison, the Sun is a middle-aged star about 5 billion years old — about 1,000 times older.) In this image of NGC 2264, which is much closer than NGC 602 at a distance of about 2,500 light-years from Earth, Chandra data (red, purple, blue, and white) has been combined with optical data (green and violet) captured from by astrophotographer Michael Clow from his telescope in Arizona in November 2024.
NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
Read more from NASA’s Chandra X-ray Observatory.
Learn more about the Chandra X-ray Observatory and its mission here:
https://www.nasa.gov/chandra
https://chandra.si.edu
Visual Description
This release includes two composite images, each featuring a star cluster that strongly resembles holiday greenery.
The first image depicts star cluster NGC 602 in vibrant and festive colors. The cluster includes a giant dust cloud ring, shown in greens, yellows, blues, and oranges. The green hues and feathery edges of the ring cloud create the appearance of a wreath made of evergreen boughs. Hints of red representing X-rays provide shading, highlighting layers within the wreath-like ring cloud.
The image is aglow with specks and dots of colorful, festive light, in blues, golds, whites, oranges, and reds. These lights represent stars within the cluster. Some of the lights gleam with diffraction spikes, while others emit a warm, diffuse glow. Upon closer inspection, many of the glowing specks have spiraling arms, indicating that they are, in fact, distant galaxies.
The second image in today’s release is a new depiction of NGC 2264, known as the “Christmas Tree Cluster”. Here, wispy green clouds in a conical shape strongly resemble an evergreen tree. Tiny specks of white, blue, purple, and red light, stars within the cluster, dot the structure, turning the cloud into a festive, cosmic Christmas tree!
News Media Contact
Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998
mwatzke@cfa.harvard.edu
Lane Figueroa
Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
lane.e.figueroa@nasa.gov
Explore More
7 min read NASA’s Webb Finds Planet-Forming Disks Lived Longer in Early Universe
NASA’s James Webb Space Telescope just solved a conundrum by proving a controversial finding made…
Article 1 day ago 2 min read Hubble Images a Grand Spiral
This NASA/ESA Hubble Space Telescope image features the glorious spiral galaxy NGC 5643, which is…
Article 4 days ago 4 min read NASA Successfully Integrates Roman Mission’s Telescope, Instruments
Article 5 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Benchmarks for solidifying metal alloys
Researchers report benchmark data for modeling the growth of specific types of microstructures that form during solidification of metal alloys under different conditions. These microstructures affect the properties of materials and products such as refrigeration devices and solar cells.
The ESA (European Space Agency) Columnar-to-Equiaxed Transition in Solidification Processing (CETSOL) investigation studied the processes of metal alloy solidification and the crystal patterns that form as liquids transition to solids. Results could improve ground-based development of lightweight, high-performance structural materials for space and ground applications. Microgravity is key to this research because it eliminates influences of gravity during solidification and allows researchers to control turbulence and convection.
European Space Agency (ESA) astronaut Frank De Winne works on the Columnar-to-Equiaxed Transition in Solidification Processing (CETSOL) investigation in the U.S. Destiny Laboratory.NASA Composite materials shield against radiation, other hazards
Researchers found no degradation in two multifunctional radiation shielding composite materials after exposure to space. This finding suggests that composite materials with a surface layer and a coating could protect crews on future missions from radiation and other hazards of space.
Materials ISS Experiment Flight Facility (MISSE-FF) continued a series of investigations examining how exposure to space affects materials and material configurations used for space missions. The MISSE-13 suite of materials included a multifunctional composite material for shielding crew members in habitats and spacecraft beyond low Earth orbit against radiation, atomic oxygen, and temperature extremes.
An image of the Materials ISS Experiment Flight Facility (MISSE-FF) platform used for MISSE experiments.NASA Modeling the use of boiling to transfer heat
Researchers developed an algorithm to determine the amount of heat transferred via boiling of a liquid and showed that maximum heat flow occurs where the bubble contacts the surface and the liquid. This finding could inform design of thermal control systems for spacecraft and for cooling electronics and other applications on Earth.
ESA’s Multiscale Boiling examined the dynamics of heat transfer via boiling, which generates vapor bubbles that lift heat from a surface. This technique is less efficient in microgravity because boiling happens more slowly, and bubbles remain near the surface in the absence of buoyancy. But microgravity also makes it possible to observe effects that are too fast and too small to be measured under normal gravity conditions, helping scientists understand the dynamics of boiling heat transfer.
