Jump to content

Artemis Accords Reach 50 Signatories as NASA Welcomes Panama, Austria


Recommended Posts

  • Publishers
Posted
austria-signs-accords.jpg?w=2048
NASA Administrator Bill Nelson, left, and U.S. Department of State Acting Assistant Secretary in the Bureau of Oceans and International Environmental and Scientific Affairs Jennifer R. Littlejohn, right, look on as Ambassador of the Republic of Austria to the United States of America Petra Schneebauer, signs the Artemis Accords, Wednesday, Dec. 11, 2024, at the Mary W. Jackson NASA Headquarters building in Washington. The Republic of Austria is the 50th country to sign the Artemis Accords, which establish a practical set of principles to guide space exploration cooperation among nations participating in NASA’s Artemis program.
Credit: NASA/Joel Kowsky

Lee esta nota de prensa en español aquí.

Panama and Austria signed the Artemis Accords Wednesday during separate signing ceremonies at NASA Headquarters in Washington, becoming the 49th and 50th nations to commit to the responsible exploration of space for all humanity.

“NASA welcomes Panama and Austria to the Artemis Accords community and celebrates 50 countries united by shared principles for the safe and responsible exploration of space,” NASA Administrator Bill Nelson said. “More than ever before, NASA is opening space to more nations and more people for the benefit of all. Together we are building long-term and peaceful deep space exploration for the Artemis Generation.”

In just a few years, the original group of eight country signatories including the United States has multiplied, with 17 countries signings in 2024. More than a number, the Artemis Accords represent a robust community, from every region of the world, unified by the same goal: to ensure safe and responsible civil space exploration.  

Through the Artemis Accords, the United States and other signatories are progressing toward continued safe and sustainable exploration of space with concrete outcomes. They committed to a method of operation and set of recommendations on non-interference, interoperability, release of scientific data, long-term sustainability guidelines, and registration to advance the implementation of the Artemis Accords. 

Potential focus areas for the next year include further advancing sustainability, including debris management for both lunar orbit and the surface of the Moon. 

Austria Joins Artemis Accords

Petra Schneebauer, ambassador of the Republic of Austria to the United States, signed the accords on behalf of Austria, becoming the 50th country signatory.

“Austria is proud to sign the Artemis Accords, an important step in fostering international cooperation for the civil exploration of the Moon and expanding humanity’s presence in the cosmos,” said Schneebauer. “By signing the Accords, we reaffirm our commitment to the peaceful, responsible, and cooperative use of space while emphasizing our support for strong multilateral partnerships and scientific progress. This cooperation will open new prospects for Austrian businesses, scientists, and research institutions to engage in pioneering space initiatives.”

Jennifer Littlejohn, acting assistant secretary, Bureau of Oceans and International Environmental and Scientific Affairs, U.S. Department of State, also participated in Austria’s signing event.

Panama Joins Artemis Accords

Earlier Wednesday, Nelson hosted Panama for a signing ceremony. José Miguel Alemán Healy, ambassador of the Republic of Panama to the United States, signed the Artemis Accords on behalf of Panama. Principal Deputy Assistant Secretary Tony Fernandes for U.S. Department of State’s Bureau of Oceans and International Environmental and Scientific Affairs also participated in the event.

panama-signs-accrods.jpg?w=2048
NASA Administrator Bill Nelson, left, Ambassador of the Republic of Panama to the United States of America José Miguel Alemán Healy, center, and U.S. Department of State Principal Deputy Assistant Secretary in the Bureau of Oceans and International Environmental and Scientific Affairs Tony Fernandes, pose for a picture after the Republic of Panama signed the Artemis Accords, Wednesday, Dec. 11, 2024, at the Mary W. Jackson NASA Headquarters building in Washington. The Republic of Panama is the 49th country to sign the Artemis Accords, which establish a practical set of principles to guide space exploration cooperation among nations participating in NASA’s Artemis program.
Credit: NASA/Joel Kowsky

“Today, Panama takes its place among many other nations looking not just to our own horizons, but to the horizons beyond our planet – exploring, learning, and contributing to humanity’s collective knowledge,” said Alemán.”This moment represents far more than a diplomatic signature. It is a bold commitment to peaceful exploration, scientific discovery, and international collaboration.”

