Members Can Post Anonymously On This Site
Plane passenger films mysterious Orbs fuel speculation on Drone origins
-
Similar Topics
-
By USH
The mystery of unidentified drones remains unresolved, with government authorities offering little clarity. Officials have downplayed the incidents, asserting there is no threat to national security and attributing many sightings to aircraft such as planes or helicopters. However, the lack of transparency has only fueled public speculation and heightened concerns.
What people/experts say:
Some speculate that these drones are part of covert operations designed to detect dirty bombs or nuclear devices or theses drones are part of an advanced surveillance systems operated by certain agencies.
The Space Force could be conducting classified exercises, such as testing cutting-edge technology or performing communication lockdown drills to evaluate detection and evasion capabilities.
A former CIA officer has suggested that the drones may be part of government efforts to trial advanced technologies in urban environments.
Reports indicate these drones exhibit unusual traits, such as lacking heat signatures and evading detection. They might employ RF jamming or encrypted communications, potentially causing unintentional disruptions to civilian electronics, including power outages, while avoiding capture.
Intelligence analysts have compared the drones to Russian Orlan-10 or Iranian Shahed-136 models, raising suspicions of international espionage.
But, the most striking statement came from Elon Musk, who warned earlier this year about the arrival of epic drone wars. He said that drone swarm battles are coming that will boggle the mind. What does he know that we don’t?
A large drone flying at a slow speed, shooting out or launching multiple smaller drones at a relatively high speed.
DAHBOO77 video: Musk's statement on X (formerly Twitter) at approximately the 1:23 mark.View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A drone is shown flying during a test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada in 2016. During the test, five drones simultaneously crossed paths, separated by different altitudes. Two drones flew beyond visual line of sight and three flew within line-of-sight of their operators. More UTM research followed, and it continues today.NASA / Dominic Hart Package delivery drones are coming to our doorsteps in the future, and NASA wants to make sure that when medication or pizza deliveries take to the skies, they will be safe.
In July, the Federal Aviation Administration (FAA) for the first time authorized multiple U.S. companies to fly commercial drones in the same airspace without their operators being able to see them the entire flight. Getting to this important step on the way to expanding U.S. commercial drone usage required considerable research into the concept known as flight that is Beyond Visual Line of Sight (BVLOS) – and NASA helped lead the way.
For BVLOS flights to become routine, trusted automation technology needs to be built into drone and airspace systems, since pilots or air traffic controllers won’t be able to see all the drones operating at once. To address these challenges, NASA developed several key technologies, most notably Unmanned Aircraft System (UAS) Traffic Management (UTM), which allows for digital sharing of each drone user’s planned flight details.
“NASA’s pioneering work on UTM, in collaboration with the FAA and industry, set the stage for safe and scalable small drone flights below 400 feet,” said Parimal Kopardekar, NASA’s Advanced Air Mobility mission integration manager. “This technology is now adopted globally as the key to enabling Beyond Visual Line of Sight drone operations.”
With UTM, each drone user can have the same situational awareness of the airspace where drones are flying. This foundation of technology development, led by NASA’s UTM project, allows drones to fly BVLOS today with special FAA approval.
Drones can fly BVLOS today at the FAA test site and at some other selected areas with pre-approval from the FAA based on the risks. However, the FAA is working on new regulation to allow BVLOS operations to occur without exemptions and waivers in the future.
The NASA UTM team invented a new way to handle the airspace — a style of air traffic management where multiple parties, from government to commercial industry, work together to provide services. These include flight planning, strategic deconfliction before flights take off, communication, surveillance and other focus areas needed for a safe flight.
This technology is now being used by the FAA in approved parts of the Dallas area, allowing commercial drone companies to deliver packages using the NASA- originated UTM research. UTM allows for strategic coordination among operators so each company can monitor their own drone flight to ensure that each drone is where it should be along the planned flight path. Test sites like Dallas help the FAA identify requirements needed to safely enable small drone operations nationwide.
