Jump to content

USSF celebrates its fifth anniversary, sets sights on future as Spacepower Conference concludes


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Learn Home First NASA Neurodiversity… Heliophysics Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   2 min read
      First NASA Neurodiversity Network Intern to Present at the American Geophysical Union Annual Conference
      The NASA Science Activation Program’s NASA’s Neurodiversity Network (N3) project sponsors a summer internship program for high school students, in which learners on the autism spectrum are matched with NASA Subject Matter Experts. N3 intern Lillian Hall and mentor Dr. Juan Carlos Martinez Oliveros presented Lilly’s summer research project on December 9 at the 2024 American Geophysical Union conference in Washington, D.C. Their poster, entitled “Eclipse Megamovie: Image Processing”, represents the first time an N3 intern has co-authored a presentation at the prestigious AGU conference.
      The NASA Citizen Science project, Eclipse Megamovie, is leveraging the power of citizen science to construct a high-resolution time-lapse of the Sun’s corona during the April 8, 2024 total solar eclipse. By coordinating the work of hundreds of participants along the path of totality, a substantial dataset of images was obtained. The goal of the project is to unveil dynamic transformations in the Sun’s atmosphere that are only visible during a total solar eclipse.
      To process the vast quantity of imaging data collected, Lilly assisted Dr. Martinez Oliveros and other researchers in implementing a robust pipeline involving image calibration, registration, and co-location. Image registration techniques aligned the solar features across different frames, compensating for Earth’s rotation and camera movement. Finally, they used imaging techniques to enhance the signal-to-noise ratio, revealing subtle coronal structures and possible dynamics. This comprehensive data processing methodology has enabled the extraction of meaningful scientific information from the Eclipse Megamovie dataset.
      Here’s what Lilly had to say: “Working with N3 has given me a chance to use my neurodiverse perspective to make an impact on NASA research. Through the processes of my project and the opportunity to share it at the American Geophysical Union conference, I am so grateful to have found my spot in the planetary science field I dream to continue researching in the future.”
      Learn more about NASA Citizen Science and how you can participate (participation does not require citizenship in any particular country): https://science.nasa.gov/citizen-science/
      The N3 project is supported by NASA under cooperative agreement award number 80NSSC21M0004 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      https://www.agu.org/annual-meeting/schedule
      Lilly Hall with her Eclipse Megamovie Image Processing poster. Kristen Hall Share








      Details
      Last Updated Jan 10, 2025 Editor NASA Science Editorial Team Related Terms
      Citizen Science Heliophysics Planetary Geosciences & Geophysics Science Activation Explore More
      2 min read NASA eClips Educator Receives 2024 VAST Science Educator Specialist Award


      Article


      3 days ago
      5 min read NASA’s LEXI Will Provide X-Ray Vision of Earth’s Magnetosphere


      Article


      1 week ago
      2 min read NASA Workshops Culturally Inclusive Planetary Engagement with Educators