In 2020, the United States, led by NASA with the U.S. Department of State, and seven other initial signatory nations established the Artemis Accords, identifying a set of principles promoting the beneficial use of space for humanity.

The Artemis Accords are grounded in the Outer Space Treaty and other agreements including the Registration Convention, the Rescue and Return Agreement, as well as best practices and norms of responsible behavior that NASA and its partners have supported, including the public release of scientific data.   

The accords are a voluntary commitment to engage in safe, transparent, responsible behavior in space, and any nation that wants to commit to those values is welcome to sign.

Learn more about the Artemis Accords at:

https://www.nasa.gov/artemis-accords

-end-

Meira Bernstein / Elizabeth Shaw
Headquarters, Washington
202-358-1600
meira.b.bernstein@nasa.gov / elizabeth.a.shaw@nasa.gov

Share

Details

Last Updated
Dec 11, 2024

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Hubble Space TelescopeHubble Home OverviewAbout Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & BenefitsHubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts ScienceHubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky ObservatoryHubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb TeamHubble Team Career Aspirations Hubble Astronauts NewsHubble News Hubble News Archive Social Media Media Resources MultimediaMultimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More35th Anniversary 7 Min Read NASA Celebrates Edwin Hubble’s Discovery of a New Universe
      The Cepheid variable star, called V1, in the neighboring Andromeda galaxy. Credits: NASA, ESA, Hubble Heritage Team (STScI/AURA); Acknowledgement: R. Gendler For humans, the most important star in the universe is our Sun. The second-most important star is nestled inside the Andromeda galaxy. Don’t go looking for it — the flickering star is 2.2 million light-years away, and is 1/100,000th the brightness of the faintest star visible to the human eye.
      Yet, a century ago, its discovery by Edwin Hubble, then an astronomer at Carnegie Observatories, opened humanity’s eyes as to how large the universe really is, and revealed that our Milky Way galaxy is just one of hundreds of billions of galaxies in the universe ushered in the coming-of-age for humans as a curious species that could scientifically ponder our own creation through the message of starlight. Carnegie Science and NASA are celebrating this centennial at the 245th meeting of the American Astronomical Society in Washington, D.C.
      The seemingly inauspicious star, simply named V1, flung open a Pandora’s box full of mysteries about time and space that are still challenging astronomers today. Using the largest telescope in the world at that time, the Carnegie-funded 100-inch Hooker Telescope at Mount Wilson Observatory in California, Hubble discovered the demure star in 1923. This rare type of pulsating star, called a Cepheid variable, is used as milepost markers for distant celestial objects. There are no tape-measures in space, but by the early 20th century Henrietta Swan Leavitt had discovered that the pulsation period of Cepheid variables is directly tied to their luminosity.
      Many astronomers long believed that the edge of the Milky Way marked the edge of the entire universe. But Hubble determined that V1, located inside the Andromeda “nebula,” was at a distance that far exceeded anything in our own Milky Way galaxy. This led Hubble to the jaw-dropping realization that the universe extends far beyond our own galaxy.
      In fact Hubble had suspected there was a larger universe out there, but here was the proof in the pudding. He was so amazed he scribbled an exclamation mark on the photographic plate of Andromeda that pinpointed the variable star.
      In commemoration of Edwin Hubble’s discovery of a Cepheid variable class star, called V1, in the neighboring Andromeda galaxy 100 years ago, astronomers partnered with the American Association of Variable Star Observers (AAVSO) to study the star. AAVSO observers followed V1 for six months, producing a plot, or light curve, of the rhythmic rise and fall of the star’s light. Based on this data, the Hubble Space Telescope was scheduled to capture the star at its dimmest and brightest light. Edwin Hubble’s observations of V1 became the critical first step in uncovering a larger, grander universe than some astronomers imagined at the time. Once dismissed as a nearby “spiral nebula” measurements of Andromeda with its embedded Cepheid star served as a stellar milepost marker. It definitively showed that Andromeda was far outside of our Milky Way. Edwin Hubble went on to measure the distances to many galaxies beyond the Milky Way by finding Cepheid variables within those levels. The velocities of those galaxies, in turn, allowed him to determine that the universe is expanding.NASA, ESA, Hubble Heritage Team (STScI/AURA); Acknowledgment: R. Gendler As a result, the science of cosmology exploded almost overnight. Hubble’s contemporary, the distinguished Harvard astronomer Harlow Shapley, upon Hubble notifying him of the discovery, was devastated. “Here is the letter that destroyed my universe,” he lamented to fellow astronomer Cecilia Payne-Gaposchkin, who was in his office when he opened Hubble’s message.
