Members Can Post Anonymously On This Site
NASA’s Juno Mission Uncovers Heart of Jovian Moon’s Volcanic Rage
-
Similar Topics
-
By NASA
The telescope and instruments for NASA’s Nancy Grace Roman Space Telescope were recently integrated together on the observatory’s instrument carrier at the agency’s Goddard Space Flight Center in Greenbelt, Md. Next, the entire system will be joined to the Roman spacecraft. NASA/Chris Gunn NASA’s Nancy Grace Roman Space Telescope team has successfully integrated the mission’s telescope and two instruments onto the instrument carrier, marking the completion of the Roman payload. Now the team at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, will begin joining the payload to the spacecraft.
“We’re in the middle of an exciting stage of mission preparation,” said Jody Dawson, a Roman systems engineer at NASA Goddard. “All the components are now here at Goddard, and they’re coming together in quick succession. We expect to integrate the telescope and instruments with the spacecraft before the year is up.”
Engineers first integrated the Coronagraph Instrument, a technology demonstration designed to image exoplanets — worlds outside our solar system — by using a complex suite of masks and active mirrors to obscure the glare of the planets’ host stars.
Then the team integrated the Optical Telescope Assembly, which includes a 7.9-foot (2.4-meter) primary mirror, nine additional mirrors, and their supporting structures and electronics. The telescope will focus cosmic light and send it to Roman’s instruments, revealing billions of objects strewn throughout space and time. Roman will be the most stable large telescope ever built, at least 10 times more so than NASA’s James Webb Space Telescope and 100 times more than the agency’s Hubble Space Telescope. This will allow scientists to make measurements at levels of precision that can answer important questions about dark energy, dark matter, and worlds beyond our solar system.
Technicians install the primary instrument for NASA’s Nancy Grace Roman Space Telescope, called the Wide Field Instrument (at left), in the biggest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Md. This marked the final step to complete the Roman payload, which also includes a Coronagraph instrument and the Optical Telescope Assembly.NASA/Chris Gunn With those components in place, the team then added Roman’s primary instrument. Called the Wide Field Instrument, this 300-megapixel infrared camera will give Roman a deep, panoramic view of the universe. Through the Wide Field Instrument’s surveys, scientists will be able to explore distant exoplanets, stars, galaxies, black holes, dark energy, dark matter, and more. Thanks to this instrument and the observatory’s efficiency, Roman will be able to image large areas of the sky 1,000 times faster than Hubble with the same sharp, sensitive image quality.
“It would be quicker to list the astronomy topics Roman won’t be able to address than those it will,” said Julie McEnery, the Roman senior project scientist at NASA Goddard. “We’ve never had a tool like this before. Roman will revolutionize the way we do astronomy.”
The telescope and instruments were mounted to Roman’s instrument carrier and precisely aligned in the largest clean room at Goddard, where the observatory is being assembled. Now, the whole assembly is being attached to the Roman spacecraft, which will deliver the observatory to its orbit and enable it to function once there.
At the same time, the mission’s deployable aperture cover — a visor that will shield the telescope from unwanted light — is being joined to the outer barrel assembly, which serves as the telescope’s exoskeleton.
“We’ve had an incredible year, and we’re looking forward to another one!” said Bear Witherspoon, a Roman systems engineer at NASA Goddard. “While the payload and spacecraft undergo a smattering of testing together, the team will work toward integrating the solar panels onto the outer barrel assembly.”
That keeps the observatory on track for completion by fall 2026 and launch no later than May 2027.
