Members Can Post Anonymously On This Site
ESA to support Indian human spaceflight missions
-
Similar Topics
-
By European Space Agency
Video: 00:15:30 Meet Arnaud Prost—aerospace engineer, professional diver, and member of ESA’s Astronaut Reserve. From flying aircraft to getting a taste of spacewalk simulation, his passion for exploration knows no bounds.
In this miniseries, we take you on a journey through the ESA Astronaut Reserve, diving into the first part of their Astronaut Reserve Training (ART) at the European Astronaut Centre (EAC) near Cologne, Germany. Our “ARTists” are immersing themselves in everything from ESA and the International Space Station programme to the European space industry and institutions. They’re gaining hands-on experience in technical skills like spacecraft systems and robotics, alongside human behaviour, scientific lessons, scuba diving, and survival training.
ESA’s Astronaut Reserve Training programme is all about building Europe’s next generation of space explorers—preparing them for the opportunities of future missions in Earth orbit and beyond.
This interview was recorded in November 2024.
You can listen to this episode on all major podcast platforms.
Keep exploring with ESA Explores!
Learn more about Arnaud’s PANGAEA training here.
View the full article
-
By European Space Agency
The first image from a new Italian Earth observation satellite mission was published today: a high-resolution image of a strip of the Italian peninsular showing the city of Rome at a resolution of 2.66 metres. This is three times higher than the resolution currently available for systematic acquisition over Italy.
View the full article
-
By Space Force
The U.S. Space Force and ULA launch team successfully completed the certification process of the Vulcan rocket. The first NSSL mission on Vulcan is expected this summer.
View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A NASA F/A-18 research aircraft flies above California near NASA’s Armstrong Flight Research Center in Edwards, California, testing a commercial precision landing technology for future space missions. The Psionic Space Navigation Doppler Lidar (PSNDL) system is installed in a pod located under the right wing of the aircraft.NASA Nestled in a pod under an F/A-18 Hornet aircraft wing, flying above California, and traveling up to the speed of sound, NASA put a commercial sensor technology to the test. The flight tests demonstrated the sensor accuracy and navigation precision in challenging conditions, helping prepare the technology to land robots and astronauts on the Moon and Mars.
The Psionic Space Navigation Doppler Lidar (PSNDL) system is rooted in NASA technology that Psionic, Inc. of Hampton, Virginia, licensed and further developed. They miniaturized the NASA technology, added further functionality, and incorporated component redundancies that make it more rugged for spaceflight. The PSNDL navigation system also includes cameras and an inertial measurement unit to make it a complete navigation system capable of accurately determining a vehicle’s position and velocity for precision landing and other spaceflight applications.
NASA engineers and technicians install the Psionic Space Navigation Doppler Lidar (PSNDL) system into a testing pod on a NASA F/A-18 research aircraft ahead of February 2025 flight tests at NASA’s Armstrong Flight Research Center in Edwards, California.NASA The aircraft departed from NASA’s Armstrong Flight Research Center in Edwards, California, and conducted a variety of flight paths over several days in February 2025. It flew a large figure-8 loop and conducted several highly dynamic maneuvers over Death Valley, California, to collect navigation data at various altitudes, velocities, and orientations relevant for lunar and Mars entry and descent. Refurbished for these tests, the NASA F/A-18 pod can support critical data collection for other technologies and users at a low cost.
Doppler Lidar sensors provide a highly accurate measurement of speed by measuring the frequency shift between laser light emitted from the sensor reflected from the ground. Lidar are extremely useful in sunlight-challenged areas that may have long shadows and stark contrasts, such as the lunar South Pole. Pairing PSNDL with cameras adds the ability to visually compare pictures with surface reconnaissance maps of rocky terrain and navigate to landing at interesting locations on Mars. All the data is fed into a computer to make quick, real-time decisions to enable precise touchdowns at safe locations.