      Just three years earlier, Shapley had presented his observational interpretation of a much smaller universe in a debate one evening at the Smithsonian Museum of Natural History in Washington. He maintained that the Milky Way galaxy was so huge, it must encompass the entirety of the universe. Shapley insisted that the mysteriously fuzzy “spiral nebulae,” such as Andromeda, were simply stars forming on the periphery of our Milky Way, and inconsequential.
      Little could Hubble have imagined that 70 years later, an extraordinary telescope named after him, lofted hundreds of miles above the Earth, would continue his legacy. The marvelous telescope made “Hubble” a household word, synonymous with wonderous astronomy.
      Today, NASA’s Hubble Space Telescope pushes the frontiers of knowledge over 10 times farther than Edwin Hubble could ever see. The space telescope has lifted the curtain on a compulsive universe full of active stars, colliding galaxies, and runaway black holes, among the celestial fireworks of the interplay between matter and energy.
      Edwin Hubble was the first astronomer to take the initial steps that would ultimately lead to the Hubble Space Telescope, revealing a seemingly infinite ocean of galaxies. He thought that, despite their abundance, galaxies came in just a few specific shapes: pinwheel spirals, football-shaped ellipticals, and oddball irregular galaxies. He thought these might be clues to galaxy evolution – but the answer had to wait for the Hubble Space Telescope’s legendary Hubble Deep Field in 1994.
      The most impactful finding that Edwin Hubble’s analysis showed was that the farther the galaxy is, the faster it appears to be receding from Earth. The universe looked like it was expanding like a balloon. This was based on Hubble tying galaxy distances to the reddening of light — the redshift – that proportionally increased the father away the galaxies are.
      The redshift data were first collected by Lowell Observatory astronomer Vesto Slipher, who spectroscopically studied the “spiral nebulae” a decade before Hubble. Slipher did not know they were extragalactic, but Hubble made the connection. Slipher first interpreted his redshift data an example of the Doppler effect. This phenomenon is caused by light being stretched to longer, redder wavelengths if a source is moving away from us. To Slipher, it was curious that all the spiral nebulae appeared to be moving away from Earth.
      Two years prior to Hubble publishing his findings, the Belgian physicist and Jesuit priest Georges Lemaître analyzed the Hubble and Slifer observations and first came to the conclusion of an expanding universe. This proportionality between galaxies’ distances and redshifts is today termed Hubble–Lemaître’s law.
      Because the universe appeared to be uniformly expanding, Lemaître further realized that the expansion rate could be run back into time – like rewinding a movie – until the universe was unimaginably small, hot, and dense. It wasn’t until 1949 that the term “big bang” came into fashion.
      This was a relief to Edwin Hubble’s contemporary, Albert Einstein, who deduced the universe could not remain stationary without imploding under gravity’s pull. The rate of cosmic expansion is now known as the Hubble Constant.
      Ironically, Hubble himself never fully accepted the runaway universe as an interpretation of the redshift data. He suspected that some unknown physics phenomenon was giving the illusion that the galaxies were flying away from each other. He was partly right in that Einstein’s theory of special relativity explained redshift as an effect of time-dilation that is proportional to the stretching of expanding space. The galaxies only appear to be zooming through the universe. Space is expanding instead.
      Compass and scale image titled “Cepheid Variable Star V1 in M31 HST WFC3/UVIS.” Four boxes each showing a bright white star in the center surrounded by other stars. Each box has a correlating date at the bottom: Dec. 17, 2020, Dec. 21, 2010, Dec. 30, 2019, and Jan. 26, 2011. The center star in the boxes appears brighter with each passing date.NASA, ESA, Hubble Heritage Project (STScI, AURA) After decades of precise measurements, the Hubble telescope came along to nail down the expansion rate precisely, giving the universe an age of 13.8 billion years. This required establishing the first rung of what astronomers call the “cosmic distance ladder” needed to build a yardstick to far-flung galaxies. They are cousins to V1, Cepheid variable stars that the Hubble telescope can detect out to over 100 times farther from Earth than the star Edwin Hubble first found.
