Jump to content

Orion Spacecraft Tested in Ohio After Artemis I Mission


Recommended Posts

  • Publishers
Posted

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

The Orion Environmental Test Article, blackened from its spaceflight, is photographed sitting on a white platform inside the shadowed aluminum vacuum chamber at NASA’s Neil Armstrong Test Facility. A woman with dark hair wearing a black sweatshirt appears in the lower right corner of the photo.
The Orion Environmental Test Article photographed inside the Thermal Vacuum Chamber on April 11, 2024, in the Space Environments Complex at NASA’s Neil Armstrong Test Facility in Sandusky, Ohio.
Credit: NASA/Quentin Schwinn 

Making the voyage 1.4 million miles around the Moon and back — the farthest a spacecraft built for humans has ever gone — the Orion spacecraft has faced a battery of tests over the years. Though Orion successfully proved its capabilities in the harsh environment of space during the Artemis I mission, Orion’s evaluation did not end at splashdown.  

The crew module, now known as the Orion Environmental Test Article (ETA), returned to NASA’s Neil Armstrong Test Facility in Sandusky, Ohio, in January 2024 and completed an 11-month test campaign necessary for the safety and success of Artemis II, the first crewed mission under NASA’s Artemis campaign.  

Engineers and technicians from NASA and Lockheed Martin subjected the test article to the extreme conditions Orion may experience in a launch abort scenario. In the event of an emergency, Orion — and astronauts inside — will jettison away from the SLS (Space Launch System) rocket for a safe landing in the ocean.  

“This event would be the maximum stress and highest load that any of the systems would see,” said Robert Overy, Orion ETA project manager, NASA’s Glenn Research Center in Cleveland. “We’re taking a proven vehicle from a successful flight and pushing it to its limits. The safety of the astronaut crew depends on this test campaign.” 

Experts conducted tests that simulated the noise levels of an abort during launch in addition to the electromagnetic effects of lightning strikes. The test campaign also jettisoned the test article’s docking module and parachute covers, as well as the crew module uprighting system, which consists of five airbags on top of the spacecraft that inflate upon splashdown.  

“It’s been a successful test campaign,” Overy said. “The data has matched the prediction models, and everything operated as expected after being subjected to nominal and launch abort acoustic levels. We are still analyzing data, but the preliminary results show the vehicle and facility operated as desired.” 

On. Nov. 23, 2024, after subjecting the Orion test article to launch abort-level acoustics, experts tested the functionality of the forward bay cover, which is the last piece that must eject before parachutes deploy.
Credit: NASA/Jordan Salkin and Quentin Schwinn

Testing Orion at such high acoustic levels was a major milestone for Artemis. The Reverberant Acoustic Test Facility, the world’s most powerful spacecraft acoustic test chamber, was built in 2011 in anticipation of this specific test campaign.   

“These tests are absolutely critical because we have to complete all of these tests to say the spacecraft design is safe and we’re ready to fly a crew for the first time on Artemis II,” said Michael See, ETA vehicle manager, Orion Program. “This is the first time we’ve been able to test a spacecraft on the ground in such an extreme abort-level acoustic environment.” 

The Orion Environmental Test Article with Launch Abort System installed moves to the Reverberant Acoustic Test Facility, the most powerful spacecraft acoustic test chamber in the world, on Sept. 9, 2024, at NASA’s Neil Armstrong Test Facility in Sandusky, Ohio. 
Credit: NASA/Jordan Salkin and Quentin Schwinn 

Part of NASA Glenn, Armstrong Test Facility is home to the world’s largest and most powerful space environment simulation chambers capable of testing full-sized spacecraft for all the extreme conditions of launch and spaceflight. The facility not only houses an acoustic test chamber, but also a thermal-vacuum chamber and spacecraft vibration system.  

