Members Can Post Anonymously On This Site
'Twas the Night Before Christmas: A Star Trek TNG Holiday Special đđ
-
Similar Topics
-
By NASA
The Crew Health and Performance Exploration Analog (CHAPEA) team hosts a Media Day at NASAâs Johnson Space Center in Houston on April 11, 2023.Credit: NASA Media are invited to visit NASAâs simulated Mars habitat on Monday, March 10, at the agencyâs Johnson Space Center in Houston. The simulation will help prepare humanity for future missions to the Red Planet.
This is the second of three missions as part of NASAâs CHAPEA (Crew Health and Performance Exploration Analog), set to begin in May 2025 when volunteer crew members enter the 3D printed habitat to live and work for a year.
During the mission, crew members will carry out different types of mission activities, including simulated âmarswalks,â robotic operations, habitat maintenance, personal hygiene, exercise, and crop growth. Crew also will face planned environmental stressors such as resource limitations, isolation, and equipment failure.
The in-person media event includes an opportunity to speak with subject matter experts and capture b-roll and photos inside the habitat. Crew members will arrive for training at a later date and will not be available at this event.
To attend the event, U.S. media must request accreditation by 5 p.m. CDT Monday, March 3, and international media by 5 p.m., Monday, Feb. 24, via the NASA Johnson newsroom at: 281-483-5111 or jsccommu@nasa.gov. Media accreditation will be limited due to limited space inside the habitat. Confirmed media will receive additional details on how to participate.
For more information about CHAPEA, visit:
https://www.nasa.gov/humans-in-space/chapea
-end-
Cindy Anderson / James Gannon
Headquarters, Washington
202-358-1600
cindy.anderson@nasa.gov / james.h.gannon@nasa.gov
Kelsey Spivey
Johnson Space Center, Houston
281-483-5111
kelsey.m.spivey@nasa.gov
Victoria Segovia
Johnson Space Center, Houston
281-483-5111
victoria.segovia@nasa.gov
Share
Details
Last Updated Feb 20, 2025 LocationNASA Headquarters Related Terms
Humans in Space Analog Field Testing Crew Health and Performance Exploration Analog (CHAPEA) Johnson Space Center View the full article
-
By NASA
5 min read
Februaryâs Night Sky Notes: How Can You Help Curb Light Pollution?
Light pollution has long troubled astronomers, who generally shy away from deep sky observing under full Moon skies. The natural light from a bright Moon floods the sky and hides views of the Milky Way, dim galaxies and nebula, and shooting stars. In recent years, human-made light pollution has dramatically surpassed the interference of even a bright full Moon, and its effects are now noticeable to a great many people outside of the astronomical community. Harsh, bright white LED streetlights, while often more efficient and long-lasting, often create unexpected problems for communities replacing their old street lamps. Some notable concerns are increased glare and light trespass, less restful sleep, and disturbed nocturnal wildlife patterns. There is increasing awareness of just how much light is too much light at night. You donât need to give in to despair over encroaching light pollution; you can join efforts to measure it, educate others, and even help stop or reduce the effects of light pollution in your community.Â
Before and after pictures of replacement lighting at the 6th Street Bridge over the Los Angeles River. The second picture shows improvements in some aspects of light pollution, as light is not directed to the sides and upwards from the upgraded fixtures, reducing skyglow. However, it also shows the use of brighter, whiter LEDs, which is not generally ideal, along with increased light bounce back from the road. City of Los Angeles Amateur astronomers and potential citizen scientists around the globe are invited to participate in the Globe at Night (GaN) program to measure light pollution. Measurements are taken by volunteers on a few scheduled days every month and submitted to their database to help create a comprehensive map of light pollution and its change over time. GaN volunteers can take and submit measurements using multiple methods ranging from low-tech naked-eye observations to high-tech sensors and smartphone apps.
Globe at Night citizen scientists can use the following methods to measure light pollution and submit their results:
Their own smartphone camera and dedicated app Manually measure light pollution using their own eyes and detailed charts of the constellations A dedicated light pollution measurement device called a Sky Quality Meter (SQM). The free GaN web app from any internet-connected device (which can also be used to submit their measurements from an SQM or printed-out star charts) Night Sky Network members joined a telecon with Connie Walker of Globe at Night in 2014 and had a lively discussion about the programâs history and how they can participate. The audio of the telecon, transcript, and links to additional resources can be found on their dedicated resource page.
