Jump to content

Station Science Top News: Dec. 13, 2024


Recommended Posts

  • Publishers
Posted

Benchmarks for solidifying metal alloys

Researchers report benchmark data for modeling the growth of specific types of microstructures that form during solidification of metal alloys under different conditions. These microstructures affect the properties of materials and products such as refrigeration devices and solar cells.

The ESA (European Space Agency) Columnar-to-Equiaxed Transition in Solidification Processing (CETSOL) investigation studied the processes of metal alloy solidification and the crystal patterns that form as liquids transition to solids. Results could improve ground-based development of lightweight, high-performance structural materials for space and ground applications. Microgravity is key to this research because it eliminates influences of gravity during solidification and allows researchers to control turbulence and convection.

An astronaut aboard the International Space Station holds a metal bar with both hands while working in a space station module filled with cables, equipment, and storage compartments. He wears a light gray t-shirt and blue pants.
European Space Agency (ESA) astronaut Frank De Winne works on the Columnar-to-Equiaxed Transition in Solidification Processing (CETSOL) investigation in the U.S. Destiny Laboratory.
NASA

Composite materials shield against radiation, other hazards

Researchers found no degradation in two multifunctional radiation shielding composite materials after exposure to space. This finding suggests that composite materials with a surface layer and a coating could protect crews on future missions from radiation and other hazards of space.

Materials ISS Experiment Flight Facility (MISSE-FF) continued a series of investigations examining how exposure to space affects materials and material configurations used for space missions. The MISSE-13 suite of materials included a multifunctional composite material for shielding crew members in habitats and spacecraft beyond low Earth orbit against radiation, atomic oxygen, and temperature extremes.

iss058e003972.jpg?w=2048
An image of the Materials ISS Experiment Flight Facility (MISSE-FF) platform used for MISSE experiments.
NASA

Modeling the use of boiling to transfer heat

Researchers developed an algorithm to determine the amount of heat transferred via boiling of a liquid and showed that maximum heat flow occurs where the bubble contacts the surface and the liquid. This finding could inform design of thermal control systems for spacecraft and for cooling electronics and other applications on Earth.

ESA’s Multiscale Boiling examined the dynamics of heat transfer via boiling, which generates vapor bubbles that lift heat from a surface. This technique is less efficient in microgravity because boiling happens more slowly, and bubbles remain near the surface in the absence of buoyancy. But microgravity also makes it possible to observe effects that are too fast and too small to be measured under normal gravity conditions, helping scientists understand the dynamics of boiling heat transfer.

An astronaut aboard the International Space Station works with cables and tools while floating in a module filled with equipment, wires, and storage containers. The astronaut is wearing gloves, a black T-shirt, and green pants.
ESA astronaut Luca Parmitano works on the Multiscale Boiling hardware aboard the International Space Station.
ESA/Luca Parmitano

