Jump to content

New Commercial Artemis Moon Rovers Undergo Testing at NASA


Recommended Posts

  • Publishers
Posted

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Three lunar terrain vehicles side by side inside of a large chamber with dramatic lighting. Astrolab's lunar terrain vehicle is white with the their orange logo on the front of the rover. Intuitive Machines' lunar terrain vehicle is white with a blue stripe on the front and their logo on the top of their rover. Lunar Outpost's lunar terrain vehicle is grey with green lights.
From left to right: Astrolab’s FLEX, Intuitive Machines’ Moon RACER, and Lunar Outpost’s Eagle lunar terrain vehicle at NASA’s Johnson Space Center.
NASA/Bill Stafford

Through NASA’s Artemis campaign, astronauts will land on the lunar surface and use a new generation of spacesuits and rovers as they live, work, and conduct science in the Moon’s South Pole region, exploring more of the lunar surface than ever before. Recently, the agency completed the first round of testing on three commercially owned and developed LTVs (Lunar Terrain Vehicle) from Intuitive Machines, Lunar Outpost, and Venturi Astrolab at NASA’s Johnson Space Center in Houston.

As part of an ongoing year-long feasibility study, each company delivered a static mockup of their vehicle to Johnson at the end of September, initiated rover testing in October and completed the first round of testing in December inside the Active Response Gravity Offload System (ARGOS) test facility. Lunar surface gravity is one-sixth of what we experience here on Earth, so to mimic this, ARGOS offers an analog environment that can offload pressurized suited subjects for various reduced gravity simulations. 

This is the first major test milestone within the Lunar Terrain Vehicle Services contract and to have actual rovers delivered only four months after these companies were awarded is remarkable.

steve munday

steve munday

NASA's Lunar Terrain Vehicle Project Manager

NASA’s engineering teams conducted tests where suited NASA astronauts and engineers performed tasks, maneuvers, and emergency drills on each rover. With astronauts acting as the test subjects, these human-in-the-loop tests are invaluable as crewmembers provide critical feedback on each rover’s design functionality, evaluate display interfaces and controls, and help identify potential safety concerns or design issues. This feedback is shared directly with each commercial provider, to incorporate changes based on lessons learned as they evolve their rover design.

“We are excited to have mockups from all three LTV commercial providers here at Johnson Space Center,” said Steve Munday, LTV project manager. “This is the first major test milestone within the Lunar Terrain Vehicle Services contract and to have actual rovers delivered only four months after these companies were awarded is remarkable.” 

NASA engineer Dave Coan and NASA astronaut Jessica Watkins are wearing white spacesuits while sitting inside of Intuitive Machines’ Moon RACER lunar terrain vehicle. The rover is white with a blue stripe down the middle. There is a test team surrounding them with the test lead is holding a clipboard.
NASA engineer Dave Coan (left) and NASA astronaut Jessica Watkins (right) sit inside from Intuitive Machines’ Moon RACER lunar terrain vehicle evaluating the crew compartment during testing at NASA’s Johnson Space Center.
NASA/James Blair

Testing consisted of NASA astronauts and engineers taking turns wearing both NASA’s Exploration Extravehicular Mobility Unit planetary prototype spacesuit as well as Axiom Space’s Axiom Extravehicular Mobility Unit lunar spacesuit. The test teams performed evaluations to understand the interactions between the crew, the spacesuits, and the LTV mockups. 

While wearing NASA’s prototype spacesuit, crew members were suspended from ARGOS allowing teams to mimic theone-sixth gravitational field of the lunar surface. This allowed the crew members to conduct tasks on the outside of each rover, such as gathering or storing lunar geology tools, deploying science payloads, and handling cargo equipment, as if they are walking on the Moon.

NASA astronaut Joe Acaba is shown in a white spacesuit, rotating a handle to raise a black solar array panel on Lunar Outpost’s Eagle lunar terrain vehicle.
NASA astronaut Joe Acaba raises the solar array panel on Lunar Outpost’s Eagle lunar terrain vehicle during testing at NASA’s Johnson Space Center.
NASA/Robert Markowitz

While wearing Axiom Space’s pressurized spacesuit, teams evaluated the level of ease or difficulty in mobility crewmembers experienced when entering and exiting the rovers, the crew compartment and design, and the functionality of interacting with display interfaces and hand controls while wearing thick spacesuit gloves.

As part of testing, teams also conducted emergency drills, where engineers simulated rescuing an incapacitated crew member. As part of NASA’s requirements, each rover must have a design in place that enables an astronaut to single-handedly rescue their crewmates in the event of an emergency.

