Jump to content

Recommended Posts

  • Publishers
Posted
4 Min Read

Space Gardens

Astronaut Kayla Barron checks out chile peppers growing in the station
NASA astronaut Kayla Barron with chile peppers in the station’s Advanced Plant Habitat.
Credits: NASA

Science in Space December 2024

As NASA plans missions to the Moon and Mars, one challenge is figuring out how to provide crew members with enough healthy food. Bringing along a supply for months or even years in space is impractical, and stored food can lose taste and nutritional value. Growing plants in space is one way to help solve this problem. Tending space gardens also has positive psychological effects for crew members, and plants can be part of life support systems that provide services such as producing oxygen and reducing carbon dioxide.

Large, reddish-green lettuce leaves fill a black tray on a rack. Several small hoses snake into the tray, and a white wall covered with a piece of aluminum foil is visible behind it.
Outredgeous romaine lettuce grows inside a laboratory at NASA’s Kennedy Space Center in Florida for preflight testing of Plant Habitat-07.
NASA

A current investigation, Plant Habitat-07, looks at how plants and their associated communities of microorganisms respond to different levels of water. The study uses ‘Outredgeous’ red romaine lettuce, a food crop already known to grow well on the International Space Station. Results from this investigation could inform ways to produce healthy crops under different water conditions in space and on Earth.

Multiple studies of plants on the space station have tested a wide range of crops and methods for growing them. Researchers have successfully grown lettuces, Chinese cabbage, mustard greens, kale, tomatoes, radishes, and chile peppers in space. Here are details on results from earlier plant studies.

Better lighting

Hague, wearing a light blue short-sleeved t-shirt and blue latex gloves, smiles at the camera. He is next to green leafy plants growing in a black tray with a plastic frame around the bottom.
NASA astronaut Nick Hague harvests Mizuna mustard greens for VEG-04.
NASA

The Veg-04A and Veg-04B investigations looked at the effects of light quality and fertilizer on plant growth in space. Researchers found differences in yield and nutritional content depending on how leafy greens are grown and harvested – including choice of light spectrum (red versus blue), a consideration for design of future plant growth facilities.

It’s in their genes

A handful of small green seedlings with long white, branching roots are visible in a line inside a clear 4-inch square Petri plate that is marked with a six-by-six grid of lines.
Arabidopsis thaliana plants grow in the type of nutrient gel Petri plate used for APEX-04.
Anna-Lisa Paul, University of Florida

APEX-04 studied molecular changes in thale cress seedlings. Researchers found differences in the expression of specific genes in the root systems of the plants, including two genes not previously known to influence root development. This finding could identify ways to genetically modify plants to grow better on future long-duration missions.

Four rectangular seed cassettes, silver with orange around the top, are mounted on a white base along with a small gold mechanical box. The base is connected to a metal arm.
European Modular Cultivation System Seed Cassettes used for the Plant RNA Regulation investigation.
NASA

Plant Signaling, a NASA investigation conducted in cooperation with ESA (European Space Agency), studied the effects of various gravity levels on plant seedlings, and Plant RNA Regulation compared gene expression involved in the development of roots and shoots in microgravity and simulated 1 g (Earth’s gravity). Both investigations used the European Modular Cultivation System, a centrifuge that creates 1 g in space and makes it possible to examine the effects of partial gravity. The investigations found increases in the expression of some genes, such as those involved in light response, and decreases in expression of others, including defense response. These findings can help inform design of space-based plant growth facilities.

And in their hormones

Auxins are plant hormones that affect processes such as root growth. Gravity affects the abundance of these hormones and their movement within a plant. Auxin Transport, an investigation from JAXA (Japan Aerospace Exploration Agency), examined the role of auxins in controlling growth of pea and maize seedlings in microgravity. Researchers found that microgravity caused decreases in hormones involved in determining direction of growth in pea seedlings and increases of those same hormones in maize seedlings. Understanding how microgravity affects plant hormonal pathways could hep improve the design of space-based plant growth systems.