“The facility is unique because there’s no other place in the world capable of testing spacecraft like this,” Overy said. “Armstrong Test Facility is a one-stop-shop for all your testing needs to prepare your spacecraft for the severe and challenging journey to and from space.” 

Orion’s Round-Trip Journey to Ohio 

This is not the first time Orion has been inside the walls of the Space Environments Complex at Armstrong Test Facility. The spacecraft underwent mission-critical testing in 2019, where it was subjected to extreme temperatures and an electromagnetic environment before it launched on Artemis I in 2022. 

“I remember when it first arrived, the gravity of its importance really hit home,” said Joshua Pawlak, test manager, NASA Glenn. “I thought to myself, on future Artemis missions, astronauts will be inside Orion heading to the Moon, and they’ll be depending on it for survival.” 

Pawlak was a mechanical test engineer when Orion made its first trip to the Sandusky facility. He participated in planning and coordinating testing of the vehicle and trained personnel. He managed the vehicle from the moment it arrived, through testing, and up until it departed for NASA’s Kennedy Space Center in Florida.  

A man in a hat, long-sleeve shirt, and jeans stands with his hands in his pocket, smiling toward the camera. Behind him across the water, the Artemis I Space Launch System rocket awaits launch. The rocket is lit by flood lights, and the light is reflected in both the water and the sky above.
Joshua Pawlak poses in front of the Artemis I Space Launch System rocket on Nov. 16, 2022, in Cape Canaveral, Florida.
Credit: Joshua Pawlak

“When it returned, I felt like I had a small part in this really big and exciting thing,” Pawlak said. “Seeing it come back blackened and scarred from the harsh environment of space was incredible. Space is not a friendly space, and I felt proud knowing that if there were astronauts on that vehicle, they would have survived. 

After the Orion test article departs from Glenn, it will head to Kennedy for additional testing. 