NASA astronaut Jessica Watkins is wearing a white spacesuit with the American flag on her left shoulder. She is pickup up a lunar geology tool from a tool drawer located outside of Astrolab's white lunar terrain vehicle. There is an orange Astrolab logo on the rover.
NASA astronaut Jessica Watkins picks up a lunar geology tool from a stowage drawer on Astrolab’s FLEX lunar terrain vehicle during testing at NASA’s Johnson Space Center.
NASA/Robert Markowitz

Since NASA selected the companies, Intuitive Machines, Lunar Outpost, and Venturi Astrolab have been working to meet NASA’s requirements through the preliminary design review. In 2025, the agency plans to issue a request for task order proposals to any eligible providers for a demonstration mission to continue developing the LTV, deliver it to the surface of the Moon, and validate its performance and safety ahead of Artemis V, when NASA intends to begin using the LTV for crewed operations.

Through Artemis, NASA will send astronauts – including the next Americans, and the first international partner astronaut – to explore the Moon for scientific discovery, technology evolution, economic benefits, and to build the foundation for future crewed missions to Mars. 

Learn about the rovers, suits, and tools that will help Artemis astronauts to explore more of the Moon: 

https://go.nasa.gov/3MnEfrB

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore This Section Science Science Activation GLOBE, NASA, and the Monsignor… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   4 min read
      GLOBE, NASA, and the Monsignor McClancy Memorial High School in Queens, New York
      When students actively participate in scientific investigations that connect to their everyday lives, something powerful happens: they begin to see themselves as scientists. This sense of relevance and ownership can spark a lifelong interest in science, technology, engineering, and math (STEM), paving the way for continued education and even future careers in these fields. Opportunities to engage directly with NASA science—like the one you’ll read about in this story—not only deepen students’ understanding of STEM concepts, but also nourish their curiosity and confidence. With the support of passionate educators, these moments of participation become stepping stones to a future in which students see themselves as contributors to real-world science.
      In September 2021, Ms. Deanna Danke, a Monsignor McClancy Memorial High School mathematics teacher in Queens, New York, began teaching her students how to measure tree heights using trigonometry. Soon enough, Ms. Danke discovered the Global Learning and Observations to Benefit the Environment (GLOBE) Observer Trees Tool, and with her 150+ students, began taking tree height observations around the school, an activity that Ms. Danke and her students continue to participate in today. Her and her students’ hundreds of repeat tree height observations have provided student and professional researchers with clusters of measurements that can coincide with measurements made by NASA satellite instruments, allowing for a comparison of datasets that can be analyzed over time.
      Due to the consistent tree height data collection resulting from this effort, Ms. Danke was asked to be a co-author on a peer-reviewed research paper that was published on June 21, 2022 in the Environmental Research Letters special journal “Focus on Public Participation in Environmental Research.” The paper, “The potential of citizen science data to complement satellite and airborne lidar tree height measurements: lessons from The GLOBE Program,” included data from the tree height observations reported by Ms. Danke and her students—an incredible achievement for everyone involved.
      On March 21, 2025, Ms. Danke’s former and current students continued their inspiring adventures with NASA science by taking a trip to the NASA Wallops Flight Facility in Wallops Island, Virginia. Highlights from this trip included science and technology presentations by personnel from the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) and Global Precipitation Measurement (GPM) Missions, the Wallops Balloon Program Office, and the Wallops Machine Shop for Fabrication and Testing. The ICESat-2 presentation, in particular, included a discussion on the student-collected tree height data and how the ICESat-2 satellite makes tree height observations from space.
      Ms. Danke’s work is a testament to the incredible impact educators can have when they connect classroom learning to authentic scientific discovery. By introducing her students to tools like the GLOBE Observer Trees Tool and facilitating meaningful contributions to NASA science, she opened the door to experiences most students only dream of—from collecting data that supports satellite missions to co-authoring peer-reviewed research and visiting NASA facilities. Stories like this remind us that when students are empowered to be part of real science, the possibilities—for learning, inspiration, and future careers in STEM—are truly limitless.
      The GLOBE Observer app, used by Ms. Danke and her students, is made possible by the NASA Earth Science Education Collaborative (NESEC). This free mobile app includes four tools that enable citizen scientists to participate in NASA science: Clouds, Mosquito Habitat Mapper, Land Cover, and Trees. Learn more about ways that you can join and participate in this and other NASA Citizen Science projects. Through these projects, sometimes called “participatory science” projects, volunteers and amateurs have helped make thousands of important scientific discoveries, and they are open to everyone around the world (no citizenship required).
      NESEC is supported by NASA under cooperative agreement award number NNX16AE28A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      Map of tree height around the Monsignor McClancy Memorial High School from the GLOBE Program’s Visualization System. I know this was an experience they will remember forever and they have already told me that they cannot wait to tell their future children about it. It was wonderful meeting you in person and being on site to get a real sense of what you are working on. The boys were especially fascinated by the last two stops on the tour and appreciated learning a little more about how tree height is measured. Thank you again for this incredible opportunity.”
      Ms. Deanna Danke
      Monsignor McClancy Memorial High School
      Share