Growth and gravity

Plant development on Earth is strongly influenced by gravity, but exactly how that works at the molecular level is not well understood. APEX-03-1 investigated the effects of microgravity on plant development and, along with previous studies, showed that spaceflight triggers changes in the development of cell walls in plant roots. Strong cell walls provide mechanical strength needed for roots to grow, and this finding provides insight into how to develop plants that are well-adapted to space conditions.

Nyberg is wearing a blue polo shirt, shorts, and white latex gloves. Her hair is in a ponytail that floats above her head. In front of her on a silver work surface is a square plastic dish about the size of a pack of cards containing small seedlings. Nyberg is using a small metal clamp in her left hand to hold the plants and a pair of clippers in her right hand to harvest the seedlings.
NASA astronaut Karen Nyberg harvests samples for the Resist Tubule investigation.
NASA

JAXA’s Resist Tubule also studied the mechanisms of gravity resistance in plants. Researchers found that thale cress plants grown in microgravity exhibited reduced levels of sterols, compounds involved in a variety of cellular processes, which could limit plant growth. These findings could help scientists genetically engineer plants that grow better in microgravity.

Melissa Gaskill
International Space Station Research Communications Team

Johnson Space Center

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Gateway’s HALO (Habitation and Logistics Outpost) arrives in Mesa, Arizona, after traveling from Italy, where Thales Alenia Space fabricated its primary structure. Delivered by cargo aircraft to Phoenix-Mesa Gateway Airport, HALO will be transported to Northrop Grumman’s facility in Gilbert for final outfitting.Josh Valcarcel A core component of Gateway, humanity’s first space station around the Moon, is now on American soil and one step closer to launch. In lunar orbit, Gateway will support NASA’s Artemis campaign to return humans to the Moon and chart a path of scientific discovery toward the first crewed missions to Mars.
      Gateway’s first pressurized module and one of its two foundational elements, HALO (Habitation and Logistics Outpost), arrived in Arizona on April 1. Fresh off a transatlantic journey from Thales Alenia Space in Turin, Italy, the structure will undergo final outfitting at Northrop Grumman’s integration and test facility before being integrated with Gateway’s Power and Propulsion Element at NASA’s Kennedy Space Center in Florida. The pair of modules will launch together on a SpaceX Falcon Heavy rocket.
      Gateway’s HALO (Habitation and Logistics Outpost) arrives in Mesa, Arizona, after traveling from Italy, where Thales Alenia Space fabricated its primary structure. Delivered by cargo aircraft to Phoenix-Mesa Gateway Airport, HALO will be transported to Northrop Grumman’s facility in Gilbert for final outfitting.NASA/Josh Valcarcel Gateway’s HALO will provide Artemis astronauts with space to live, work, conduct scientific research, and prepare for missions to the lunar surface. It will offer command and control, data handling, energy storage, electrical power distribution, thermal regulation, and communications and tracking via Lunar Link, a high-rate lunar communication system provided by ESA (European Space Agency). The module will include docking ports for visiting vehicles such as NASA’s Orion spacecraft, lunar landers, and logistics modules. It will also support both internal and external science payloads, enabling research and technology demonstrations in the harsh deep space environment.
      Built with industry and international partners, Gateway will support sustained exploration of the Moon, serve as a platform for science and international collaboration, and act as a proving ground for the technologies and systems needed for future human missions to Mars.
      Gateway’s HALO (Habitation and Logistics Outpost) arrives in Mesa, Arizona, after traveling from Italy, where Thales Alenia Space fabricated its primary structure. Delivered by cargo aircraft to Phoenix-Mesa Gateway Airport, HALO will be transported to Northrop Grumman’s facility in Gilbert for final outfitting.NASA/Josh Gateway’s HALO (Habitation and Logistics Outpost) arrives in Mesa, Arizona, after traveling from Italy, where Thales Alenia Space fabricated its primary structure. Delivered by cargo aircraft to Phoenix-Mesa Gateway Airport, HALO will be transported to Northrop Grumman’s facility in Gilbert for final outfitting.NASA/Josh Valcarcel At the Thales Alenia Space facility in Turin, Italy, technicians prepare Gateway’s HALO (Habitation and Logistics Outpost) for