      Astrophysics was turned on its head again in 1998 when the Hubble telescope and other observatories discovered that the universe was expanding at an ever-faster rate, through a phenomenon dubbed “dark energy.” Einstein first toyed with this idea of a repulsive form of gravity in space, calling it the cosmological constant.
      Even more mysteriously, the current expansion rate appears to be different than what modern cosmological models of the developing universe would predict, further confounding theoreticians. Today astronomers are wrestling with the idea that whatever is accelerating the universe may be changing over time. NASA’s Roman Space Telescope, with the ability to do large cosmic surveys, should lead to new insights into the behavior of dark matter and dark energy. Roman will likely measure the Hubble constant via lensed supernovae.
      This grand century-long adventure, plumbing depths of the unknown, began with Hubble photographing a large smudge of light, the Andromeda galaxy, at the Mount Wilson Observatory high above Los Angeles.
      In short, Edwin Hubble is the man who wiped away the ancient universe and discovered a new universe that would shrink humanity’s self-perception into being an insignificant speck in the cosmos.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Explore More
      Edwin Hubble Hubble Views the Star That Changed the Universe The History of Hubble Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Ray Villard
      Space Telescope Science Institute, Baltimore, MD
      Share
      Details
      Last Updated Jan 15, 2025 EditorAndrea GianopoulosLocationNASA Goddard Space Flight Center Related Terms
      Andromeda Galaxy Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Stars The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope
      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
      Discovering a Runaway Universe
      Our cosmos is growing, and that expansion rate is accelerating.
      The History of Hubble
      Hubble’s Night Sky Challenge
      View the full article
    • By European Space Agency
      There is an increasing willingness in the space sector to tackle the problem of space debris. Yet much of the required technology to mitigate or prevent its risks is still missing.
      Preventing new debris, avoiding collisions and the timely clearance of satellites from orbit at their end-of-mission are complex challenges that each require a variety of practical solutions.
      Released to the public on 15 January 2025, the Zero Debris Technical Booklet is a community-driven document that identifies technologies that will contribute to the goal of Zero Debris by 2030. Essentially, the Booklet forms a technical Zero Debris 'to-do list'.
      View the full article
    • By NASA
      Creating a golden streak in the night sky, a SpaceX Falcon 9 rocket carrying Firefly Aerospace’s Blue Ghost Mission One lander soars upward after liftoff from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on Wednesday, Jan. 15, as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative. The Blue Ghost lander will carry 10 NASA science and technology instruments to the lunar surface to further understand the Moon and help prepare for future human missions.Credit: NASA/Frank Michaux A suite of NASA scientific investigations and technology demonstrations is on its way to our nearest celestial neighbor aboard a commercial spacecraft, where they will provide insights into the Moon’s environment and test technologies to support future astronauts landing safely on the lunar surface under the agency’s Artemis campaign.
      Carrying science and tech on Firefly Aerospace’s first CLPS or Commercial Lunar Payload Services flight for NASA, Blue Ghost Mission 1 launched at 1:11 a.m. EST aboard a SpaceX Falcon 9 rocket from Launch Complex 39A at the agency’s Kennedy Space Center in Florida. The company is targeting a lunar landing on Sunday, March 2.
      “This mission embodies the bold spirit of NASA’s Artemis campaign – a campaign driven by scientific exploration and discovery,” said NASA Deputy Administrator Pam Melroy. “Each flight we’re part of is vital step in the larger blueprint to establish a responsible, sustained human presence at the Moon, Mars, and beyond. Each scientific instrument and technology demonstration brings us closer to realizing our vision. Congratulations to the NASA, Firefly, and SpaceX teams on this successful launch.” 