      Details
      Last Updated Apr 10, 2025 Editor NASA Science Editorial Team Location Wallops Flight Facility Related Terms
      Science Activation Earth Science Opportunities For Students to Get Involved Explore More
      3 min read NASA Science Supports Data Literacy for K-12 Students


      Article


      1 day ago
      3 min read Findings from the Field: A Research Symposium for Student Scientists


      Article


      2 days ago
      34 min read Style Guidelines for ‘The Earth Observer’ Newsletter 


      Article


      2 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      The airborne Lunar Spectral Irradiance (air-LUSI) instrument is moved across the hangar floor by robotic engineer Alexander McCafferty-Leroux ,from right to left, co-investigator Dr. John Woodward, NIST astronomer Dr. Susana Deustua, air-LUSI chief system engineer Dr. Kathleen “Kat” Scanlon, and members of the ER-2 ground crew at NASA’s Armstrong Flight Research Center in Edwards, California, in March 2025.NASA/Genaro Vavuris Flying high above the clouds and moon-gazing may sound like a scene from a timeless romance, but NASA did just that in the name of Earth science research. In March 2025 pilots took the agency’s ER-2 science aircraft on a series of night flights over NASA’s Armstrong Flight Research Center in Edwards, California, as the Moon increased in visible size. For those few nights, the high-flying plane was converted into a one-of-a-kind airborne lunar observatory.
      The Airborne Lunar Spectral Irradiance, or air-LUSI, mission observed the Moon at different phases and measured the sunlight reflected by the lunar surface. Specifically, the instrument tracks the amount of light reflected at different wavelengths. This information enables scientists to use the Moon as a calibration tool for Earth-observing sensors.
      As an “absolute reference, the Moon also becomes the perfect benchmark for satellites to consistently and accurately measure processes on Earth,” said Kevin Turpie, air-LUSI’s principal investigator and a researcher based at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. This helps scientists to improve the precision of many different measurements, including data on weather patterns, vegetation growth, and ocean conditions.
      As the highest-flying platform for airborne science, the ER-2 can fly the air-LUSI instrument in the stratosphere, above 95% of the atmosphere. Data collected at an altitude nearing 70,000 feet are highly accurate because the air is predominantly clear of the gases and particles found in the lower atmosphere that can interfere with measurements.
      The ER-2 aircraft is parked in a hangar at NASA’s Armstrong Flight Research Center in Edwards, California, in March 2025. The plane is prepared for takeoff to support the airborne Lunar Spectral Irradiance, or air-LUSI, mission.NASA/Genaro Vavuris “To date, air-LUSI measurements of the Moon are the most accurate ever made,” said Kelsey Bisson, the NASA program scientist supporting the mission. “Air-LUSI data can advance our ability to understand the Earth and our weather, and they provide a new way to calibrate satellites that can result in cost savings.”
      The quality of these data has transformative implications for satellite and Earth observing systems. The improved accuracy and enhanced ability provided by air-LUSI data flown on the ER-2 reduces the need for onboard reference devices, effectually cutting satellite costs.
      The air-LUSI project is a collaboration between scientists and engineers from NASA, the National Institute of Standards and Technology, the U.S. Geological Survey, the University of Maryland Baltimore County, and McMaster University in Ontario.
      The ER-2 ground crew Wissam Habbal, left, and Dr. Kevin Turpie, airborne Lunar Spectral Irradiance (air-LUSI) principal investigator, guide delicate fiber optic and electric cabling into place while uploading the air-LUSI instrument onto the ER-2 aircraft in March 2025 at NASA’s Armstrong Flight Research Center in Edwards, California.NASA/Genaro Vavuris “The collective effort of the American and Canadian team members offers an opportunity for truly exciting engineering and science collaboration,” said Andrew Gadsden, associate professor and associate chair for graduate studies in mechanical engineering at McMaster University, and co-investigator on the air-LUSI project. The McMaster team developed the Autonomous Robotic Telescope Mount Instrument System and High-Altitude Aircraft Mounted Robotic (HAAMR) telescope mount, which support the air-LUSI system.
      Dr. John Woodward, of the National Institute of Standards and Technology and co-investigator on the airborne Lunar Spectral Irradiance (air-LUSI) mission, prepares the instrument for upload onto the ER-2 aircraft in March 2025 at NASA’s Armstrong Flight Research Center in Edwards, California.NASA/Genaro Vavuris The HAAMR telescope mount was integrated onto the ER-2 and flown for the first time during the science flights in March. This new lunar tracking system is contributing to what John Woodward IV, co-investigator for air-LUSI, called the “highest accuracy measurements” of moonlight. To improve Earth observation technology, air-LUSI represents an important evolutionary step.
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA and SpaceX are launching the company’s 32nd commercial resupply services mission to the International Space Station later this month, bringing a host of new research to the orbiting laboratory. Aboard the SpaceX Dragon spacecraft are experiments focused on vision-based navigation, spacecraft air quality, materials for drug and product manufacturing, and advancing plant growth with less reliance on photosynthesis.