NASA is also working to ensure that public safety drones have priority when operating in the same airspace with commercial drones. In another BVLOS effort, NASA is using drones to test technology that could be used on air taxis. Each of these efforts brings us one step closer to seeing supplies or packages routinely delivered by drone around the U.S.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Learn more about how drone package delivery works in this FAA video.FAA Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
3 min read NASA Flips Efficient Wing Concept for Testing
Article 6 days ago 4 min read NASA’s C-20A Studies Extreme Weather Events
Article 6 days ago 3 min read NASA Experts Share Inspiring Stories of Perseverance to Students
Article 1 week ago Keep Exploring Discover More Topics From NASA
Missions
Drones & You
Aeronautics Research Mission Directorate
Explore NASA’s History
Share
Details
Last Updated Dec 10, 2024 EditorLillian GipsonContactJim Bankejim.banke@nasa.gov Related Terms
Drones & You Advanced Air Mobility Aeronautics Aeronautics Research Mission Directorate Air Traffic Management – Exploration Airspace Operations and Safety Program Ames Research Center Armstrong Flight Research Center Glenn Research Center Langley Research Center UAS Traffic Management View the full article
-
By NASA
Maxar Space Systems Technicians guide the equipment that will house Gateway’s xenon and liquid fuel tanks in this photo from July 1, 2024. The tanks are part of Gateway’s Power and Propulsion Element, which will make the lunar space station the most powerful solar electric spacecraft ever flown. Once fully assembled and launched to lunar orbit, the Power and Propulsion Element’s roll-out solar arrays will harness the Sun’s energy to energize xenon gas and produce the thrust to get Gateway to the Moon’s orbit where it will await the arrival of its first crew on the Artemis IV mission.
Image credit: Maxar Space Systems
View the full article
-
By USH
A rare and intriguing phenomenon has been observed in China. On the night of October 27th, Chinese astrophotographer Shengyu Li set up his camera to capture star trails over Mount Xiannairi in Sichuan Province. To his surprise, he recorded mysterious blue flashes accompanying an avalanche.
The exact cause of these "blue lights" remains unclear, sparking various theories. Some speculate they could stem from geomagnetic activity, interactions of cosmic rays in the upper atmosphere, or rare atmospheric phenomena like blue jets or elves. However, Li offers another explanation: the flashes might result from triboluminescence—light produced by friction during ice fragmentation.
Triboluminescence occurs when certain materials emit light as they are fractured, scratched, or rubbed. This phenomenon happens due to the breaking of chemical bonds or the sudden separation of surfaces, which generates electrical charges. These charges can ionize the surrounding air or excite the material itself, creating visible light.
The hypothesis suggests that this event could be an example of triboluminescence. However, it also raises the intriguing possibility of a connection to UFO phenomena, such as orbs or other unexplained lights that have been observed around the world over the years.
Hypothesis: The sighting depicts what appears to be a blue light descending onto a snowbank, following the avalanche as it moves downward, and then vanishing before seemingly ascending again.
Did the avalanche trigger the blue light, or did the blue light crash into the snow, causing the avalanche?
Whether this phenomenon is a rare case of triboluminescence, potentially the first instance of it being captured on camera or something linked to unexplained UFO activity, the recording of this light remains a unique and fascinating occurrence. View the full article
-
By NASA
NASA Lewis Research Center’s DC-9 commences one of its microgravity-producing parabolas in the fall of 1994. It was the center’s largest aircraft since the B-29 Superfortress in the 1940s.Credit: NASA/Quentin Schwinn
A bell rings and a strobe light flashes as a pilot pulls the nose of the DC-9 aircraft up sharply. The blood quickly drains from researchers’ heads as they are pulled to the cabin floor by a force twice that of normal gravity. Once the acceleration slows to the desired level, and the NASA aircraft crests over its arc, the flight test director declares, “We’re over the top!”
The pressure drops as the aircraft plummets forward in freefall. For the next 20 to 25 seconds, everybody and everything not tied down begins to float. The researchers quickly tend to their experiments before the bell rings again as the pilot brings the aircraft back to level flight and normal Earth gravity.
By flying in a series of up-and-down parabolas, aircraft can simulate weightlessness. Flights like this in the DC-9, conducted by NASA’s Lewis Research Center (today, NASA Glenn) in the 1990s, provided scientists with a unique way to study the behavior of fluids, combustion, and materials in a microgravity environment.