To virtually tour an interactive version of the telescope, visit:
https://roman.gsfc.nasa.gov/interactive
The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contact:
Claire Andreoli
NASA’s Goddard Space Flight Center
301-286-1940
Share
Details
Last Updated Dec 12, 2024 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
Nancy Grace Roman Space Telescope Dark Energy Dark Matter Exoplanets Galaxies Galaxies, Stars, & Black Holes Goddard Space Flight Center Hubble Space Telescope James Webb Space Telescope (JWST) Stars The Universe Explore More
6 min read Primary Instrument for Roman Space Telescope Arrives at NASA Goddard
Article 4 months ago 6 min read NASA Successfully Integrates Coronagraph for Roman Space Telescope
Article 1 month ago 5 min read Telescope for NASA’s Roman Mission Complete, Delivered to Goddard
Article 4 weeks ago View the full article
-
By NASA
3 Min Read They Grow So Fast: Moon Tree Progress Since NASA’s Artemis I Mission
In the two years since NASA’s Orion spacecraft returned to Earth with more than 2,000 tree seedlings sourced in a partnership with USDA Forest Service, Artemis I Moon trees have taken root at 236 locations across the contiguous United States. Organizations are cultivating more than just trees, as they nurture community connections, spark curiosity about space, and foster a deeper understanding of NASA’s missions.
Universities, federal agencies, museums, and other organizations who were selected to be Moon tree recipients have branched out to provide their community unique engagements with their seedling.
Children sitting in a circle around a newly planted Moon tree and learning about NASA’s Artemis I mission. Adria Gillespie “Through class visits to the tree, students have gained a lot of interest in caring for the tree, and their curiosity for the unknown in outer space sparked them to do research of their own to get answers to their inquiries,” said Adria Gillespie, the district science coach at Greenfield Union School District in Greenfield, California.
The presence of a Moon tree at schools has blossomed into more student engagements surrounding NASA’s missions. Along with planting their American Sycamore, students from Eagle Pointe Elementary in Plainfield, Illinois, are participating in a Lunar Quest club to learn about NASA and engage in a simulated field trip to the Moon.
Eagle Pointe Elementary students also took part in a planting ceremony for their seedling, where they buried a time capsule with the seed, and established a student committee responsible for caring for their Moon tree.
At Marshall STEMM Academy in Toledo, Ohio, second grade students were assigned reading activities associated with their Moon tree, fourth graders created Moon tree presentations to show the school, and students engaged with city leaders and school board members to provide a Moon tree dedication.
Two individuals planting a Moon tree. Brandon Dillman A seedling sent to The Gathering Garden in Mount Gilead, North Carolina, is cared for by community volunteers. Lessons with local schools and 4-H clubs, as well as the establishment of newsletters and social media to maintain updates, have sprouted from The Gathering Garden’s Loblolly Pine.
Sprucing Up the Moon Trees’ Environment
In addition to nurturing their Moon tree, many communities have planted other trees alongside their seedling to foster a healthier environment. In Castro Valley, California, a non-profit called ForestR planted oak, fir, and sequoia trees to nestle their seedling among a tree “family.”
New homes for additional Moon tree seedlings are being identified each season through Fall 2025. Communities continue to track how the impact of NASA’s science and innovation grows alongside their Moon trees.
NASA’s “new generation” Moon trees originally blossomed from NASA’s Apollo 14 mission, where NASA astronaut Stuart Roosa carried tree seeds into lunar orbit. NASA’s Next Generation STEM project partnered with USDA Forest Service to bring Moon trees to selected organizations. As NASA continues to work for the benefit of all, its Moon trees have demonstrated how one tiny seed can sprout positive change for communities, the environment, and education.
Learn more about NASA’s STEM engagements: https://stem.nasa.gov
Keep Exploring Discover More Topics From NASA
NASA STEM Artemis Moon Trees
ARTEMIS I
Outside the Classroom
For Kids and Students
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Members of NASA’s VERITAS science team pose for a photo on July 31, 2023, after arriving in Iceland to begin a campaign to study the volcanic island’s geology in support of the future mission to Venus. Principal Investigator Suzanne Smrekar is holding the VERITAS logo.NASA/JPL-Caltech Suzanne Smrekar, geophysicist and principal investigator of the agency’s upcoming VERITAS mission to Venus, is NASA JPL’s first recipient of the prestigious award.
