Jump to content

NASA Technologies Aim to Solve Housekeeping’s Biggest Issue – Dust


Recommended Posts

  • Publishers
Posted
5 Min Read

NASA Technologies Aim to Solve Housekeeping’s Biggest Issue – Dust

An artist rendering of Electrostatic Dust Lofting (EDL) with purple and green lights representing ultraviolet light and small white specs to depict dust particles. This technology examines the lofting of lunar dust when electrostatic charging occurs after exposure to ultraviolet light.
This artist rendering of Electrostatic Dust Lofting (EDL) examines the lofting of lunar dust when electrostatic charging occurs after exposure to ultraviolet light.

If you thought the dust bunnies under your sofa were an issue, imagine trying to combat dust on the Moon. Dust is a significant challenge for astronauts living and working on the lunar surface. So, NASA is developing technologies that mitigate dust buildup enabling a safer, sustainable presence on the Moon. 

A flight test aboard a suborbital rocket system that will simulate lunar gravity is the next step in understanding how dust mitigation technologies can successfully address this challenge. During the flight test with Blue Origin, seven technologies developed by NASA’s Game Changing Development program within the agency’s Space Technology Mission Directorate will study regolith mechanics and lunar dust transport in a simulated lunar gravity environment. 

The technologies featured in this animation are Electrostatic Dust Lofting (EDL), Electrodynamic Regolith Conveyor (ERC), Hermes Lunar-G, ISRU Pilot Excavator (IPEx), Clothbot, Duneflow, and Vertical Lunar Regolith Conveyor (VLRC). Each of these technology payloads will advance our understanding of regolith mechanics and lunar dust transport through flight testing in space with simulated lunar gravity.
NASA / Advanced Concepts Lab

Why Is Lunar Dust a Problem?

With essentially no atmosphere, dust gets lofted, or lifted by the surface, by a spacecraft’s plumes as it lands on the lunar surface. But it can also be lofted through electrostatic charges. Lunar dust is electrostatic and ferromagnetic, meaning it adheres to anything that carries a charge.

Kristen John, NASA’s Lunar Surface Innovation Initiative technical integration lead at Johnson Space Center said, “The fine grain nature of dust contains particles that are smaller than the human eye can see, which can make a contaminated surface appear to look clean.”

Although lunar dust can appear smooth with a powder like finish, its particles actually have a jagged shape. Lunar dust can scratch everything from a spacesuit to human lungs. Dust can also prevent hardware from surviving the lunar night when it accumulates on solar panels causing a reduction in available power. A buildup of dust coats thermal radiators, increasing the temperature of the equipment. Lunar dust can also accumulate on windows, camera lenses, and visors leading to obscured vision.

Dirty Moon? Clean It Up.

The projects being tested on the lunar gravity flight with Blue Origin include ClothBot, Electrostatic Dust Lofting (EDL), and Hermes Lunar-G.

ClothBot

When future astronauts perform extra-vehicular activities on the lunar surface they could bring dust into pressurized, habitable areas. The goal of the ClothBot experiment is to mimic and measure the transport of lunar dust as releases from a small patch of spacesuit fabric. When agitated by pre-programmed motions, the compact robot can simulate “doffing,” the movement that occurs when removing a spacesuit. A laser-illuminated imaging system will capture the dust flow in real-time, while sensors record the size and number of particles traveling through the space. This data will be used to understand dust generation rates inside a lander or airlock from extra-vehicular activity and refine models of lunar dust transport for future lunar and potential Martian missions.
 

Electrostatic Dust Lofting

This technology will examine the lofting of lunar dust when electrostatic charging occurs after exposure to ultraviolet light. The EDL’s camera with associated lights will record and illuminate for the duration of the flight. During the lunar gravity phase of the flight, a vacuum door containing the dust sample will release and the ultraviolet light source will illuminate the substance, charging the grains until they electrostatically repel one another and become lofted. The lofted dust will pass through a sheet laser as it rises up from the surface. When the lunar gravity phase ends, the ultraviolet light source disables, and the camera will continue recording until the end of the flight. This data will inform dust mitigation modeling efforts for future Moon missions.