Researchers conduct experiments in simulated weightlessness during a flight aboard the DC-9. The aircraft sometimes flew up to 40 parabolas in a single mission.Credit: NASA/Quentin Schwinn Beginnings
In the 1960s, NASA Lewis used a North American AJ-2 to fly parabolas to study the behavior of liquid propellants in low-gravity conditions. The center subsequently expanded its microgravity research to include combustion and materials testing.
So, when the introduction of the space shuttle in the early 1980s led to an increase in microgravity research, NASA Lewis was poised to be a leader in the agency’s microgravity science efforts. To help scientists test experiments on Earth before they flew for extended durations on the shuttle, Lewis engineers modified a Learjet aircraft to fly microgravity test flights with a single strapped-down experiment and researcher.
The DC-9 flight crew in May 1996. Each flight required two pilots, a flight engineer, and test directors. The flight crews participated in pre- and post-flight mission briefings and contributed to program planning, cost analysis, and the writing of technical reports.Credit: NASA/Quentin Schwinn Bigger And Better
In 1990, NASA officials decided that Lewis needed a larger aircraft to accommodate more experiments, including free-floating tests. Officials determined the McDonnell Douglas DC-9 would be the most economical option and decided to assume responsibility for a DC-9 being leased by the U.S. Department of Energy.
In the fall of 1993, 50 potential users of the aircraft visited the center to discuss the modifications that would be necessary to perform their research. In October 1994, the DC-9 arrived at Lewis in its normal passenger configuration. Over the next three months, Lewis technicians removed nearly all the seats; bolstered the floor and ceiling; and installed new power, communications, and guidance systems. A 6.5-by-11-foot cargo door was also installed to allow for the transfer of large equipment.
The DC-9 was the final element making NASA Lewis the nation’s premier microgravity institution. The center’s Space Experiments Division had been recently expanded, the 2.2-Second Drop Tower and the Zero Gravity Facility had been upgraded, and the Space Experiments Laboratory had recently been constructed to centralize microgravity activities.
NASA Lewis researchers aboard the DC-9 train the STS-83 astronauts on experiments for the Microgravity Science Laboratory (MSL-1).Credit: NASA/Quentin Schwinn Conducting the Flights
Lewis researchers partnered with industry and universities to design and test experiments that could fly on the space shuttle or the future space station. The DC-9 could accommodate up to eight experiments and 20 research personnel on each flight.
The experiments involved space acceleration measurements, capillary pump loops, bubble behavior, thin film liquid rupture, materials flammability, and flame spread. It was a highly interactive experience, with researchers accompanying their tests to gain additional information through direct observation. The researchers were often so focused on their work that they hardly noticed the levitation of their bodies.
The DC-9 flew every other week to allow time for installation of experiments and aircraft maintenance. The flights, which were based out of Cleveland Hopkins International Airport, were flown in restricted air space over northern Michigan. The aircraft sometimes flew up to 40 parabolas in a single mission.
Seth Lichter, professor at Northwestern University, conducts a thin film rupture experiment aboard the DC-9 in April 1997.Credit: NASA/Quentin Schwinn A Lasting Legacy
When the aircraft’s lease expired in the late 1990s, NASA returned the DC-9 to its owner. From May 18, 1995, to July 11, 1997, the Lewis microgravity flight team had used the DC-9 to fly over 400 hours, perform 70-plus trajectories, and conduct 73 research projects, helping scientists conduct hands-on microgravity research on Earth as well as test and prepare experiments designed to fly in space. The aircraft served as a unique and important tool, overall contributing to the body of knowledge around microgravity science and the center’s expertise in this research area.
NASA Glenn’s microgravity work continues. The center has supported experiments on the International Space Station that could improve crew health as well as spacecraft fire safety, propulsion, and propellants. Glenn is also home to two microgravity drop towers, including the Zero Gravity Research Facility, NASA’s premier ground-based microgravity research lab.
Additional Resources:
Learn more about why NASA researchers simulate microgravity Take a virtual tour of NASA Glenn’s Zero Gravity Research Facility Discover more about Glenn’s expertise in space technology Explore More
6 min read Art Meets Exploration: Cosmic Connections in Galveston
Article 1 day ago 3 min read Emerging Engineering Leader Basil Baldauff Emphasizes Osage Values
Article 1 day ago 6 min read NASA’s Commercial Partners Make Progress on Low Earth Orbit Projects
Article 2 days ago View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.