Members Can Post Anonymously On This Site
Helium Conservation by Diffusion Limited Purging of Liquid Hydrogen Tanks
-
Similar Topics
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
AS16-116-18653 (23 April 1972) — Astronaut Charles M. Duke Jr., Apollo 16 lunar module pilot, stands at a big rock adjacent (south) to the huge “House Rock” (barely out of view at right edge). Note shadow at extreme right center where the two moon-exploring crew members of the mission sampled what they referred to as the “east-by-west split of House Rock” or the open space between this rock and “House Rock”. At their post-mission press conference, the crewmen expressed the opinion that this rock was once a part of “House Rock” which had broken away. The two sampled the big boulder seen here also. Duke has a sample bag in his hand, and a lunar surface rake leans against the large boulder. Astronaut John W. Young, commander, exposed this view with a color magazine in his 70mm Hasselblad camera. While astronauts Young and Duke descended in the Apollo 16 Lunar Module (LM) “Orion” to explore the Descartes highlands landing site on the moon, astronaut Thomas K. Mattingly II, command module pilot, remained with the Command and Service Modules (CSM) “Casper” in lunar orbit.NASA The goals of the working group were to:
Endorse or recommend changes to H2S SMAC levels that had been proposed by the JSC Toxicology Laboratory Review a draft H2S SMAC manuscript prepared by the JSC Toxicology Laboratory Provide any additional insight and consideration regarding H2S toxicity that should be considered for spaceflight programs Background
The NASA Spaceflight Human-System Standard (NASA-STD-3001) establishes that vehicle systems shall limit atmospheric contamination below established limits [V2 6050] Atmosphere Contamination Limit. The JSC Toxicology Laboratory maintains the JSC 20584 Spacecraft Maximum Allowable Concentrations for Airborne Contaminants document, which contains a table of SMAC values for a variety of chemicals including carbon monoxide, ammonia, heavy metals, and a wide range of volatile organic compounds. SMACs are documented for 1-hr, 24-hr, 7-day, 30-day, 180-day, and 1000-day time spans for each chemical, and express the maximum concentration to which spaceflight crew can be exposed for that duration.
Read More The organ system that is affected as well as the effect (symptoms) are also documented for each SMAC. For more information on SMACs, see this article Exposure Guidelines (SMACs and SWEGs) – NASA and the OCHMO Spaceflight Toxicology technical brief technical brief.
Read More A SMAC value for hydrogen sulfide has not previously been established since it has not been of concern in spacecraft. However, with Artemis missions returning to the moon there is a possibility that H2S could be released within spacecraft during lunar sample return, given that this compound may be a component of lunar polar ice. H2S has an intense smell of rotten eggs and therefore has a distracting psychological element. Physiologically it has been shown to be an irritant at low concentrations and in high concentrations can potentially lead to neurological effects and unconsciousness.
Hydrogen sulfide SMAC values will define safe limits for spaceflight crews on future missions and could drive new requirements for monitoring and mitigation of this chemical during spaceflight.
Read More Conclusions
Key points of the review were:
The proposed 1-hour, 24-hour, 7-day, 30-day, and 180-day SMAC values were deemed appropriate and were endorsed by each of the panel members. The proposed 1000-day SMAC value is so low that the panel’s opinion is that this SMAC may not be attainable due to human-generated sources, and that these concentrations do not represent a true toxicological risk. The recommendation is to eliminate the 1000-day SMAC, or to call it a guideline. The general SMAC calculation approach and inclusion of safety factors is logical, although some additional rationale would be justified. Interactive and additive effects with other substances are considered negligible, particularly at these low concentrations. Microgravity-induced physiological changes are unlikely to exacerbate hydrogen sulfide exposure at these low concentrations. Recommendations were made with the understanding that these SMACs apply to pre-screened, healthy astronauts. For private spaceflight participants who may not be as well screened, the panel recommended individual physician attention and a review of all SMACs (including hydrogen sulfide), to identify sensitivities in certain populations (existing disease states, etc.). Passive dosimetry technology is available and should be considered for long-term monitoring at these low concentrations. Following consideration of the panel’s recommendation, the NASA/TM-20240000101 Exposure Limits for Hydrogen Sulfide in Spaceflight was revised and released by the JSC toxicology group in January of 2024 and is available below.