transport. The module’s primary structure, fabricated by Thales Alenia Space, will travel to Northrop Grumman’s facility in Gilbert, Arizona, for final outfitting ahead of its launch to lunar orbit. Thales Alenia Space At the Thales Alenia Space facility in Turin, Italy, technicians prepare Gateway’s HALO (Habitation and Logistics Outpost) for transport. The module’s primary structure, fabricated by Thales Alenia Space, will travel to Northrop Grumman’s facility in Gilbert, Arizona, for final outfitting ahead of its launch to lunar orbit. Thales Alenia Space At the Thales Alenia Space facility in Turin, Italy, technicians prepare Gateway’s HALO (Habitation and Logistics Outpost) for transport. The module’s primary structure, fabricated by Thales Alenia Space, will travel to Northrop Grumman’s facility in Gilbert, Arizona, for final outfitting ahead of its launch to lunar orbit. Thales Alenia Space Gateway’s HALO (Habitation and Logistics Outpost) departs Italy en route to Arizona, where it will undergo final outfitting at Northrop Grumman’s facility in Gilbert ahead of its launch to lunar orbit. The module’s primary structure was fabricated by Thales Alenia Space in Turin. Thales Alenia Space Gateway’s HALO (Habitation and Logistics Outpost) departs Italy en route to Arizona, where it will undergo final outfitting at Northrop Grumman’s facility in Gilbert ahead of its launch to lunar orbit. The module’s primary structure was fabricated by Thales Alenia Space in Turin. Thales Alenia Space Gateway’s HALO (Habitation and Logistics Outpost) departs Italy en route to Arizona, where it will undergo final outfitting at Northrop Grumman’s facility in Gilbert ahead of its launch to lunar orbit. The module’s primary structure was fabricated by Thales Alenia Space in Turin. Thales Alenia Space Gateway’s HALO (Habitation and Logistics Outpost) arrives in Mesa, Arizona, after traveling from Italy, where Thales Alenia Space fabricated its primary structure. Delivered by cargo aircraft to Phoenix-Mesa Gateway Airport, HALO will be transported to Northrop Grumman’s facility in Gilbert for final outfitting. Josh Valcarcel – NASA – JSC Gateway’s HALO (Habitation and Logistics Outpost) arrives in Mesa, Arizona, after traveling from Italy, where Thales Alenia Space fabricated its primary structure. Delivered by cargo aircraft to Phoenix-Mesa Gateway Airport, HALO will be transported to Northrop Grumman’s facility in Gilbert for final outfitting.Josh Valcarcel – NASA – JSC Gateway’s HALO (Habitation and Logistics Outpost) arrives in Mesa, Arizona, after traveling from Italy, where Thales Alenia Space fabricated its primary structure. Delivered by cargo aircraft to Phoenix-Mesa Gateway Airport, HALO will be transported to Northrop Grumman’s facility in Gilbert for final outfitting. Josh Valcarcel – NASA – JSC Gateway’s HALO (Habitation and Logistics Outpost) arrives in Mesa, Arizona, after traveling from Italy, where Thales Alenia Space fabricated its primary structure. Delivered by cargo aircraft to Phoenix-Mesa Gateway Airport, HALO will be transported to Northrop Grumman’s facility in Gilbert for final outfitting. Josh Valcarcel – NASA – JSC Gateway’s HALO (Habitation and Logistics Outpost) arrives in Mesa, Arizona, after traveling from Italy, where Thales Alenia Space fabricated its primary structure. Delivered by cargo aircraft to Phoenix-Mesa Gateway Airport, HALO will be transported to Northrop Grumman’s facility in Gilbert for final outfitting. Josh Valcarcel – NASA – JSC Download additional high-resolution images of HALO here.
      Learn More About Gateway Facebook logo @NASAGateway @NASA_Gateway Instagram logo @nasaartemis Share
      Details
      Last Updated Apr 04, 2025 ContactLaura RochonLocationJohnson Space Center Related Terms
      Artemis Artemis 4 Earth's Moon Exploration Systems Development Mission Directorate Gateway Program Gateway Space Station Humans in Space Johnson Space Center Explore More
      2 min read NASA Prepares Gateway Lunar Space Station for Journey to Moon
      Assembly is underway for Gateway's Power and Propulsion Element, the module that will power the…
      Article 1 month ago 5 min read NASA Marks Artemis Progress With Gateway Lunar Space Station
      NASA and its international partners are making progress on Gateway – the lunar space station…
      Article 1 month ago 2 min read Advanced Modeling Enhances Gateway’s Lunar Dust Defense
      Ahead of more frequent and intense contact with dust during Artemis missions, NASA is developing…
      Article 2 months ago Keep Exploring Discover More Topics From NASA
      Humans In Space
      Orion Spacecraft
      Extravehicular Activity and Human Surface Mobility
      Human Landing System