Suzanne Smrekar, a senior research scientist at NASA’s Jet Propulsion Laboratory in Southern California, received the Fred Whipple Award on Monday, Dec. 9, in Washington at the fall meeting of the American Geophysical Union. Named for astronomer Fred Whipple, the prestigious award recognizes contributions to the field of planetary science. Smrekar also gave the Whipple Lecture “To Venus: A love letter from Earth and beyond” at the event.
Smrekar is the principal investigator of NASA’s VERITAS mission, short for Venus Emissivity, Radio science, InSAR, Topography, And Spectroscopy. Slated for launch in the early 2030s, the orbiter will study Venus from surface to core to understand how a rocky planet about the same size as Earth took a very different path, developing into a world covered in volcanic plains and deformed terrain hidden beneath a thick, hot, toxic atmosphere.
Smrekar’s passion for modeling and studying how rocky planets evolve led her to a previous stint as deputy principal investigator of NASA’s Mars InSight mission (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport), which revealed new details about the Red Planet’s marsquakes and interior layers, including its crust, mantle, and liquid core.
Based at JPL since 1992, Smrekar worked early in her career on NASA’s Magellan mission. “I got to see the first radar images come back from the surface of Venus, and I got to sit around the table with brilliant scientists from around the world examining these bizarre new landscapes, trying to imagine the forces that created them,” she recalled. “It was exhilarating! I was hooked on space exploration, and on Venus!”
A recent reexamination of Magellan data found evidence of active volcanism on the planet, and additional indirect evidence of activity, based on estimates of the heat coming out of the planet’s interior from specific tectonic features, has only added to the eagerness to explore Venus. Managed by JPL, VERITAS will study the planet in concert with NASA’s DAVINCI (Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging) mission, which is managed by NASA’s Goddard Spaceflight Center in Greenbelt, Maryland, and is also launching in the early 2030s.
More About VERITAS
VERITAS partners include Lockheed Martin Space, the Italian Space Agency, the German Aerospace Center, and Centre National d’Études Spatiales in France. The Discovery Program is managed by the Planetary Missions Program Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the Planetary Science Division of NASA’s Science Mission Directorate in Washington.
VERITAS science team explores Iceland to prep for Venus Exploring the Deep Truths of Venus News Media Contact
Ian J. O’Neill
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-2649
ian.j.oneill@jpl.nasa.gov
2024-167
Share
Details
Last Updated Dec 09, 2024 Related Terms
VERITAS (Venus Emissivity, Radio Science, InSAR, Topography & Spectroscopy) ADEOS (Advanced Earth Observing Satellite) / MIDORI Jet Propulsion Laboratory Venus Explore More
3 min read Students Aim High at NASA JPL ‘Candy Toss’ Competition
Article 3 days ago 5 min read NASA JPL Unveils the Dr. Edward Stone Exploration Trail
Article 3 days ago 4 min read NASA’s C-20A Studies Extreme Weather Events
Article 5 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
A new American human-rated spacecraft made its first foray into space on Dec. 5, 2014. Under contract to NASA, Lockheed Martin builds Orion as the vehicle to take American astronauts back to the Moon and eventually beyond. Orion’s overall shape harkens back to the Apollo Command and Service Modules, but using today’s technology is a larger and far more capable vehicle for NASA’s Artemis Program.
Orion’s first mission, called Engineering Flight Test-1 (EFT-1), used a Delta-IV Heavy booster, at the time the most powerful operational rocket. The 4.5-hour mission demonstrated Orion’s space-worthiness, tested the spacecraft’s heat shield during reentry into the Earth’s atmosphere, and proved the capsule’s recovery systems. Although the EFT-1 mission didn’t include a crew, the Orion capsule flew higher and faster than any human-rated spacecraft in more than 40 years.