Hermes Lunar-G

NASA partnered with Texas A&M and Texas Space Technology Applications and Research (T STAR) to develop Hermes Lunar-G, technology that utilizes flight-proven hardware to conduct experiments with regolith simulants. Hermes was previously a facility on the International Space Station. Hermes Lunar-G repurposed Hermes hardware to study lunar regolith simulants. The Hermes Lunar-G technology uses four canisters to compress the simulants during flight, takeoff, and landing. When the technology is in lunar gravity, it will decompress the contents of the canisters while high-speed imagery and sensors capture data. Results of this experiment will provide information on regolith mechanics that can be used in a variety of computational models. The results of Hermes Lunar-G will be compared to microgravity data from the space station as well as similar data acquired from parabolic flights for lunar and microgravity flight profiles.

The Future of Dust Mitigation

As a primary challenge of lunar exploration, dust mitigation influences several NASA technology developments. Capabilities from In-Situ Resource Utilization to surface power and mobility, rely on some form of dust mitigation, making it a cross-cutting area.

Learning some of the fundamental properties of how lunar dust behaves and how lunar dust impacts systems has implications far beyond dust mitigation and environments. Advancing our understanding of the behavior of lunar dust and advancing our dust mitigation technologies benefits most capabilities planned for use on the lunar surface."

Kristen John

Kristen John

NASA’s Lunar Surface Innovation Initiative Technical Integration Lead

Engineering teams perform a variety of tests to mitigate dust, ensuring it doesn’t cause damage to hardware that goes to the Moon. NASA’s Game Changing Development program, created a reference guide for lunar dust mitigation to help engineers build hardware destined for the lunar surface.

NASA’s Flight Opportunities program funded the Blue Origin flight test as well as the vehicle capability enhancements to enable the simulation of lunar gravity during suborbital rocket flight for the first time. The payloads are managed under NASA’s Game Changing Development program within the agency’s Space Technology Mission Directorate.