      Once on the Moon, NASA will test and demonstrate lunar drilling technology, regolith (lunar rocks and soil) sample collection capabilities, global navigation satellite system abilities, radiation tolerant computing, and lunar dust mitigation methods. The data captured could also benefit humans on Earth by providing insights into how space weather and other cosmic forces impact our home planet.  
      “NASA leads the world in space exploration, and American companies are a critical part of bringing humanity back to the Moon,” said Nicola Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington. “We learned many lessons during the Apollo Era which informed the technological and science demonstrations aboard Firefly’s Blue Ghost Mission 1 – ensuring the safety and health of our future science instruments, spacecraft, and, most importantly, our astronauts on the lunar surface. I am excited to see the incredible science and technological data Firefly’s Blue Ghost Mission 1 will deliver in the days to come.”
      As part of NASA’s modern lunar exploration activities, CLPS deliveries to the Moon will help humanity better understand planetary processes and evolution, search for water and other resources, and support long-term, sustainable human exploration of the Moon in preparation for the first human mission to Mars. 
      There are 10 NASA payloads flying on this flight:
      Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity (LISTER) will characterize heat flow from the interior of the Moon by measuring the thermal gradient and conductivity of the lunar subsurface. It will take several measurements to about a 10-foot final depth using pneumatic drilling technology with a custom heat flow needle instrument at its tip. Lead organization: Texas Tech University  Lunar PlanetVac (LPV) is designed to collect regolith samples from the lunar surface using a burst of compressed gas to drive the regolith into a sample chamber for collection and analysis by various instruments. Additional instrumentation will then transmit the results back to Earth. Lead organization: Honeybee Robotics   Next Generation Lunar Retroreflector (NGLR) serves as a target for lasers on Earth to precisely measure the distance between Earth and the Moon. The retroreflector that will fly on this mission could also collect data to understand various aspects of the lunar interior and address fundamental physics questions. Lead organization: University of Maryland Regolith Adherence Characterization (RAC) will determine how lunar regolith sticks to a range of materials exposed to the Moon’s environment throughout the lunar day. The RAC instrument will measure accumulation rates of lunar regolith on the surfaces of several materials including solar cells, optical systems, coatings, and sensors through imaging to determine their ability to repel or shed lunar dust. The data captured will allow the industry to test, improve, and protect spacecraft, spacesuits, and habitats from abrasive regolith. Lead organization: Aegis Aerospace  Radiation Tolerant Computer (RadPC) will demonstrate a computer that can recover from faults caused by ionizing radiation. Several RadPC prototypes have been tested aboard the International Space Station and Earth-orbiting satellites, but now will demonstrate the computer’s ability to withstand space radiation as it passes through Earth’s radiation belts, while in transit to the Moon, and on the lunar surface. Lead organization: Montana State University  Electrodynamic Dust Shield (EDS) is an active dust mitigation technology that uses electric fields to move and prevent hazardous lunar dust accumulation on surfaces. The EDS technology is designed to lift, transport, and remove particles from surfaces with no moving parts. Multiple tests will demonstrate the feasibility of the self-cleaning glasses and thermal radiator surfaces on the Moon. In the event the surfaces do not receive dust during landing, EDS has the capability to re-dust itself using the same technology. Lead organization: NASA’s Kennedy Space Center  Lunar Environment heliospheric X-ray Imager (LEXI) will capture a series of X-ray images to study the interaction of solar wind and the Earth’s magnetic field that drives geomagnetic disturbances and storms. Deployed and operated on the lunar surface, this instrument will provide the first global images showing the edge of Earth’s magnetic field for critical insights into how space weather and other cosmic forces surrounding our planet impact it. Lead organizations: NASA’s Goddard Space Flight Center, Boston University, and Johns Hopkins University  Lunar Magnetotelluric Sounder (LMS) will characterize the structure and composition of the Moon’s mantle by measuring electric and magnetic fields. This investigation will help determine the Moon’s