      This and other research conducted aboard the space station advances future space exploration, including missions to the Moon and Mars, and provides many benefits to humanity.
      Investigations traveling to the space station include:
      Robotic spacecraft guidance
      Smartphone Video Guidance Sensor-2 (SVGS-2) uses the space station’s Astrobee robots to demonstrate using a vision-based sensor developed by NASA to control a formation flight of small satellites. Based on a previous in-space demonstration of the technology, this investigation is designed to refine the maneuvers of multiple robots and integrate the information with spacecraft systems.
      Potential benefits of this technology include improved accuracy and reliability of systems for guidance, navigation, and control that could be applied to docking crewed spacecraft in orbit and remotely operating multiple robots on the lunar or Martian surface.
      Two of the space station’s Astrobee robots are used to test a vision-based guidance system for Smartphone Video Guidance Sensor (SVGS)NASA Protection from particles
      During spaceflight, especially long-duration missions, concentrations of airborne particles must be kept within ranges safe for crew health and hardware performance. The Aerosol Monitors investigation tests three different air quality monitors in space to determine which is best suited to protect crew health and ensure mission success. The investigation also tests a device for distinguishing between smoke and dust. Aboard the space station, the presence of dust can cause false smoke alarms that require crew member response. Reducing false alarms could save valuable crew time while continuing to protect astronaut safety.
      Better materials, better drugs
      The DNA Nano Therapeutics-Mission 2 produces a special type of molecule formed by DNA-inspired, customizable building blocks known as Janus base nanomaterials. It also evaluates how well the materials reduce joint inflammation and whether they can help regenerate cartilage lost due to arthritis. These materials are less toxic, more stable, and more compatible with living tissues than current drug delivery technologies.
      Environmental influences such as gravity can affect the quality of these materials and delivery systems. In microgravity, they are larger and have greater uniformity and structural integrity. This investigation could help identify the best formulations and methods for cost-effective in-space production. These nanomaterials also could be used to create novel systems targeting therapy delivery that improves patient outcomes with fewer side effects.
      Stem cells grown along the Janus base nanomaterials (JBNs) made aboard the International Space Station.University of Connecticut Next-generation pharmaceutical nanostructures
      The newest Industrial Crystallization Cassette (ADSEP-ICC) investigation adds capabilities to an existing protein crystallization facility. The cassette can process more sample types, including tiny gold particles used in devices that detect cancer and other diseases or in targeted drug delivery systems. Microgravity makes it possible to produce larger and more uniform gold particles, which improves their use in research and real-life applications of technologies related to human health.
      Helping plants grow
      Rhodium USAFA NIGHT examines how tomato plants respond to microgravity and whether a carbon dioxide replacement can reduce how much space-grown plants depend on photosynthesis. Because photosynthesis needs light, which requires spacecraft power to generate, alternatives would reduce energy use. The investigation also examines whether using supplements increases plant growth on the space station, which has been observed in preflight testing on Earth. In future plant production facilities aboard spacecraft or on celestial bodies, supplements could come from available organic materials such as waste.
      Understanding how plants adapt to microgravity could help grow food during long-duration space missions or harsh environments on Earth.
      Hardware for the Rhodium Plant LIFE, which was the first in a series used to study how space affects plant growth.NASA Atomic clocks in space
      An ESA (European Space Agency) investigation, Atomic Clock Ensemble in Space (ACES), examines fundamental physics concepts such as Einstein’s theory of relativity using two next-generation atomic clocks operated in microgravity. Results have applications to scientific measurement studies, the search for dark matter, and fundamental physics research that relies on highly accurate atomic clocks in space. The experiment also tests a technology for synchronizing clocks worldwide using global navigation satellite networks.
      An artist’s concept shows the Atomic Clock Ensemble in Space hardware mounted on the Earth-facing side of the space station’s exterior.ESA Download high-resolution photos and videos of the research mentioned in this article.
      Keep Exploring Discover More Topics From NASA
      Space Station Research and Technology
      Latest News from Space Station Research
      Station Benefits for Humanity
      Space Station Research Results
      View the full article
    • By Amazing Space
      LIVE Stream Of The Moon - Backyard Astronomy 9th April
  • Check out these Videos

×
×
  • Create New...