Light pollution has been visible from space for a long time, but new LED lights are bright enough that they stand out from older street lights, even from orbit. The above photo was taken by astronaut Samantha Cristoforetti from the ISS cupola in 2015. The newly installed white LED lights in the center of the city of Milan are noticeably brighter than the lights in the surrounding neighborhoods. NASA/ESA DarkSky International has long been a champion in the fight against light pollution and a proponent of smart lighting design and policy. Their website (at darksky.org)  provides many resources for amateur astronomers and other like-minded people to help communities understand the negative impacts of light pollution and how smart lighting policies can not only help bring the stars back to their night skies but make their streets safer by using smarter lighting with less glare. Communities and individuals find that their nighttime lighting choices can help save considerable sums of money when they decide to light their streets and homes âsmarter, not brighterâ with shielded, directional lighting, motion detectors, timers, and even choosing the proper âtemperatureâ of new LED light replacements to avoid the harsh âpure whiteâ glare that many new streetlamps possess. Their pages on community advocacy and on how to choose dark-sky-friendly lighting are extremely helpful and full of great information. There are even local chapters of the IDA in many communities made up of passionate advocates of dark skies.
DarkSky International has notably helped usher in âDark Sky Placesâ, areas around the world that are protected from light pollution. âDark Sky Parksâ, in particular, provide visitors with incredible views of the Milky Way and are perfect places to spot the wonders of a meteor shower. These parks also perform a very important function, showing the public the wonders of a truly dark sky to many people who may have never before even seen a handful of stars in the sky, let alone the full, glorious spread of the Milky Way.Â
More research into the negative effects of light pollution on the health of humans and the environment is being conducted than ever before. Watching the nighttime light slowly increase in your neighborhood, combined with reading so much bad news, can indeed be disheartening! However, as awareness of light pollution and its negative effects increases, more people are becoming aware of the problem and want to be part of the solution. There is even an episode of PBS Kidâs SciGirls where the main characters help mitigate light pollution in their neighborhood!
Astronomy clubs are uniquely situated to help spread awareness of good lighting practices in their local communities in order to help mitigate light pollution. Take inspiration from Tucson, Arizona, and other dark sky-friendly communities that have adopted good lighting practices. Tucson even reduced its skyglow by 7% after its own citywide lighting conversion, proof that communities can bring the stars back with smart lighting choices.
Originally posted by Dave Prosper: November 2018
Last Updated by Kat Troche: January 2025
View the full article
-
By NASA
Crews conduct a solar array deployment test on the spacecraft of NASAâs PUNCH (Polarimeter to Unify the Corona and Heliosphere) satellites at Astrotech Space Operations located inside Vandenberg Space Force Base in California on Tuesday, Jan. 21, 2025.USSF 30th Space Wing/Antonio Ramos Technicians supporting NASAâs PUNCH (Polarimeter to Unify the Corona and Heliosphere) mission deployed and tested the spacecraftâs solar arrays at the Astrotech Space Operations processing facility at Vandenberg Space Force Base in California ahead of its launch next month.
The arrays, essential for powering instruments and systems, mark another milestone in preparing PUNCH for its mission to study the Sunâs outer atmosphere as it transitions into the solar wind. Technicians performed the tests in a specialized cleanroom environment to prevent contamination and protect the sensitive equipment.
Comprised of four suitcase-sized satellites working together as a constellation, PUNCH will capture continuous 3D images of the Sunâs corona and the solar windâs journey into the solar system. Led by the Southwest Research Institute (SwRI) for NASA, the mission aims to deepen our understanding of the Sun and solar wind and how they affect humanityâs technology on Earth and our continued exploration of the solar system.
Successful solar array testing brings the spacecraft another step toward readiness for launch. The agencyâs PUNCH mission is targeting liftoff as a rideshare with NASAâs SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) on a SpaceX Falcon 9 rocket from Vandenbergâs Space Launch Complex 4E no earlier than Thursday, Feb. 27.