To learn more visit: https://www.nasa.gov/stmd-game-changing-development/

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      On April 8, 2025, Bangladesh became the 54th nation to sign the accords. The commitments of the Artemis Accords and efforts by the signatories to advance implementation of these principles support the safe and sustainable exploration of space.NASA Following a signing ceremony Tuesday in Bangladesh’s capital city of Dhaka, NASA congratulates Bangladesh as the 54th nation to commit to the safe and responsible exploration of space that benefits humanity.
      “We are thrilled by Bangladesh’s signature of the Accords,” said NASA acting Administrator Janet Petro. “Bangladesh affirms its role in shaping the future of space exploration. This is about ensuring that our journey to the Moon – and beyond – is peaceful, sustainable, and transparent. We look forward to working together, to learning from one another, and to seeing how Bangladesh’s incredible talent and vision contribute to humanity’s next great chapter in space.”
      Ashraf Uddin, the secretary of defense for Bangladesh,signed the Artemis Accords on behalf of the country. Charge d’Affaires Tracey Jacobson for the U.S. Embassy in Dhaka, Bangladesh, participated in the event, and Petro contributed remarks in a pre-recorded video message.
      “Bangladesh’s commitment to the Artemis Accords will enhance the country’s engagement with NASA and the international community,” said Bangladesh’s Chief Advisor Muhammad Yunus. “By signing the accords, Bangladesh builds upon an important foundation for the open, responsible and peaceful exploration of space.”
      In 2020, the United States, led by NASA and the U.S. Department of State, and seven other initial signatory nations established the Artemis Accords, a first-ever set of practical guidelines for nations to increase safety of operations and reduce risk and uncertainty in their civil exploration activities. That group of signatories has grown to more than 50 countries today.
      The Artemis Accords are grounded in the Outer Space Treaty and other agreements, including the Registration Convention and the Rescue and Return Agreement, as well as best practices for responsible behavior that NASA and its partners have supported, including the public release of scientific data. 
      Learn more about the Artemis Accords at:
      https://www.nasa.gov/artemis-accords
      -end-
      Amber Jacobson / Jennifer Dooren
      Headquarters, Washington
      202-358-1600
      amber.c.jacobson@nasa.gov / jennifer.m.dooren@nasa.gov
      Share
      Details
      Last Updated Apr 08, 2025 EditorJennifer M. DoorenLocationNASA Headquarters Related Terms
      Office of International and Interagency Relations (OIIR) Artemis Accords View the full article
    • By NASA
      A Soyuz rocket launches to the International Space Station with Expedition 73 crew members: NASA astronaut Jonny Kim, and Roscosmos cosmonauts Sergey Ryzhikov and Alexey Zubritskiy, onboard, Tuesday, April 8, 2025, at the Baikonur Cosmodrome in Kazakhstan. Photo Credit: (NASA/Joel Kowsky) NASA astronaut Jonny Kim, accompanied by Roscosmos cosmonauts Sergey Ryzhikov and Alexey Zubritsky, arrived at the International Space Station on Tuesday, bringing the number of residents to 10 for the next two weeks.
      The Soyuz MS-27 spacecraft carrying Kim, Ryzhikov, and Zubritsky docked to the Prichal module at 4:57 a.m. EDT, following a three-hour, two-orbit journey to the space station. They launched at 1:47 a.m. (10:47 a.m. Baikonur time) from the Baikonur Cosmodrome in Kazakhstan.
      When hatches open at approximately 7:20 a.m., the trio will join the Expedition 72 crew, including NASA astronauts Nichole Ayers, Anne McClain, and Don Pettit, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonauts Kirill Peskov, Ivan Vagner, and Alexey Ovchinin.
      NASA’s live coverage of hatch opening will begin at 7 a.m. on NASA+. Learn how to watch NASA content through a variety of platforms.
      Expedition 73 will begin on Saturday, April 19, following the departure of Pettit, Ovchinin, and Vagner, as they conclude a seven-month science mission aboard the orbiting laboratory.
      Watch the ceremonial change of command at 2:40 p.m. on Friday, April 18, as Ovchinin transfers the distinction to Onishi, live on NASA+.
      Throughout his eight-month stay aboard the orbital outpost, Kim will conduct scientific research in technology development, Earth science, biology, human research, and more. This is the first flight for Kim and Zubritsky, and the third for Ryzhikov.
      Learn more about space station activities at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Apr 08, 2025 LocationNASA Headquarters Related Terms
      Humans in Space International Space Station (ISS) View the full article
    • By NASA
      NASA Astronaut Jonny Kim Soyuz MS-27 Hatch Opening
    • By NASA
      NASA Astronaut Jonny Kim Soyuz MS-27 Docking
    • By NASA
      Credit: NASA NASA has selected ARES Technical Services of McLean, Virginia, to provide safety and mission assurance services at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, and Wallops Flight Facility in Virginia.
      The Safety and Mission Assurance Services III contract is a cost-plus-fixed-fee contract with an estimated total value of $226 million. The contract will have a five-year effective ordering period starting on June 1, 2025, with an optional six-month extension period.
      Under the contract, the vendor will provide support to the agency’s Safety and Mission Assurance Directorate at NASA Goddard. This includes performing independent surveillance, audits, reviews, and assessments of design, development, test, and mission operations activities on site at NASA and supplier facilities.
      For information about NASA and other agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Jacob Richmond
      Goddard Space Flight Center, Maryland
      301-286-6255
      jacob.a.richmond@nasa.gov
      Share
      Details
      Last Updated Apr 07, 2025 LocationNASA Headquarters Related Terms
      Goddard Space Flight Center Wallops Flight Facility View the full article
  • Check out these Videos

×
×
  • Create New...