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      As part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, Firefly Aerospace’s Blue Ghost Mission One lander will carry 10 NASA science and technology instruments to the Moon’s near side. Credit: Firefly Aerospace Carrying NASA science and technology to the Moon as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, Firefly Aerospace’s Blue Ghost Mission 1 is targeting launch Wednesday, Jan. 15. The mission will lift off on a SpaceX’s Falcon 9 rocket from Launch Complex 39A at the agency’s Kennedy Space Center in Florida.
      Live launch coverage will air on NASA+ with prelaunch events starting Monday, Jan. 13. Learn how to watch NASA content through a variety of platforms, including social media. Follow all events at:
      https://www.nasa.gov/live/
      After the launch, Firefly’s Blue Ghost lander will spend approximately 45 days in transit to the Moon before landing on the lunar surface in early March. The lander will carry 10 NASA science investigations to further our understanding of the Moon’s environment and help prepare for future human missions to the lunar surface, as part of the agency’s Moon to Mars exploration approach. 
      Science investigations on this flight aim to test and demonstrate lunar subsurface drilling technology, regolith sample collection capabilities, global navigation satellite system abilities, radiation tolerant computing, and lunar dust mitigation methods. The data captured could benefit humans on Earth by providing insights into how space weather and other cosmic forces impact Earth.
      The deadline has passed for media accreditation for in-person coverage of this launch. The agency’s media accreditation policy is available online. More information about media accreditation is available by emailing: ksc-media-accreditat@mail.nasa.gov.
      Full coverage of this mission is as follows (all times Eastern):
      Monday, Jan. 13
      2:30 p.m. – Lunar science media teleconference with the following participants:
      Chris Culbert, CLPS program manager, NASA’s Johnson Space Center Maria Banks, CLPS project scientist, NASA Johnson Audio of the teleconference will stream live on the agency’s website:
      https://www.nasa.gov/live/
      Media may ask questions via phone only. For the dial-in number and passcode, please contact the Kennedy newsroom no later than 1:30 p.m. EST Jan. 13, at: ksc-newsroom@mail.nasa.gov.
      Tuesday, Jan. 14
      1 p.m. – Lunar delivery readiness media teleconference with the following participants:
      Nicola Fox, associate administrator, Science Mission Directorate at NASA Headquarters Jason Kim, CEO, Firefly Aerospace Julianna Scheiman, director, NASA science missions, SpaceX Mark Burger, launch weather officer, Cape Canaveral Space Force Station’s 45th Weather Squadron Audio of the teleconference will stream live on the agency’s website:
      https://www.nasa.gov/live/
      Media may ask questions via phone only. For the dial-in number and passcode, please contact the Kennedy newsroom no later than 12 p.m. EST on Tuesday, Jan. 14, at: ksc-newsroom@mail.nasa.gov.
      Wednesday, Jan. 15
      12:30 a.m. – Launch coverage begins on NASA+ and the agency’s website.
      1:11 a.m. – Launch
      NASA Launch Coverage
      Audio only of the media teleconferences and launch coverage will be carried on the NASA “V” circuits, which may be accessed by dialing 321-867-1220, -1240, or -7135. On launch day, the full mission broadcast can be heard on -1220 and -1240, while the countdown net only can be heard on -7135 beginning approximately one hour before the mission broadcast begins.
      On launch day, a “tech feed” of the launch without NASA TV commentary will be carried on the NASA TV media channel.
      NASA Website Launch Coverage
      Launch day coverage of the mission will be available on the NASA website. Coverage will include live streaming and blog updates beginning no earlier than 12:30 a.m. EST Jan. 15, as the countdown milestones occur. On-demand streaming video and photos of the launch will be available shortly after liftoff. For questions about countdown coverage, contact the Kennedy newsroom at 321-867-2468. Follow countdown coverage on our launch blog for updates.
      NASA Virtual Guests for Launch
      Members of the public can register to attend this launch virtually. Registrants will receive mission updates and activities by email, including curated mission resources, schedule updates, and a virtual guest passport stamp following a successful launch. Print your passport and get ready to add your stamp!
      Watch, Engage on Social Media
      Let people know you’re following the mission on X, Facebook, and Instagram by using the hashtag #Artemis. You can also stay connected by following and tagging these accounts:
      X: @NASA, @NASAKennedy, @NASAArtemis, @NASAMoon
      Facebook: NASA, NASAKennedy, NASAArtemis
      Instagram: @NASA, @NASAKennedy, @NASAArtemis
      Coverage en Español
      Did you know NASA has a Spanish section called NASA en español? Check out NASA en español on X, Instagram, Facebook, and YouTube for additional mission coverage.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo o Messod Bendayan a: antonia.jaramillobotero@nasa.gov o messod.c.bendayan@nasa.gov.
      For media inquiries relating to the launch provider, please contact SpaceX’s communications department by emailing: media@spacex.com. For media inquiries relating to the CLPS provider, Firefly Aerospace, please contact Firefly’s communication department by emailing: press@fireflyspace.com.
      For more information about the agency’s CLPS initiative, see:
      https://www.nasa.gov/clps
      -end-
      Karen Fox / Alise Fisher
      Headquarters, Washington
      301-286-6284 / 202-358-1275
      karen.c.fox@nasa.gov / alise.m.fisher@nasa.gov  
      Natalia Riusech
      Johnson Space Center, Houston
      281-483-5111
      nataila.s.riusech@nasa.gov
      Antonia Jaramillo
      Kennedy Space Center, Florida
      321-501-8425
      antonia.jaramillobotero@nasa.gov
      View the full article
    • By NASA
      5 Min Read NASA and Italian Space Agency Test Future Lunar Navigation Technology
      The potentially record-breaking Lunar GNSS Receiver Experiment (LuGRE) payload will be the first known demonstration of GNSS signal reception on and around the lunar surface. Credits: NASA/Dave Ryan As NASA celebrates 55 years since the historic Apollo 11 crewed lunar landing, the agency also is preparing new navigation and positioning technology for the Artemis campaign, the agency’s modern lunar exploration program.