Read More Astronaut Woody Hoburg replaces life support system components inside the International Space Station’s Destiny laboratory module.NASA About the Author
Kim Lowe
Human Systems Standards Integrator
Share
Details
Last Updated Jan 17, 2025 Related Terms
Office of the Chief Health and Medical Officer (OCHMO) Human Health and Performance Humans in Space The Human Body in Space Keep Exploring Discover More Topics From OCHMO Standards
Human Spaceflight Standards
The Human Spaceflight & Aviation Standards Team continually works with programs to provide the best standards and implementation documentation to…
Aerospace Medical Certification Standard
This NASA Technical Standard provides medical requirements and clinical procedures designed to ensure crew health and safety and occupational longevity…
Aviation Medical Certification Standards
This document provides the standards and administrative procedures for the aviation medical certification of NASA aviation flight personnel. It ensures…
Technical Briefs
Technical Briefs are available for standards that offer technical data, background, and application notes for vehicle developers and medical professionals.…
View the full article
-
By NASA
Maxar Space Systems Technicians guide the equipment that will house Gateway’s xenon and liquid fuel tanks in this photo from July 1, 2024. The tanks are part of Gateway’s Power and Propulsion Element, which will make the lunar space station the most powerful solar electric spacecraft ever flown. Once fully assembled and launched to lunar orbit, the Power and Propulsion Element’s roll-out solar arrays will harness the Sun’s energy to energize xenon gas and produce the thrust to get Gateway to the Moon’s orbit where it will await the arrival of its first crew on the Artemis IV mission.
Image credit: Maxar Space Systems
View the full article
-
By NASA
NASA has awarded contracts to six companies to supply liquid nitrogen and liquid oxygen in support of operations at agency centers and facilities across the United States. The indefinite-delivery/fixed-price contract runs from Monday, July 1, 2024, through June 30, 2029.
The awards and approximate maximum contract values are:
Air Products and Chemicals Inc., Allentown, Pennsylvania, $36.9 million Airgas USA LLC (South), Kennesaw, Georgia, $4.7 million Airgas USA LLC (Central), Tulsa, Oklahoma, $5.1 million Linde Inc., Danbury, Connecticut, $42.2 million Matheson Tri-Gas Inc., Warren, New Jersey, $1.8 million Messer LLC, Bridgewater, New Jersey, $62.3 million The total maximum delivery of liquid nitrogen, which NASA uses for pneumatic actuation, purging and inerting, pressurization, and cooling, will be about 656.8 tons, 30.4 million gallons, and 740,000 liters. The total maximum delivery of liquid oxygen, which is used as an oxidizer in cryogenic rocket engines, will be about 2.1 million gallons and 243,000 tons.
The commodities will support current and future aerospace flight, simulation, research, development, testing, and other operations at the following NASA centers and facilities: Ames Research Center in California’s Silicon Valley; Glenn Research Center in Cleveland and Neil Armstrong Test Facility in Sandusky, Ohio; Goddard Space Flight Center in Greenbelt, Maryland; Jet Propulsion Laboratory in Southern California; Johnson Space Center in Houston and White Sands Test Facility in Las Cruces, New Mexico; Kennedy Space Center in Florida; Langley Research Center in Hampton, Virginia; Marshall Space Flight Center in Huntsville, Alabama; Michoud Assembly Facility in New Orleans; and Stennis Space Center in Bay St. Louis, Mississippi.
For more information about NASA programs and missions, visit:
https://www.nasa.gov
-end-
Abbey Donaldson
Headquarters, Washington
202-358-1600
abbey.a.donaldson@nasa.gov
View the full article
-
By NASA
All the major structures that will form the core stage for NASA’s SLS (Space Launch System) rocket for the agency’s Artemis III mission are structurally complete. Technicians finished welding the 51-foot liquid oxygen tank structure, left, inside the Vertical Assembly Building at NASA’s Michoud Assembly Facility in New Orleans Jan. 8. The liquid hydrogen tank, right, completed internal cleaning Nov. 14. NASA/Michael DeMocker As NASA works to develop all the systems needed to return astronauts to the Moon under its Artemis campaign for the benefit of all, the SLS (Space Launch System) rocket will be responsible for launching astronauts on their journey. With the liquid oxygen tank now fully welded, all of the major structures that will form the core stage for the SLS rocket for the agency’s Artemis III mission are ready for additional outfitting. The hardware will be a part of the rocket used for the first of the Artemis missions planning to land astronauts on the Moon’s surface near the lunar South Pole. Technicians finished welding the 51-foot liquid oxygen tank structure inside the Vertical Assembly Building at NASA’s Michoud Assembly Facility in New Orleans Jan. 8.