Psionic Space Navigation Doppler Lidar (PSNDL) system installed in a testing pod on a NASA F/A-18 research aircraft ahead of February 2025 flight tests at NASA’s Armstrong Flight Research Center in Edwards, California.NASA Since licensing NDL in 2016, Psionic has received funding and development support from NASA’s Space Technology Mission Directorate through its Small Business Innovative Research program and Tipping Point initiative. The company has also tested PSNDL prototypes on suborbital vehicles via the Flight Opportunities program. In 2024, onboard a commercial lunar lander, NASA successfully demonstrated the predecessor NDL system developed by the agency’s Langley Research Center in Hampton, Virginia.
Explore More
4 min read NASA Starling and SpaceX Starlink Improve Space Traffic Coordination
Article 10 mins ago 6 min read How NASA’s Perseverance Is Helping Prepare Astronauts for Mars
Article 36 mins ago 2 min read NASA Cloud Software Helps Companies Find their Place in Space
Article 20 hours ago Facebook logo @NASATechnology @NASA_Technology Share
Details
Last Updated Mar 26, 2025 EditorLoura Hall Related Terms
Armstrong Flight Research Center Game Changing Development Program Space Communications Technology Space Technology Mission Directorate Technology Technology for Living in Space Technology for Space Travel View the full article
-
By NASA
If you design a new tool for use on Earth, it is easy to test and practice using that tool in its intended environment. But what if that tool is destined for lunar orbit or will be used by astronauts on the surface of the Moon?
NASA’s Simulation and Graphics Branch can help with that. Based at Johnson Space Center in Houston, the branch’s high-fidelity, real-time graphical simulations support in-depth engineering analyses and crew training, ensuring the safety, efficiency, and success of complex space endeavors before execution. The team manages multiple facilities that provide these simulations, including the Prototype Immersive Technologies (PIT) Lab, Virtual Reality Training Lab, and the Systems Engineering Simulator (SES).
Lee Bingham is an aerospace engineer on the simulation and graphics team. His work includes developing simulations and visualizations for the NASA Exploration Systems Simulations team and providing technical guidance on simulation and graphics integration for branch-managed facilities. He also leads the branch’s human-in-the-loop Test Sim and Graphics Team, the Digital Lunar Exploration Sites Unreal Simulation Tool (DUST), and the Lunar Surface Mixed-Reality with the Active Response Gravity Offload System (ARGOS) projects.
Lee Bingham demonstrates a spacewalk simulator for the Gateway lunar space station during NASA’s Tech Day on Capitol Hill in Washington, D.C. Image courtesy of Lee Bingham Bingham is particularly proud of his contributions to DUST, which provides a 3D visualization of the Moon’s South Pole and received Johnson’s Exceptional Software of the Year Award in 2024. “It was designed for use as an early reference to enable candidate vendors to perform initial studies of the lunar terrain and lighting in support of the Strategy and Architecture Office, human landing system, and the Extravehicular Activity and Human Surface Mobility Program,” Bingham explained. DUST has supported several human-in-the-loop studies for NASA. It has also been shared with external collaborators and made available to the public through the NASA Software Catalog.
Bingham has kept busy during his nearly nine years at Johnson and said learning to manage and balance support for multiple projects and customers was very challenging at first. “I would say ‘yes’ to pretty much anything anyone asked me to do and would end up burning myself out by working extra-long hours to meet milestones and deliverables,” he said. “It has been important to maintain a good work-life balance and avoid overcommitting myself while meeting demanding expectations.”
Lee Bingham tests the Lunar Surface Mixed Reality and Active Response Gravity Offload System trainer at Johnson Space Center. Image courtesy of Lee Bingham Bingham has also learned the importance of teamwork and collaboration. “You can’t be an expert at everything or do everything yourself,” he said. “Develop your skills, practice them regularly, and master them over time but be willing to ask for help and advice. And be sure to recognize and acknowledge your coworkers and teammates when they go above and beyond or achieve something remarkable.”
Lee Bingham (left) demonstrates a lunar rover simulator for Apollo 16 Lunar Module Pilot Charlie Duke. Image courtesy of Lee Bingham He hopes that the Artemis Generation will be motivated to tackle difficult challenges and further NASA’s mission to benefit humanity. “Be sure to learn from those who came before you, but be bold and unafraid to innovate,” he advised.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.