temperature structure and thermal evolution to understand how the Moon has cooled and chemically differentiated since it formed. Lead organization: Southwest Research Institute Lunar GNSS Receiver Experiment (LuGRE) will demonstrate the possibility of acquiring and tracking signals from Global Navigation Satellite System constellations, specifically GPS and Galileo, during transit to the Moon, during lunar orbit, and on the lunar surface. If successful, LuGRE will be the first pathfinder for future lunar spacecraft to use existing Earth-based navigation constellations to autonomously and accurately estimate their position, velocity, and time. Lead organizations: NASA Goddard, Italian Space Agency Stereo Camera for Lunar Plume-Surface Studies (SCALPSS) will use stereo imaging photogrammetry to capture the impact of rocket plume on lunar regolith as the lander descends on the Moon’s surface. The high-resolution stereo images will aid in creating models to predict lunar regolith erosion, which is an important task as bigger, heavier payloads are delivered to the Moon in close proximity to each other. This instrument also flew on Intuitive Machine’s first CLPS delivery. Lead organization: NASA’s Langley Research Center  “With 10 NASA science and technology instruments launching to the Moon, this is the largest CLPS delivery to date, and we are proud of the teams that have gotten us to this point,” said Chris Culbert, program manager for the Commercial Lunar Payload Services initiative at NASA’s Johnson Space Center in Houston. “We will follow this latest CLPS delivery with more in 2025 and later years. American innovation and interest to the Moon continues to grow, and NASA has already awarded 11 CLPS deliveries and plans to continue to select two more flights per year.”
      Firefly’s Blue Ghost lander is targeted to land near a volcanic feature called Mons Latreille within Mare Crisium, a more than 300-mile-wide basin located in the northeast quadrant of the Moon’s near side. The NASA science on this flight will gather valuable scientific data studying Earth’s nearest neighbor and helping pave the way for the first Artemis astronauts to explore the lunar surface later this decade.
      Learn more about NASA’s CLPS initiative at:
      https://www.nasa.gov/clps
      -end-
      Amber Jacobson / Karen Fox
      Headquarters, Washington
      202-358-1600
      amber.c.jacobson@nasa.gov / karen.c.fox@nasa.gov
      Natalia Riusech / Nilufar Ramji
      Johnson Space Center, Houston
      281-483-5111
      nataila.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
      Antonia Jaramillo
      Kennedy Space Center, Florida
      321-501-8425
      antonia.jaramillobotero@nasa.gov
      Share
      Details
      Last Updated Jan 15, 2025 LocationNASA Headquarters Related Terms
      Commercial Lunar Payload Services (CLPS) Artemis Earth's Moon Johnson Space Center Kennedy Space Center Lunar Science Science & Research Science Mission Directorate View the full article
    • By NASA
      Webb Webb News Latest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 6 Min Read NASA’s Webb Reveals Intricate Layers of Interstellar Dust, Gas
      This shimmering cosmic curtain shows interstellar gas and dust that has been heated by the flashbulb explosion of a long-ago supernova. The gas then glows infrared light in what is known as a thermal light echo. As the supernova illumination travels through space at the speed of light, the echo appears to expand. NASA’s James Webb Space Telescope observed this light echo in the vicinity of the supernova remnant Cassiopeia A. Credits:
      NASA, ESA, CSA, STScI, J. Jencson (Caltech/IPAC) Once upon a time, the core of a massive star collapsed, creating a shockwave that blasted outward, ripping the star apart as it went. When the shockwave reached the star’s surface, it punched through, generating a brief, intense pulse of X-rays and ultraviolet light that traveled outward into the surrounding space. About 350 years later, that pulse of light has reached interstellar material, illuminating it, warming it, and causing it to glow in infrared light.
      NASA’s James Webb Space Telescope has observed that infrared glow, revealing fine details resembling the knots and whorls of wood grain. These observations are allowing astronomers to map the true 3D structure of this interstellar dust and gas (known as the interstellar medium) for the first time.
      “We were pretty shocked to see this level of detail,” said Jacob Jencson of Caltech/IPAC in Pasadena, principal investigator of the science program.
      “We see layers like an onion,” added Josh Peek of the Space Telescope Science Institute in Baltimore, a member of the science team. “We think every dense, dusty region that we see, and most of the ones we don’t see, look like this on the inside. We just have never been able to look inside them before.”