The mega rocket’s other giant propellant tank – the liquid hydrogen tank – is already one fully welded structure. NASA and Boeing, the SLS core stage lead contractor, are currently priming the tank in another cell within the Vertical Assembly Building area called the Building 131 cryogenic tank thermal protection system and primer application complex. It completed internal cleaning Nov. 14.
Manufacturing hardware is a multi-step process that includes welding, washing, and, later, outfitting hardware.The internal cleaning process is similar to a shower to ensure contaminants do not find their way into the stage’s complex propulsion and engine systems prior to priming. Once internal cleaning is complete, primer is applied to the external portions of the tank’s barrel section and domes by an automated robotic tool. Following primer, technicians apply a foam-based thermal protection system to shield it from the extreme temperatures it will face during launch and flight while also regulating the super-chilled propellant within.
“NASA and its partners are processing major hardware elements at Michoud for several SLS rockets in parallel to support the agency’s Artemis campaign,” said Chad Bryant, acting manager of the Stages Office for NASA’s SLS Program. “With the Artemis II core stage nearing completion, the major structural elements of the SLS core stage for Artemis III will advance through production on the factory floor.”
The two massive propellant tanks for the rocket collectively hold more than 733,000 gallons of super-chilled propellant. The propellant powers the four RS-25 engines and must stay extremely cold to remain liquid.
The core stage, along with the RS-25 engines, will produce two million pounds of thrust to help launch NASA’s Orion spacecraft, astronauts, and supplies beyond Earth’s orbit and to the lunar surface for Artemis III. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.
Through Artemis, NASA will send astronauts—including the first woman, first person of color, and first international partner astronaut—to explore the Moon for scientific discovery, economic benefits, and to build the foundation for crewed mission to Mars. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, exploration ground systems, advanced spacesuits and rovers, Gateway, and human landing systems.
For more on SLS, visit:
https://www.nasa.gov/humans-in-space/space-launch-system/
News Media Contact
Corinne Beckinger
Marshall Space Flight Center, Huntsville, Ala.
256.544.0034
corinne.m.beckinger@nasa.gov
View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Graphic depiction of Magnetohydrodynamic Drive for Hydrogen and Oxygen Production in Mars TransferAlvaro Romero-Calvo Alvaro Romero-Calvo
Georgia Tech Research Corporation
Human space exploration is presented with multiple challenges, such as the near absence of buoyancy in orbit or the reliable, efficient, and sustainable operation of life support systems. The production and management of oxygen and hydrogen are of key importance for long-term space travel and, in particular, for the human transfer to Mars. However, existing technical solutions have failed to meet the reliability and efficiency levels required in such scenarios.
As an alternative, we propose an efficient water-splitting architecture that combines multiple functionalities into a minimum number of subsystems, hence enhancing the overall reliability of the mission. This new approach employs a magnetohydrodynamic electrolytic cell that extracts and separates oxygen and hydrogen gas without moving parts in microgravity, hence removing the need for a forced water recirculation loop and associated ancillary equipment such as pumps or centrifuges. Preliminary estimations indicate that the integration of functionalities leads to up to 50% mass budget reductions with respect to the Oxygen Generation Assembly architecture for a 99% reliability level. These values apply to a standard four-crew Mars transfer with 3.36 kg oxygen consumption per day.
A dedicated study is required to assess the feasibility of the concept and its integration into a suitable oxygen production architecture, motivating this proposal. Its successful development would effectively enable the recycling of water and oxygen in long-term space travel. Additional technologies of interest to NASA and the general public, such as water-based SmallSat propulsion or in-situ resource utilization, would also benefit from the concepts introduced here.
2024 Phase I Selection
Keep Exploring Discover More NIAC Topics
Space Technology Mission Directorate
NASA Innovative Advanced Concepts
NIAC Funded Studies
About NIAC
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.