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      7 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      2024 intro: As NASA’s Ames Research Center in California’s Silicon Valley enters its 85th year since its founding, join us as we take a look back at some of our highlights of science, engineering, research, and innovation from 2024.
      Ames Arc Jets Play Key Role in Artemis I Orion Spacecraft Heat Shield Findings 
      A block of Avcoat undergoes testing inside an arc jet test chamber at NASA Ames. The test article, configured with both permeable (upper) and non-permeable (lower) Avcoat sections for comparison, helped to confirm understanding of the root cause of the loss of charred Avcoat material that engineers saw on the Orion spacecraft after the Artemis I test flight beyond the Moon. NASA Researchers at Ames were part of the team tasked to better understand and identify the root cause of the unexpected char loss across the Artemis I Orion spacecraft’s heat shield. Using Avcoat material response data from Artemis I, the investigation team was able to replicate the Artemis I entry trajectory environment — a key part of understanding the cause of the issue — inside the arc jet facilities at NASA Ames. 
      Starling Swarm Completes Primary Mission 
      The four CubeSat spacecraft that make up the Starling swarm have demonstrated success in autonomous operations, completing all key mission objectives. NASA After ten months in orbit, the Starling spacecraft swarm successfully demonstrated its primary mission’s key objectives, representing significant achievements in the capability of swarm configurations in low Earth orbit, including distributing and sharing important information and autonomous decision making. 
      Another Step Forward for BioNutrients 
      Research scientists Sandra Vu, left, Natalie Ball, center, and Hiromi Kagawa, right, process BioNutrients production packs.NASA/Brandon Torres Navarrete NASA’s BioNutrients entered its fifth year in its mission to investigate how microorganisms can produce on-demand nutrients for astronauts during long-duration space missions. Keeping astronauts healthy is critical and as the project comes to a close, researchers have processed production packs on Earth on the same day astronauts processed production packs in space on the International Space Station to demonstrate that NASA can produce nutrients after at least five years in space, providing confidence it will be capable of supporting crewed missions to Mars.  
      Hyperwall Upgrade Helps Scientists Interpret Big Data
      The newly upgraded hyperwall visualization system provides four times the resolution of the previous system. NASA/Brandon Torres Navarrete Ames upgraded its powerful hyperwall system, a 300-square foot wall of LCD screens with over a billion pixels to display supercomputer-scale visualizations of the very large datasets produced by NASA supercomputers and instruments. The hyperwall is just one way researchers can utilize NASA’s high-end computing technology to better understand their data and advance the agency’s missions and research. 
      Ames Contributions to NASA Artificial Intelligence Efforts 
      NASA public affairs officer Melissa Howell moderates as chief scientist Kate Calvin speaks alongside chief technologist AC Charania, chief artificial intelligence officer David Salvagnini, and chief information officer Jeff Seaton at the agency’s first artificial intelligence town hall.NASA/Bill Ingalls Ames contributes to the agency’s artificial intelligence work through ongoing research and development, agencywide collaboration, and communications efforts. This year, NASA announced David Salvagnini as its inaugural chief artificial intelligence officer and held the first agencywide town hall on artificial intelligence sharing how the agency is safely using and developing artificial intelligence to advance missions and research. 
      Advanced Composite Solar Sail System Successfully Launches, Deploys Sail
      NASA’s Advanced Composite Solar Sail System seeks to advance future space exploration and expand our understanding of our Sun and Solar System.  NASA’s Advanced Composite Solar Sail System successfully launched from Māhia, New Zealand, in April, and successfully deployed its sail in August to begin mission operations. The small satellite represents a new future in solar sailing, using lightweight composite booms to support a reflective polymer sail that uses the pressure of sunlight as propulsion. 
      Understanding Our Planet 
      Samuel Suleiman, an instructor on NASA’s OCEANOS student training program, gathers loose corals to place around an endangered coral species to help attract fish and other wildlife, giving the endangered coral a better chance of survival.NASA/Milan Loiacono In 2024, Ames researchers studied Earth’s oceans and waterways from multiple angles – from supporting NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem, or PACE, mission to bringing students in Puerto Rico experiences in oceanography and the preservation of coral reefs. Working with multiple partners, our scientists and engineers helped inform ecosystem management by joining satellite measurements of Earth with animal tracking data. In collaboration with the U.S. Geological Survey, a NASA team continued testing a specialized instrument package to stay in-the-know about changes in river flow rates. 
      Revealing the Mysteries of Asteroids in Our Solar System 
      NASA Ames researchers used a series of supercomputer simulations to reveal a potential new explanation for how the moons of Mars may have formed: The first step, the findings say, may have involved the destruction of an asteroid. 
      Using NASA’s powerful James Webb Space Telescope, another Ames scientist helped reveal the smallest asteroids ever found in the main asteroid belt. 
      Ames Helps Emerging Space Companies ‘Take the Heat’