      A technology demonstration helping pave the way for these developments is the Lunar GNSS Receiver Experiment (LuGRE) payload, a joint effort between NASA and the Italian Space Agency to demonstrate the viability of using existing GNSS (Global Navigation Satellite System) signals for positioning, navigation, and timing on the Moon.
      During its voyage on an upcoming delivery to the Moon as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative, LuGRE would demonstrate acquiring and tracking signals from both the U.S. GPS and European Union Galileo GNSS constellations during transit to the Moon, during lunar orbit, and finally for up to two weeks on the lunar surface itself.
      The Lunar GNSS Receiver Experiment (LuGRE) will investigate whether signals from two Global Navigation Satellite System (GNSS) constellations, the U.S. Global Positioning System (GPS) and European Union’s Galileo, can be tracked at the Moon and used for positioning, navigation, and timing (PNT). The LuGRE payload is one of the first demonstrations of GNSS signal reception and navigation on and around the lunar surface, an important milestone for how lunar missions will access navigation and positioning technology. If successful, LuGRE would demonstrate that spacecraft can use signals from existing GNSS satellites at lunar distances, reducing their reliance on ground-based stations on the Earth for lunar navigation.
      Today, GNSS constellations support essential services like navigation, banking, power grid synchronization, cellular networks, and telecommunications. Near-Earth space missions use these signals in flight to determine critical operational information like location, velocity, and time.
      NASA and the Italian Space Agency want to expand the boundaries of GNSS use cases. In 2019, the Magnetospheric Multiscale (MMS) mission broke the world record for farthest GPS signal acquisition 116,300 miles from the Earth’s surface — nearly half of the 238,900 miles between Earth and the Moon. Now, LuGRE could double that distance.
      “GPS makes our lives safer and more viable here on Earth,” said Kevin Coggins, NASA deputy associate administrator and SCaN (Space Communications and Navigation) Program manager at NASA Headquarters in Washington. “As we seek to extend humanity beyond our home planet, LuGRE should confirm that this extraordinary technology can do the same for us on the Moon.”
      NASA, Firefly, Qascom, and Italian Space Agency team members examine LuGRE hardware in a clean room.Firefly Aerospace Reliable space communication and navigation systems play a vital role in all NASA missions, providing crucial connections from space to Earth for crewed and uncrewed missions alike. Using a blend of government and commercial assets, NASA’s Near Space and Deep Space Networks support science, technology demonstrations, and human spaceflight missions across the solar system.
      “This mission is more than a technological milestone,” said Joel Parker, policy lead for positioning, navigation, and timing at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We want to enable more and better missions to the Moon for the benefit of everyone, and we want to do it together with our international partners.”
      This mission is more than a technological milestone. We want to enable more and better missions to the Moon for the benefit of everyone…
      JOEL PARKER
      PNT Policy Lead at NASA's Goddard Space Flight Center
      The data-gathering LuGRE payload combines NASA-led systems engineering and mission management with receiver software and hardware developed by the Italian Space Agency and their industry partner Qascom — the first Italian-built hardware to operate on the lunar surface.
      Any data LuGRE collects is intended to open the door for use of GNSS to all lunar missions, not just those by NASA or the Italian Space Agency. Approximately six months after LuGRE completes its operations, the agencies will release its mission data to broaden public and commercial access to lunar GNSS research.
      Firefly Aerospace’s Blue Ghost Mission One lander is carrying 10 NASA science and technology instruments to the Moon as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign.Firefly Aerospace “A project like LuGRE isn’t about NASA alone,” said NASA Goddard navigation and mission design engineer Lauren Konitzer. “It’s something we’re doing for the benefit of humanity. We’re working to prove that lunar GNSS can work, and we’re sharing our discoveries with the world.”
      The LuGRE payload is one of 10 NASA-funded science experiments launching to the lunar surface on this delivery through NASA’s CLPS initiative. Through CLPS, NASA works with American companies to provide delivery and quantity contracts for commercial deliveries to further lunar exploration and the development of a sustainable lunar economy. As of 2024, the agency has 14 private partners on contract for current and future CLPS missions.
      Demonstrations like LuGRE could lay the groundwork for GNSS-based navigation systems on the lunar surface. Bridging these existing systems with emerging lunar-specific navigation solutions has the potential to define how all spacecraft navigate lunar terrain in the Artemis era.
      Artist’s concept rendering of LuGRE aboard the Blue Ghost lunar lander receiving signals from Earth’s GNSS constellations.NASA/Dave Ryan The payload is a collaborative effort between NASA’s Goddard Space Flight Center and the Italian Space Agency. Funding and oversight for the LuGRE payload comes from the agency’s SCaN Program office. It was chosen by NASA as one of 10 funded research and technology demonstrations for delivery to the lunar surface by Firefly Aerospace Inc, a flight under the agency’s CLPS initiative.
      About the Author
      Korine Powers
      Senior Writer and Education LeadKorine Powers, Ph.D. is a writer for NASA's Space Communications and Navigation (SCaN) program office and covers emerging technologies, commercialization efforts, education and outreach, exploration activities, and more.
      Share
      Details
      Last Updated Jan 09, 2025 EditorGoddard Digital TeamContactKorine Powerskorine.powers@nasa.govLocationNASA Goddard Space Flight Center Related Terms
      Goddard Space Flight Center Artemis Blue Ghost (lander) Commercial Lunar Payload Services (CLPS) Communicating and Navigating with Missions Earth's Moon Near Space Network Space Communications & Navigation Program View the full article
    • By Space Force
      The USSF Honor Guard is participating in the thier first state funeral honoring the 39th President of the United States Jimmy Carter.