“When Artemis II launches and those astronauts are sitting on board, I’ll know that I did everything I could to ensure the vehicle is ready for them and going to perform as expected,” Pawlak said. “That’s why I do what I do.” 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Science Launching on SpaceX's 32nd Cargo Resupply Mission to the Space Station
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA and SpaceX are launching the company’s 32nd commercial resupply services mission to the International Space Station later this month, bringing a host of new research to the orbiting laboratory. Aboard the SpaceX Dragon spacecraft are experiments focused on vision-based navigation, spacecraft air quality, materials for drug and product manufacturing, and advancing plant growth with less reliance on photosynthesis.
      This and other research conducted aboard the space station advances future space exploration, including missions to the Moon and Mars, and provides many benefits to humanity.
      Investigations traveling to the space station include:
      Robotic spacecraft guidance
      Smartphone Video Guidance Sensor-2 (SVGS-2) uses the space station’s Astrobee robots to demonstrate using a vision-based sensor developed by NASA to control a formation flight of small satellites. Based on a previous in-space demonstration of the technology, this investigation is designed to refine the maneuvers of multiple robots and integrate the information with spacecraft systems.
      Potential benefits of this technology include improved accuracy and reliability of systems for guidance, navigation, and control that could be applied to docking crewed spacecraft in orbit and remotely operating multiple robots on the lunar or Martian surface.
      Two of the space station’s Astrobee robots are used to test a vision-based guidance system for Smartphone Video Guidance Sensor (SVGS)NASA Protection from particles
      During spaceflight, especially long-duration missions, concentrations of airborne particles must be kept within ranges safe for crew health and hardware performance. The Aerosol Monitors investigation tests three different air quality monitors in space to determine which is best suited to protect crew health and ensure mission success. The investigation also tests a device for distinguishing between smoke and dust. Aboard the space station, the presence of dust can cause false smoke alarms that require crew member response. Reducing false alarms could save valuable crew time while continuing to protect astronaut safety.
      Better materials, better drugs
      The DNA Nano Therapeutics-Mission 2 produces a special type of molecule formed by DNA-inspired, customizable building blocks known as Janus base nanomaterials. It also evaluates how well the materials reduce joint inflammation and whether they can help regenerate cartilage lost due to arthritis. These materials are less toxic, more stable, and more compatible with living tissues than current drug delivery technologies.
      Environmental influences such as gravity can affect the quality of these materials and delivery systems. In microgravity, they are larger and have greater uniformity and structural integrity. This investigation could help identify the best formulations and methods for cost-effective in-space production. These nanomaterials also could be used to create novel systems targeting therapy delivery that improves patient outcomes with fewer side effects.
      Stem cells grown along the Janus base nanomaterials (JBNs) made aboard the International Space Station.University of Connecticut Next-generation pharmaceutical nanostructures
      The newest Industrial Crystallization Cassette (ADSEP-ICC) investigation adds capabilities to an existing protein crystallization facility. The cassette can process more sample types, including tiny gold particles used in devices that detect cancer and other diseases or in targeted drug delivery systems. Microgravity makes it possible to produce larger and more uniform gold particles, which improves their use in research and real-life applications of technologies related to human health.
      Helping plants grow
      Rhodium USAFA NIGHT examines how tomato plants respond to microgravity and whether a carbon dioxide replacement can reduce how much space-grown plants depend on photosynthesis. Because photosynthesis needs light, which requires spacecraft power to generate, alternatives would reduce energy use. The investigation also examines whether using supplements increases plant growth on the space station, which has been observed in preflight testing on Earth. In future plant production facilities aboard spacecraft or on celestial bodies, supplements could come from available organic materials such as waste.
      Understanding how plants adapt to microgravity could help grow food during long-duration space missions or harsh environments on Earth.
      Hardware for the Rhodium Plant LIFE, which was the first in a series used to study how space affects plant growth.NASA Atomic clocks in space
      An ESA (European Space Agency) investigation, Atomic Clock Ensemble in Space (ACES), examines fundamental physics concepts such as Einstein’s theory of relativity using two next-generation atomic clocks operated in microgravity. Results have applications to scientific measurement studies, the search for dark matter, and fundamental physics research that relies on highly accurate atomic clocks in space. The experiment also tests a technology for synchronizing clocks worldwide using global navigation satellite networks.
      An artist’s concept shows the Atomic Clock Ensemble in Space hardware mounted on the Earth-facing side of the space station’s exterior.ESA Download high-resolution photos and videos of the research mentioned in this article.
      Keep Exploring Discover More Topics From NASA
      Space Station Research and Technology
      Latest News from Space Station Research
      Station Benefits for Humanity
      Space Station Research Results
      View the full article
    • By NASA
      3 min read
      NASA’s Juno Back to Normal Operations After Entering Safe Mode
      NASA’s Juno flies above Jupiter’s Great Red Spot in this artist’s concept. NASA/JPL-Caltech The spacecraft was making its 71st close approach to Jupiter when it unexpectedly entered into a precautionary status.
      Data received from NASA’s Juno mission indicates the solar-powered spacecraft went into safe mode twice on April 4 while the spacecraft was flying by Jupiter. Safe mode is a precautionary status that a spacecraft enters when it detects an anomaly. Nonessential functions are suspended, and the spacecraft focuses on essential tasks like communication and power management. Upon entering safe mode, Juno’s science instruments were powered down, as designed, for the remainder of the flyby.
      The mission operations team has reestablished high-rate data transmission with Juno, and the spacecraft is currently conducting flight software diagnostics.The team will work in the ensuing days to transmit the engineering and science data collected before and after the safe-mode events to Earth.
      Juno first entered safe mode at 5:17 a.m. EDT, about an hour before its 71st close passage of Jupiter — called perijove. It went into safe mode again 45 minutes after perijove. During both safe-mode events, the spacecraft performed exactly as designed, rebooting its computer, turning off nonessential functions, and pointing its antenna toward Earth for communication.
      Of all the planets in our solar system, Jupiter is home to the most hostile environment, with the radiation belts closest to the planet being the most intense. Early indications suggest the two Perijove 71 safe-mode events occurred as the spacecraft flew through these belts. To block high-energy particles from impacting sensitive electronics and mitigate the harmful effects of the radiation, Juno features a titanium radiation vault.
      Including the Perijove 71 events, Juno has unexpectedly entered spacecraft-induced safe mode four times since arriving at Jupiter in July 2016: first, in 2016 during its second orbit, then in 2022 during its 39th orbit. In all four cases, the spacecraft performed as expected and recovered full capability.
      Juno’s next perijove will occur on May 7 and include a flyby of the Jovian moon Io at a distance of about 55,300 miles (89,000 kilometers).
      More About Juno
      NASA’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Juno mission for the principal investigator, Scott Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington. The Italian Space Agency (ASI) funded the Jovian InfraRed Auroral Mapper. Lockheed Martin Space in Denver built and operates the spacecraft. Various other institutions around the U.S. provided several of the other scientific instruments on Juno.
      More information about Juno is available at:
      https://www.nasa.gov/juno
      News Media Contacts
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      Deb Schmid
      Southwest Research Institute, San Antonio
      210-522-2254
      dschmid@swri.org
      2025-049
      Share