      A heat shield made by NASA is visible on the blunt, upward-facing side of a space capsule after its landing in the Utah desert.Varda Space Industries/John Kraus A heat shield material invented and made at Ames helped to safely return a spacecraft containing the first product processed on an autonomous, free-flying, in-space manufacturing platform. February’s re-entry of the spacecraft from Varda Space Industries of El Segundo, California, in partnership with Rocket Lab USA of Long Beach, California, marked the first time a NASA-manufactured thermal protection material, called C-PICA (Conformal Phenolic Impregnated Carbon Ablator), ever returned from space. 
      Team Continues to Move Forward with Mission to Learn More about Our Star
      This illustration lays a depiction of the sun’s magnetic fields over an image captured by NASA’s Solar Dynamics Observatory on March 12, 2016. NASA/SDO/AIA/LMSAL HelioSwarm’s swarm of nine spacecraft will provide deeper insights into our universe and offer critical information to help protect astronauts, satellites, and communications signals such as GPS. The mission team continues to work toward launching in 2029. 
      CAPSTONE Continues to Chart a New Path Around the Moon 
      CAPSTONE revealed in lunar Sunrise: CAPSTONE will fly in cislunar space – the orbital space near and around the Moon. The mission will demonstrate an innovative spacecraft-to-spacecraft navigation solution at the Moon from a near rectilinear halo orbit slated for Artemis’ Gateway.Credits: Illustration by NASA/Daniel Rutter The microwave sized CubeSat, CAPSTONE, continues to fly in a cis-lunar near rectilinear halo orbit after launching in 2022. Flying in this unique orbit continues to pave the way for future spacecraft and Gateway, a Moon-orbiting outpost that is part of NASA’s Artemis campaign, as the team continues to collect data. 
      NASA Moves Drone Package Delivery Industry Closer to Reality 
      A drone is shown flying during a test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada in 2016. During the test, five drones simultaneously crossed paths, separated by different altitudes. Two drones flew beyond visual line of sight and three flew within line-of-sight of their operators. More UTM research followed, and it continues today. Dominic Hart NASA’s uncrewed aircraft system traffic management concepts paved the way for newly-approved package delivery drone flights in the Dallas area. 
      NASA Technologies Streamline Air Traffic Management Systems 
      This image shows an aviation version of a smartphone navigation app that makes suggestions for an aircraft to fly an alternate, more efficient route. The new trajectories are based on information available from NASA’s Digital Information Platform and processed by the Collaborative Departure Digital Rerouting tool.NASA Managing our busy airspace is a complex and important issue, ensuring reliable and efficient movement of commercial and public air traffic as well as autonomous vehicles. NASA, in partnership with AeroVironment and Aerostar, demonstrated a first-of-its-kind air traffic management concept that could pave the way for aircraft to safely operate at higher altitudes. The agency also saw continued fuel savings and reduction in commercial flight delays at Dallas Fort-Worth Airport, thanks to a NASA-developed tool that allows flight coordinators to identify more efficient, alternative takeoff routes.
      Small Spacecraft Gathers Big Solar Storm Data from Deep Space 
      Illustration of NASA’s BioSentinel spacecraft as it enters a heliocentric orbit.NASA/Daniel Rutter BioSentinel – a small satellite about the size of a cereal box – is currently more than 30 million miles from Earth, orbiting our Sun. After launching aboard NASA’s Artemis I more than two years ago, BioSentinel continues to collect valuable information for scientists trying to understand how solar radiation storms move through space and where their effects – and potential impacts on life beyond Earth – are most intense. In May 2024, the satellite was exposed to a coronal mass ejection without the protection of our planet’s magnetic field and gathered measurements of hazardous solar particles in deep space during a solar storm. 
      NASA, FAA Partner to Develop New Wildland Fire Technologies
      Artist’s rendering of remotely piloted aircraft providing fire suppression, monitoring and communications capabilities during a wildland fire. NASA NASA researchers continued to develop and test airspace management technologies to enable remotely-piloted aircraft to fight and monitor wildland fires 24 hours a day.  
      The Advanced Capabilities for Emergency Response Operations (ACERO) project seeks to use drones and advanced aviation technologies to improve wildland fire coordination and operations. 
      NASA and Forest Service Use Balloon to Help Firefighters Communicate
      The Aerostar Thunderhead balloon carries the STRATO payload into the sky to reach the stratosphere for flight testing. The balloon appears deflated because it will expand as it rises to higher altitudes where pressures are lower.Colorado Division of Fire Prevention and Control Center of Excellence for Advanced Technology Aerial Firefighting/Austin Buttlar  The Strategic Tactical Radio and Tactical Overwatch (STRATO) technology is a collaborative effort to use high-altitude balloons to improve real-time communications among firefighters battling wildland fires. Providing cellular communication from above can improve firefighter safety and firefighting efficiency.
      A Fully Reimagined Visitor Center 
      The NASA Ames Visitor Center includes exhibits and activities, sharing the work of NASA in Silicon Valley with the public. NASA/Don Richey The NASA Ames Visitor Center at Chabot Space & Science Center in Oakland, California includes a fully reimagined 360-degree experience, featuring new exhibits, models, and more. An interactive exhibit puts visitors in the shoes of a NASA Ames scientist, designing and testing rovers, planes, and robots for space exploration. 