      View the full article
    • By European Space Agency
      Image: The Copernicus Sentinel-2 mission shows us what is left of the Aral Sea, once the fourth largest lake in the world. View the full article
    • By Space Force
      Avalon is the Southern Hemisphere’s largest airshow and aerospace and defense exposition. During the 2025 event, multiple industry exhibits, keynote speakers and engagements focused on current priorities and future development of space concerns.
      View the full article
    • By NASA
      NASA astronaut Christopher Williams poses for a portrait at NASA’s Johnson Space Center in Houston, Texas.Credit: NASA NASA astronaut Chris Williams will embark on his first mission to the International Space Station, serving as a flight engineer and Expedition 74 crew member.
      Williams will launch aboard the Roscosmos Soyuz MS-28 spacecraft in November, accompanied by Roscosmos cosmonauts Sergey Kud-Sverchkov and Sergei Mikaev. After launching from the Baikonur Cosmodrome in Kazakhstan, the trio will spend approximately eight months aboard the orbiting laboratory.
      During his expedition, Williams will conduct scientific investigations and technology demonstrations that help prepare humans for future space missions and benefit humanity.
      Selected as a NASA astronaut in 2021, Williams graduated with the 23rd astronaut class in 2024. He began training for his first space station flight assignment immediately after completing initial astronaut candidate training.
      Williams was born in New York City, and considers Potomac, Maryland, his hometown. He holds a bachelor’s degree in Physics from Stanford University in California and a doctorate in Physics from the Massachusetts Institute of Technology in Cambridge, where his research focused on astrophysics. Williams completed Medical Physics Residency training at Harvard Medical School in Boston. He was working as a clinical physicist and researcher at the Brigham and Women’s Hospital in Boston when he was selected as an astronaut.
      For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and making research breakthroughs not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is able to more fully focus its resources on deep space missions to the Moon and Mars.
      Learn more about International Space Station research and operations at:
      https://www.nasa.gov/station
      -end-
      Josh Finch / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
      Chelsey Ballarte
      Johnson Space Center, Houston
      281-483-5111
      chelsey.n.ballarte@nasa.gov
      Share
      Details
      Last Updated Apr 03, 2025 LocationNASA Headquarters Related Terms
      Humans in Space International Space Station (ISS) ISS Research Johnson Space Center View the full article
    • By Space Force
      Natalia Serna, daughter of Space Launch Delta 30’s senior enlisted leader Chief Master Sgt. Jay Harris and Maria Tapia, wins U.S. Space Force's Military Child of the Year.

      View the full article
  • Check out these Videos

×
×
  • Create New...