      View the full article
    • By NASA
      NASA astronaut Shane Kimbrough and ESA (European Space Agency) astronaut Thomas Pesquet conduct a spacewalk to complete work on the International Space Station on June 25, 2021.Credit: NASA Two NASA astronauts will venture outside the International Space Station, conducting U.S. spacewalk 91 on Thursday, Jan. 16, and U.S. spacewalk 92 on Thursday, Jan. 23, to complete station upgrades.
      NASA also will discuss the pair of upcoming spacewalks during a news conference at 2 p.m. EST Friday, Jan. 10, on NASA+ from the agency’s Johnson Space Center in Houston. Learn how to watch NASA content through a variety of platforms, including social media.
      Participants in the news conference from NASA Johnson include:
      Bill Spetch, operations integration manager Nicole McElroy, spacewalk flight director Media interested in participating in person or by phone must contact the NASA Johnson newsroom no later than 10 a.m. Wednesday, Jan. 8, at: 281-483-5111 or jsccommu@mail.nasa.gov. To ask questions, media must dial in no later than 15 minutes before the start of the news conference. A copy of NASA’s media accreditation policy is online. Questions also may be submitted on social media using #AskNASA.
      The first spacewalk is scheduled to begin at 7 a.m. on Jan. 16, and last about six and a half hours. NASA will provide live coverage beginning at 5:30 a.m. on NASA+.
      NASA astronauts Nick Hague and Suni Williams will replace a rate gyro assembly that helps provide orientation control for the station, install patches to cover damaged areas of light filters for an X-ray telescope called NICER (Neutron star Interior Composition Explorer), and replace a reflector device used for navigational data on one of the international docking adapters. Additionally, the pair will check access areas and connector tools that will be used for future maintenance work on the Alpha Magnetic Spectrometer.
      Hague will serve as spacewalk crew member 1 and will wear a suit with red stripes. Williams will serve as spacewalk crew member 2 and will wear an unmarked suit. This will be the fourth for Hague and the eighth for Williams. It will be the 273rd spacewalk in support of space station assembly, maintenance, and upgrades.
      The second spacewalk is scheduled to begin at 7 a.m. on Jan. 23, and last about six and a half hours. NASA will provide live coverage beginning at 5:30 a.m. on NASA+.
      Astronauts will remove a radio frequency group antenna assembly from the station’s truss, collect samples of surface material for analysis from the Destiny laboratory and the Quest airlock to see whether microorganisms may exist on the exterior of the orbital complex, and prepare a spare elbow joint for the Canadarm2 robotic arm in the event it is needed for a replacement.
      Following completion of U.S. spacewalk 91, NASA will name the participating crew members for U.S. spacewalk 92. It will be the 274th spacewalk in support of space station assembly, maintenance, and upgrades.
      Learn more about International Space Station research and operations at:
      https://www.nasa.gov/station
      -end-
      Claire O’Shea
      Headquarters, Washington
      202-358-1100
      claire.a.o’shea@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Jan 07, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      International Space Station (ISS) Humans in Space Johnson Space Center View the full article
  • Check out these Videos

×
×
  • Create New...