      Ames Collaborations in the Community
      Former NASA astronauts Yvonne Cagle and Kenneth Cockrell pose with Eli Toribio and Rhydian Daniels at the University of California, San Francisco Bakar Cancer Hospital. Patients gathered to meet the astronauts and learn more about human spaceflight and NASA’s cancer research effortsNASA/Brandon Torres Navarrete NASA astronauts, scientists, and researchers, and leadership from the University of California, San Francisco (UCSF) met with cancer patients and gathered in a discussion about potential research opportunities and collaborations as part of President Biden and First Lady Jill Biden’s Cancer Moonshot initiative on Oct. 4. During the visit with patients, NASA astronaut Yvonne Cagle and former astronaut Kenneth Cockrell answered questions about spaceflight and life in space. 
      Ames and the University of California, Berkeley, expanded their partnership, organizing workshops to exchange on their areas of technical expertise, including in Advanced Air Mobility, and to develop ideas for the Berkeley Space Center, an innovation hub proposed for development at Ames’ NASA Research Park. Under a new agreement, NASA also will host supercomputing resources for UC Berkeley, supporting the development of novel computing algorithms and software for a wide variety of scientific and technology areas.
      Share
      Details
      Last Updated Dec 17, 2024 Related Terms
      Ames Research Center General NASA Centers & Facilities Explore More
      5 min read Cutting-Edge Satellite Tracks Lake Water Levels in Ohio River Basin
      Article 1 hour ago 1 min read Airspace Operations and Safety Program (AOSP)
      Article 1 hour ago 2 min read Media Invited to Speak to NASA Ames Experts – Celebrating 85 Years
      Article 3 hours ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA Deputy Administrator Pam Melroy speaks at the Microgravity Science Summit at the Eisenhower Executive Office Building, Monday, Dec. 13, 2024, in Washington.Credit: NASA/Aubrey Gemignani NASA leadership participated in the White House Office of Science and Technology Policy’s Microgravity Science Summit (OSTP) on Dec.16 focused on sharing information with leaders across the U.S. federal government about the benefits of microgravity research. During the summit, NASA Deputy Administrator Pam Melroy, OSTP leadership, and others highlighted the importance of the government coming together to understand the transformative power of microgravity and lay the foundation for the next generation of research and innovation.
      “The value of microgravity research has never been clearer. This unique environment offers us the chance to explore fundamental questions and test cutting-edge ideas in ways that simply are not possible under the constraints of Earth’s gravity,” said Melroy. “NASA has long been at the forefront of microgravity research, working in collaboration with a growing network of government partners, international space agencies, commercial partners, and academic institutions. Together, we have established a strong foundation for microgravity science aboard the International Space Station, but our work is far from finished. In fact, it’s only just beginning.”
      The theme of the summit, “Building a Coalition for the Next Generation of Microgravity Research,” covered work currently being completed on the International Space Station to bring benefit back to Earth, open space to more people, and allow humans to travel farther into space for exploration. Leaders also heard about NASA’s plan to continue the work into the future on commercial space stations and build on the government’s efforts to maintain a national research capability in orbit.
      In 2023, the Biden-Harris Administration released a National Low Earth Orbit Research and Development Strategy to provide an interagency strategy and action plan to enable U.S. government-wide collaboration and support of public-private partnerships to ensure continuity of access and sustainable low Earth orbit research and development activities. The strategy supports the United States Space Priorities Framework with a focus on scientific and technological innovation, economic growth, commercial development, and space-related STEM education and workforce development. The summit also included discussion on the great strides and potential for the future in cancer research, semiconductors, wildland fire management, and in space production applications.
      “The key to success will be collaboration,” said Melroy. “What we are doing is building a vision for the future—one where microgravity is not a niche area of study, but an essential part of the scientific toolkit for tackling our biggest challenges, helping to improve our national capabilities and posture. A future where space isn’t just a far-off and mysterious destination—it’s an environment for collaboration, discovery, and progress.”
      On Dec. 16, NASA also released its Low Earth Orbit Microgravity strategy outlining the agency’s long-term approach to advance microgravity science, technology, and exploration.
      Keep Exploring Discover Related Topics
      NASA’s Low Earth Orbit Microgravity Strategy
      Low Earth Orbit Economy
      Commercial Space
      Space Station Research and Technology
      View the full article
    • By NASA
      Caption: Expedition 70 Flight Engineer Nikolai Chub from Roscosmos is pictured during a spacewalk to inspect a backup radiator, deploy a nanosatellite, and install communications hardware on the International Space Station’s Nauka science module.Credit: NASA NASA will provide live coverage as two Roscosmos cosmonauts conduct a spacewalk outside of the International Space Station on Thursday, Dec. 19.