The United Launch Alliance Delta IV Heavy rocket with NASA’s Orion spacecraft mounted atop, lifts off from Cape Canaveral Air Force Station’s Space Launch Complex 37B in Florida.NASA/Bill Ingalls At 7:05 a.m. EST on Dec. 5, 2014, the three-core first stage of the Delta-IV Heavy rocket ignited, lifting the Orion spacecraft off from Launch Complex 37B at Cape Canaveral Air Force, now Space Force, Station (CCAFS) in Florida to begin the EFT-1 mission. Three minutes and fifty-eight seconds after liftoff, the two side boosters separated as the center core continued firing for another 93 seconds. The second stage ignited thirteen seconds after separation to begin the first of three planned burns. During the first burn, the Service Module’s protective fairing separated, followed by the Launch Abort System. Lasting about 11 and a half minutes, this first burn of the second stage placed the spacecraft into a preliminary 115-by-552-mile parking orbit. While completing one revolution around the Earth, controllers in Mission Control at NASA’s Johnson Space Center in Houston, led by Flight Director Michael L. Sarafin, verified the functioning of the spacecraft’s systems. The second stage ignited a second time, firing for 4 minutes and 42 seconds to raise Orion’s apogee or high point above the Earth to 3,600 miles. During the coast to apogee, Orion remained attached to the second stage and completed its first crossing through the inner Van Allen radiation belt.
Mission Control at NASA’s Johnson Space Center in Houston, Texas during the EFT-1 mission.NASA/Mark Sowa Three hours and five minutes after launch, Orion reached its apogee and began its descent back toward Earth, separating from the second stage about 18 minutes later. The second stage conducted a one-minute disposal burn to ensure it didn’t interfere with the spacecraft’s trajectory. During the passage back through the Van Allen belt, Orion fired its thrusters for 10 seconds to adjust its course for reentry. At an altitude of 400,000 feet, the spacecraft encountered the first tendrils of the Earth’s atmosphere at a point called Entry Interface, traveling at 20,000 miles per hour (mph). A buildup of ionized gases caused by the reentry heating resulted in a communications blackout with Orion for about two and a half minutes. The spacecraft experienced maximum heating of about 4,000 degrees Fahrenheit, proving the worthiness of the heat shield. After release of Orion’s forward bay cover, two drogue parachutes deployed to slow and stabilize the spacecraft. Next followed deployment of the three main parachutes that slowed the spacecraft to 20 mph. Splashdown occurred 4 hours and 24 minutes after launch about 600 miles southwest of San Diego, California. A video of the Orion EFT-1 mission can be viewed here.
Crew module splashing down during EFT-1 in the Pacific ocean.NASA Standing by to recover the Orion capsule, U.S. Navy Divers assigned to Explosive Ordnance Disposal Mobile Unit 11 and Fleet Combat Camera Pacific and crew members from amphibious transport dock U.S.S. Anchorage (LPD-23) stepped into action, first placing a flotation collar around the spacecraft. After securing a tow line to the capsule, the sailors towed it aboard the amphibious well deck of Anchorage, which set sail for Naval Base San Diego arriving there on Dec 8. Engineers from NASA and Lockheed Martin conducted a preliminary inspection of the spacecraft during the cruise to San Diego and found that it survived its trip into space in excellent condition.
U.S. Navy divers approach the Orion capsule during recovery operations. U.S. Navy The Orion EFT-1 mission met all its objectives and received many accolades. “Today was a great day for America,” said Flight Director Sarafin from his console at Mission Control. “It is hard to have a better day than today,” said Mark S. Geyer, Orion program manager. “We’re already working on the next capsule,” said W. Michael “Mike” Hawes, Lockheed Martin’s Orion program manager, adding, “We’ll learn a tremendous amount from what we did today.” NASA Associate Administrator for Human Exploration and Operations William H. Gerstenmaier praised all personnel involved with the EFT-1 mission, “What a tremendous team effort.” NASA Administrator Charles F. Bolden summarized his thoughts about the mission, “Today’s flight test of Orion is a huge step for NASA and a really critical part of our work to pioneer deep space.”