Image credit: USSF 30th Space Wing/Antonio Ramos
View the full article
-
By NASA
3 min read
NASA Solar Observatory Sees Coronal Loops Flicker Before Big Flares
For decades, scientists have tried in vain to accurately predict solar flares â intense bursts of light on the Sun that can send a flurry of charged particles into the solar system. Now, using NASAâs Solar Dynamics Observatory, one team has identified flickering loops in the solar atmosphere, or corona, that seem to signal when the Sun is about to unleash a large flare.
These warning signs could help NASA and other stakeholders protect astronauts as well as technology both in space and on the ground from hazardous space weather.
NASAâs Solar Dynamics Observatory captured this image of coronal loops above an active region on the Sun in mid-January 2012. The image was taken in the 171 angstrom wavelength of extreme ultraviolet light. NASA/Solar Dynamics Observatory Led by heliophysicist Emily Mason of Predictive Sciences Inc. in San Diego, California, the team studied arch-like structures called coronal loops along the edge of the Sun. Coronal loops rise from magnetically driven active regions on the Sun, where solar flares also originate.
The team looked at coronal loops near 50 strong solar flares, analyzing how their brightness in extreme ultraviolet light varied in the hours before a flare compared to loops above non-flaring regions. Like flashing warning lights, the loops above flaring regions varied much more than those above non-flaring regions.
âWe found that some of the extreme ultraviolet light above active regions flickers erratically for a few hours before a solar flare,â Mason explained. âThe results are really important for understanding flares and may improve our ability to predict dangerous space weather.â
Published in the Astrophysical Journal Letters in December 2024 and presented on Jan. 15, 2025, at a press conference during the 245th meeting of the American Astronomical Society, the results also hint that the flickering reaches a peak earlier for stronger flares. However, the team says more observations are needed to confirm this link.
To view this video please enable JavaScript, and consider upgrading to a web browser that
supports HTML5 video
The four panels in this movie show brightness changes in coronal loops in four different wavelengths of extreme ultraviolet light (131, 171, 193, and 304 angstroms) before a solar flare in December 2011. The images were taken by the Atmospheric Imaging Assembly (AIA) on NASAâs Solar Dynamics Observatory and processed to reveal flickering in the coronal loops. NASA/Solar Dynamics Observatory/JHelioviewer/E. Mason Other researchers have tried to predict solar flares by examining magnetic fields on the Sun, or by looking for consistent trends in other coronal loop features. However, Mason and her colleagues believe that measuring the brightness variations in coronal loops could provide more precise warnings than those methods â signaling oncoming flares 2 to 6 hours ahead of time with 60 to 80 percent accuracy.
âA lot of the predictive schemes that have been developed are still predicting the likelihood of flares in a given time period and not necessarily exact timing,â said team member Seth Garland of the Air Force Institute of Technology at Wright-Patterson Air Force Base in Ohio.
Each solar flare is like a snowflake â every single flare is unique.
Kara kniezewski
Air Force Institute of Technology
âThe Sunâs corona is a dynamic environment, and each solar flare is like a snowflake â every single flare is unique,â said team member Kara Kniezewski, a graduate student at the Air Force Institute of Technology and lead author of the paper. âWe find that searching for periods of âchaoticâ behavior in the coronal loop emission, rather than specific trends, provide a much more consistent metric and may also correlate with how strong a flare will be.â
The scientists hope their findings about coronal loops can eventually be used to help keep astronauts, spacecraft, electrical grids, and other assets safe from the harmful radiation that accompanies solar flares. For example, an automated system could look for brightness changes in coronal loops in real-time images from the Solar Dynamics Observatory and issue alerts.
âPrevious work by other researchers reports some interesting prediction metrics,â said co-author Vadim Uritsky of NASAâs Goddard Space Flight Center in Greenbelt, Maryland, and the Catholic University of Washington in D.C. âWe could build on this and come up with a well-tested and, ideally, simpler indicator ready for the leap from research to operations.â
By Vanessa Thomas
NASAâs Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Jan 15, 2025 Related Terms
Goddard Space Flight Center Heliophysics Heliophysics Division Space Weather The Sun Explore More
7 min read NASA Celebrates Edwin Hubbleâs Discovery of a New Universe
Article
5 hours ago
6 min read NASAâs Webb Reveals Intricate Layers of Interstellar Dust, Gas
Article
1 day ago
6 min read Newfound Galaxy Class May Indicate Early Black Hole Growth, Webb Finds
Article
1 day ago
Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.