      NASA’s live coverage begins at 9:45 a.m. EST, Thursday on NASA+. Learn how to watch NASA content through a variety of platforms, including social media. The spacewalk is scheduled to begin at approximately 10:10 a.m. and last about six and a half hours.

      Expedition 72 crewmates Alexey Ovchinin and Ivan Vagner will venture outside the station’s Poisk module to install an experiment package designed to monitor celestial x-ray sources and new electrical connector patch panels and remove several experiments for disposal. The two cosmonauts also will relocate a control panel for the European robotic arm, which is attached to the Nauka multipurpose laboratory module. Roscosmos cosmonaut Alexsandr Gorbunov will operate the arm during the spacewalk from inside the station.

      Roscosmos spacewalk 63 will be the second for Ovchinin and the first for Vagner. Ovchinin will wear an Orlan spacesuit with red stripes, and Vagner will wear a spacesuit with blue stripes. It will be the 272nd spacewalk in support of space station assembly, maintenance, and upgrades.

      Get breaking news, images, and features from the space station on the station blog, Instagram, Facebook, and X.

      Learn more about the International Space Station at:
      https://www.nasa.gov/station 
      -end-
      Claire O’Shea / Josh Finch
      Headquarters, Washington
      202-358-1100
      claire.a.o’shea@nasa.gov / joshua.a.finch@nasa.gov