Former NASA Administrator Charles F. Bolden inspects Orion EFT-1 capsule at NASA’s Kennedy Space Center in Florida.NASA After its arrival at Naval Base San Diego, workers placed the Orion capsule aboard a truck that delivered it to NASA’s Kennedy Space Center (KSC) in Florida on Dec. 18. After engineers conducted a thorough inspection of the spacecraft at KSC, workers trucked it to the Lockheed Martin facility in Littleton, Colorado, where it arrived on Sept. 1, 2015. Engineers completed final inspections and decontamination of the vehicle. The KSC Visitor Complex has the capsule on display.
The Orion capsule during the Artemis I mission, with the Moon and Earth in the background. NASA The next time an Orion spacecraft flew in space during the Artemis I mission, the Space Launch System (SLS) carried it into orbit after launch from KSC’s Launch Complex 39B. The thunderous night launch took place on Nov. 16, 2022. The first in a series of increasingly complex missions, Artemis I provided a foundation for human deep space exploration and demonstrated our commitment and capability to extend human existence to the Moon and beyond. The uncrewed Orion spacecraft spent 25.5 days in space, including 6 days in a retrograde orbit around the Moon, concluding with a splashdown in the Pacific Ocean on Dec. 11, exactly 50 years after the Apollo 17 Moon landing.
The Artemis II crew poses in front of the Orion capsule at NASA’s Kennedy Space Center in Florida.NASA/Kim Shiflett On April 3, 2023, NASA named the four-person crew for the Artemis II mission, the first flight to take humans beyond low Earth orbit since Apollo 17 in December 1972. The crew includes NASA astronauts G. Reid Wiseman as commander, Victor J. Glover as pilot, and Christina H. Koch as a mission specialist as well as Canadian Space Agency astronaut Jeremy R. Hansen as the other mission specialist. The four will take an Orion spacecraft on a 10-day journey around the Moon to human rate the spacecraft and SLS.
Interested in learning more about the Artemis Program? Go to https://www.nasa.gov/humans-in-space/artemis/
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Jeff Renshaw is the lead attorney for procurement law in the Office of the General Counsel for NASA’s Stennis Space Center and the NASA Shared Services Center. NASA/Danny Nowlin NASA attorney Jeff Renshaw’s work has primarily revolved around two things: serving others and solving problems.
The New Orleans native retired as an U.S. Air Force judge advocate following more than two decades of service. Renshaw now has worked for more than eight years as an attorney advisor at NASA’s Stennis Space Center near Bay St. Louis, Mississippi.
As the nation’s largest multiuser propulsion test site, NASA Stennis supports and helps power both national and commercial space efforts and missions. Any activity at NASA Stennis is authorized by some form of written agreement. The Office of General Counsel, which Renshaw is a part of, works to ensure that work is conducted appropriately.
“I’m dedicated to being the best public civil servant I can be,” Renshaw said. “In this position, you are representing your client, which is NASA, the federal government, and the taxpayers, so it is important for me to stay updated with the latest legal developments to be the best advocate and advisor I can be.”
As lead attorney for procurement law, the Metairie, Louisiana, resident works alongside the Office of Procurement serving both NASA Stennis and the NASA Shared Services Center.
Some of Renshaw’s work includes reviewing Space Act contract agreements for commercial companies that use NASA Stennis facilities, along with activities for some of the more than 50 federal, state, academic, public, and private aerospace, technology, and research organizations that are part of the NASA Stennis federal city.
Renshaw is motivated to be an expert in his line of work – whether deployed as a U.S. Air Force procurement law attorney to Baghdad, the Horn of Africa, and Afghanistan, or working at NASA to help the nation return to the Moon. He spends a lot of time with NASA engineers to understand the in-and-outs of ongoing projects since any activity happening onsite involves the Office of General Counsel.
In addition to the U.S. Air Force, Renshaw has served in other legal profession roles, including as a law clerk for a Louisiana district court judge and a position in the Louisiana State Attorney General’s Office. He said working for NASA gives him the opportunity to focus on his area of expertise, while being involved in the agency’s great mission of exploration and discovery.
“I love NASA, and it is good to feel part of the team and to know that you are contributing to the mission,” he said.
Learn more about the people who work at NASA Stennis View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.