      Details
      Last Updated Apr 09, 2025 Related Terms
      Juno Explore More
      2 min read For Your Processing Pleasure: The Sharpest Pictures of Jupiter’s Volcanic Moon Io in a Generation


      Article


      1 year ago
      1 min read Juno Marks 50 Orbits Around Jupiter
      NASA’s Juno mission completed its 50th close pass by Jupiter on April 8, 2023. To…


      Article


      2 years ago
      5 min read 10 Things: Two Years of Juno at Jupiter
      NASA’s Juno mission arrived at the King of Planets in July 2016. The intrepid robotic…


      Article


      7 years ago
      Keep Exploring Discover Related Topics
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By European Space Agency
      Image: New ESA invention tested in a chamber of no echoes View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Portrait of David Mitchell, Thursday, Jan. 27, 2022, NASA Headquarters Mary W. Jackson building in Washington.NASA/Bill Ingalls David Mitchell, the Associate Administrator for MSD.   
      Have you ever wondered how NASA manages to achieve all the incredible missions it does, like probing the Sun and studying the history of our Universe? We do it through teamwork, one of our core values. And an essential part of NASA’s team is what we call Mission Support. Mission Support makes sure NASA’s missions, centers, and programs have the capabilities and services they need to explore the unknown, innovate for the future, and inspire the world.  
      To illustrate Mission Support at NASA, look at the example of the Roman Space Telescope. It’s not just scientists and engineers who are making the telescope happen. The program works with NASA’s financial office to plan the budget for the telescope. Engineers design the telescope with tools developed in coordination with NASA’s shared services and information technology offices. NASA’s engineering authority checks the design, and international relations manages NASA’s collaborations with other countries on the telescope. All of this is Mission Support. 
      Of course, there is much more to Mission Support, but I think you get the picture. MSD enables Mission Support by:  
      Planning and executing the Mission Support budgets for safety, security, and mission services as well as construction and environmental management.   Executing strategy and governance to ensure Mission Support is financially sound, aligned with the agency’s goals, and serving NASA’s missions.  Addressing Mission Support’s financial, operational, legal, and reputational risks to ensure resilience and mission success.  Working with mission directorates and centers to ensure NASA is prioritizing the Mission Support services they need most urgently to be successful.  Integrating Mission Support services across the agency to maximize efficiency and effectiveness.  Current and future missions require significant support to be successful. MSD is working today to ensure Mission Support is there for NASA to explore the unknown, innovate for the future, and inspire the world.  
      To learn more, visit MSD Organization.  
      View the full article
  • Check out these Videos

×
×
  • Create New...