      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Dec 17, 2024 LocationJohnson Space Center Related Terms
      International Space Station (ISS) ISS Research Missions View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Stennis Space Center enjoyed an active 2024, marking several milestones and engaging in frontline activities in several key areas. A compilation video offers a look at 2024 highlights in such areas of work as propulsion testing, autonomous systems, range operations, community outreach, and STEM engagement. NASA’s Stennis Space Center near Bay St. Louis, Mississippi, celebrated propulsion testing and site operations milestones in 2024, all while inspiring the Artemis Generation and welcoming new leadership that will help NASA Stennis innovate and grow into the future.
      Featured highlights show a year of progress and vision, as NASA Stennis accelerates the exploration and commercialization of space, innovates to benefit NASA and industry, and leverages assets to grow as an impactful aerospace and technology hub.
      “These highlights are just a small snapshot of 2024 at NASA Stennis that show the future is bright,” Bailey said. “We have an incredibly talented and committed team of employees – and all of Mississippi can be proud of the work they do here at NASA Stennis. Together, with the Artemis Generation leading the way, we are returning to the Moon. Together, we are a part of something great.”
      New Center Leadership
      NASA Stennis Director John Bailey, right, and NASA Stennis Deputy Director Christine Powell stand near the United States Capitol during a visit to Washington, D.C. on Sept. 18. It marked the first visit to Capitol Hill for the center leaders since being named to their current roles. NASA/Stennis NASA Administrator Bill Nelson named John Bailey as director of NASA Stennis in April. Bailey had been serving as acting director since January 2024. “So much of NASA runs through Stennis,” said Nelson. “It is where we hone new and exciting capabilities in aerospace, technology, and deep space exploration. I am confident that John will lead the nation’s largest and premier propulsion test site to even greater success.”
      Four months later in August, Bailey announced that longtime propulsion engineer/manager Christine Powell had been selected as deputy director of NASA Stennis.
      Powell, the first woman selected as NASA Stennis deputy director, began her 33-year agency career as an intern at the center in 1991. She previously worked in multiple Engineering and Test Directorate roles, and most recently served as manager of the NASA Rocket Propulsion Test Program Office.
      Propulsion Activity
      NASA achieves a major milestone for future Artemis missions with successful completion of the second – and final – RS-25 engine certification test series April 3 on the Fred Haise Test Stand at NASA’s Stennis Space Center. NASA/Danny Nowlin NASA achieved major milestones for future Artemis missions at NASA Stennis in 2024. The NASA Stennis test team successfully completed a second – and final – RS-25 engine certification test series in April. The mission-critical series verified engine upgrades designed to enhance efficiency and reliability for future SLS (Space Launch System) missions.
      NASA Stennis crews also completed a safe lift and installation of the interstage simulator component in October needed for future testing of NASA’s exploration upper stage in the B-2 position of the Thad Cochran Test Stand. The component will function during Green Run testing like the SLS interstage section that helps protect the upper stage during Artemis launches.
      The test complex milestones support NASA’s goal of returning humans to the Moon and paving the way for future Mars exploration through Artemis missions.
      Commercial Testing
      NASA Stennis commercial tenant Rocket Lab completes a successful hot fire test of its Archimedes engine in its onsite test complex in the second half of 2024. Rocket Lab is one of numerous customers conducting test campaigns at NASA Stennis during the most recent year. Rocket Lab Already the nation’s largest multiuser propulsion test site, NASA Stennis aims to continue fueling growth of the commercial space market even further by working with aerospace companies to support a range of testing needs. In 2024, NASA Stennis supported work conducted by commercial companies such as Boeing, Blue Origin, Evolution Space, Launcher (a Vast company), Relativity Space, Rocket Lab, and Rolls-Royce.
      Officials from NASA Stennis and Roll-Royce also broke ground in June for a test pad located in the NASA Stennis E Test Complex. Rolls-Royce will conduct hydrogen testing for the Pearl 15 engine, which helps power the Bombardier Global 5500 & 6500 aircraft.
      ASTRA Mission Success
      Members of the NASA Stennis Autonomous Systems Laboratory team monitor the center’s in-space satellite payload from the onsite ASTRA (Autonomous Satellite Technology for Resilient Applications) Payload Operation Command Center. The ASTRA payload launched aboard the Sidus Space LizzieSat-1 small satellite in March 2024, with the NASA Stennis team announcing in July that it had achieved primary mission objectives. In September, the team announced the ASTRA mission would continue during the satellite’s planned four-year mission.NASA/Danny Nowlin In July, NASA Stennis and commercial partner Sidus Space Inc. announced primary mission success for the center’s historic in-space mission – an autonomous systems payload aboard an orbiting satellite.
      ASTRA (Autonomous Satellite Technology for Resilient Applications) is the on-orbit payload mission developed by NASA Stennis. The NASA Stennis ASTRA technology demonstrator is a payload rider aboard the Sidus Space premier satellite, LizzieSat-1 (LS-1) small satellite. Partner Sidus Space is responsible for all LS-1 mission operations, including launch and satellite activation, which allowed the NASA Stennis ASTRA team to complete its primary mission objectives.
      NASA Stennis announced in September it will continue the center’s in-space autonomous systems payload mission through a follow-on agreement with Sidus Space Inc.
      Range Operations
      The Skydweller Aero solar-powered, autonomous aircraft flies above the Thad Cochran Test Stand (B-1/B-2) at NASA’s Stennis Space Center during a September 2024 test operation. Skydweller Aero has an ongoing airspace agreement with NASA Stennis to conduct test flights of its aircraft in the area. Skydweller Aero During 2024, NASA Stennis entered into an agreement with Skydweller Aero Inc. for the company to operate its solar-powered autonomous aircraft in the site’s restricted airspace, a step towards achieving a strategic center goal.
      The agreement marked the first Reimbursable Space Act agreement between NASA Stennis and a commercial company to utilize the south Mississippi center’s unique capabilities to support testing and operation of uncrewed systems.
      The company announced in October it had completed an initial test flight campaign of the aircraft, including two test excursions totaling 16 and 22.5 hours.
      NASA Engagement
      NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show on Nov. 1-2. NASA’s exhibits at the air show honored 55th anniversary of the Apollo 11 lunar landing and showcased the agency’s mission to inspire the world through discovery. NASA/Stennis NASA representatives participated in a variety of outreach activities during the past year to create meaningful connections with the Artemis Generation.
      The NASA ASTRO CAMP® Community Partners program, which originated at the south Mississippi NASA center, surpassed previous milestone marks in fiscal year 2024 by partnering with 373 community sites, including 50 outside the United States, to inspire youth, families, and educators. 
      NASA Stennis also supported STEM (science, technology, engineering, and mathematics) engagement during the year. It once again joined with NASA’s Robotics Alliance Project and co-sponsor Mississippi Power to support the second annual For the Inspiration and Recognition of Science and Technology (FIRST) Robotics Magnolia Regional Competition in Laurel, Mississippi. The event attracted 37 high school teams from eight states and one from Mexico.
      The center also supported NASA activities during the 2024 total solar eclipse. In addition, it hosted informational efforts and exhibits at high-visibility events such as the 51st Annual Bayou Classic, and Essence Fest in New Orleans.
      For information about NASA’s Stennis Space Center, visit:
      Stennis Space Center – NASA
      Share
      Details
      Last Updated Dec 16, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center View the full article
    • By Space Force
      Space Launch Delta 45 hosted the Space Force’s third annual T-Minus 10-Miler, Dec. 14, at Cape Canaveral Space Force Station.

      View the full article
  • Check out these Videos

×
×
  • Create New...