ESA astronaut Luca Parmitano works on the Multiscale Boiling hardware aboard the International Space Station. ESA/Luca ParmitanoView the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A digital rendering of the Starlab, which includes a large habitation and laboratory module with a smaller service module for power and propulsion.Credits: Starlab A NASA-funded commercial space station, Starlab, recently completed four key developmental milestones, marking substantial progress in the station’s design and operational readiness.
The four milestones are part of a NASA Space Act Agreement awarded in 2021 and focused on reviews of the habitat structural test article preliminary design, systems integration, integrated operations, and a habitat structural test plan.
“These milestone achievements are great indicators to reflect Starlab’s commitment to the continued efforts and advancements of their commercial destination,” said Angela Hart, program manager for NASA’s Commercial Low Earth Orbit Development Program. “As we look forward to the future of low Earth orbit, every successful milestone is one step closer to creating a dynamic and robust commercialized low Earth orbit.”
The commercial space station is designed to launch on a single flight and includes a large habitation and laboratory module with a smaller service module for power and propulsion.
Earlier this year, Starlab Space completed a structural test article preliminary design review, supported by NASA. The structural test article is an engineering development unit of the station’s habitation module, which is where astronauts will spend most of their time living and working aboard the future commercial destination. An engineering development unit is a physical model that is used to test and verify the design of a project, such as a space station.
A digital rendering of the Starlab free-flying commercial destination, which continues to be developed as part of a Space Act Agreement with NASACredits: Starlab Starlab also recently shared a test plan for the structural test article, which included defining qualification tests of the development unit from welding verifications to proof pressure and static load testing, among others. During proof pressure tests, a spacecraft component or system is pressurized to a significantly higher than normal operating pressure to verify its structural integrity, and a static load test measures the response of a component or system under an applied load.
In addition, Starlab completed integration operations and systems integration reviews. These reviews included updates on system and station architecture, segment interfaces, and program goals, as well as a comprehensive look into the program’s requirements.
Starlab also is set to complete a preliminary design review and phase 1 safety review by the end of the year. This review is meant to demonstrate that the station’s design meets system requirements, including human spaceflight verification, with acceptable risk. The safety review will summarize the current design and general safety approach for the destination.
NASA is supporting the design and development of multiple commercial space stations, including Starlab, through funded and unfunded agreements. The current design and development phase will be followed by the procurement of services from one or more companies, where NASA aims to be one of many customers for low Earth orbit destinations.
NASA’s low Earth orbit microgravity strategy builds on the agency’s extensive human spaceflight experience to advance future scientific and exploration goals. As the International Space Station nears the end of operations, NASA plans to transition to a new low Earth orbit model to continue leveraging microgravity benefits. Through commercial partnerships, NASA aims to maintain its leadership in microgravity research and ensure continued benefits for humanity.
Learn more about NASA’s low Earth orbit microgravity strategy at:
https://www.nasa.gov/leomicrogravitystrategy
News Media Contacts:
Claire O’Shea
Headquarters, Washington
202-358-1100
claire.a.o’shea@nasa.gov
Anna Schneider
Johnson Space Center, Houston
281-483-5111
anna.c.schneider@nasa.gov
Keep Exploring Discover Related Topics
Commercial Destinations in Low Earth Orbit
Low Earth Orbit Economy
Commercial Space
Commercial Use of the International Space Station
View the full article
-
By NASA
NASA Astronauts (from left) Mike Barratt, Matthew Dominick, and Loral O’Hara take photographs of Earth from inside the cupola aboard space station.Credit: NASA That’s a wrap! Astronauts aboard the International Space Station conducted hundreds of science experiments and technology demonstrations during 2024. Crew members participated in research across a variety of scientific disciplines and accomplished milestones demonstrating benefits for future missions and humanity back on Earth. Their work included snapping thousands of images of Earth to understand our planet’s changing landscape, bioprinting cardiac tissues to validate technology for organ manufacturing in space, and studying physical phenomena that could improve drug delivery systems and technology for plant growth in reduced gravity.
This new image gallery showcases dozens of awe-inspiring photos and includes details about the research benefits of the state-of-the-art science happening aboard space station.
Discover the best science images of 2024 from your orbiting lab.
Keep Exploring Discover More Topics From NASA
International Space Station
Space Station Research and Technology
Humans In Space
Benefits to Humanity
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.