      The team is presenting their findings in a press conference at the 245th meeting of the American Astronomical Society in Washington.
      “Even as a star dies, its light endures—echoing across the cosmos. It’s been an extraordinary three years since we launched NASA’s James Webb Space Telescope. Every image, every discovery, shows a portrait not only of the majesty of the universe but the power of the NASA team and the promise of international partnerships. This groundbreaking mission, NASA’s largest international space science collaboration, is a true testament to NASA’s ingenuity, teamwork, and pursuit of excellence,” said NASA Administrator Bill Nelson. “What a privilege it has been to oversee this monumental effort, shaped by the tireless dedication of thousands of scientists and engineers around the globe. This latest image beautifully captures the lasting legacy of Webb—a keyhole into the past and a mission that will inspire generations to come.”
      Image A: Light Echoes Near Cassiopeia A (NIRCam)
      These shimmering cosmic curtains show interstellar gas and dust that has been heated by the flashbulb explosion of a long-ago supernova. The gas then glows infrared light in what is known as a thermal light echo. As the supernova illumination travels through space at the speed of light, the echo appears to expand. NASA’s James Webb Space Telescope observed this light echo in the vicinity of the supernova remnant Cassiopeia A three separate times, in essence creating a 3D scan of the interstellar material. Note that the field of view in the top row is rotated slightly clockwise relative to the middle and bottom rows, due to the roll angle of the Webb telescope when the observations were taken. NASA, ESA, CSA, STScI, J. Jencson (Caltech/IPAC) Video A: Light Echoes Near Cassiopeia A (NIRCam)
      This time-lapse video using data from NASA’s James Webb Space Telescope highlights the evolution of one light echo in the vicinity of the supernova remnant Cassiopeia A. A light echo is created when a star explodes or erupts, flashing light into surrounding clumps of interstellar dust and causing them to shine in an ever-expanding pattern. Webb’s exquisite resolution not only shows incredible detail within these light echoes, but also shows their expansion over the course of just a few weeks – a remarkably short timescale considering that most cosmic targets remain unchanged over a human lifetime.
      Credit: NASA, ESA, CSA, STScI, J. Jencson (Caltech/IPAC) Taking a CT Scan
      The images from Webb’s NIRCam (Near-Infrared Camera) highlight a phenomenon known as a light echo. A light echo is created when a star explodes or erupts, flashing light into surrounding clumps of dust and causing them to shine in an ever-expanding pattern. Light echoes at visible wavelengths (such as those seen around the star V838 Monocerotis) are due to light reflecting off of interstellar material. In contrast, light echoes at infrared wavelengths are caused when the dust is warmed by energetic radiation and then glows.
      The researchers targeted a light echo that had previously been observed by NASA’s retired Spitzer Space Telescope. It is one of dozens of light echoes seen near the Cassiopeia A supernova remnant – the remains of the star that exploded. The light echo is coming from unrelated material that is behind Cassiopeia A, not material that was ejected when the star exploded.
      The most obvious features in the Webb images are tightly packed sheets. These filaments show structures on remarkably small scales of about 400 astronomical units, or less than one-hundredth of a light-year. (An astronomical unit, or AU, is the average Earth-Sun distance. Neptune’s orbit is 60 AU in diameter.)
      “We did not know that the interstellar medium had structures on that small of a scale, let alone that it was sheet-like,” said Peek.
      These sheet-like structures may be influenced by interstellar magnetic fields. The images also show dense, tightly wound regions that resemble knots in wood grain. These may represent magnetic “islands” embedded within the more streamlined magnetic fields that suffuse the interstellar medium.
      “This is the astronomical equivalent of a medical CT scan,” explained Armin Rest of the Space Telescope Science Institute, a member of the science team. “We have three slices taken at three different times, which will allow us to study the true 3D structure. It will completely change the way we study the interstellar medium.”
      Image B: Cassiopeia A (Spitzer with Webb Insets)
      This background image of the region around supernova remnant Cassiopeia A was released by NASA’s Spitzer Space Telescope in 2008. By taking multiple images of this region over three years with Spitzer, researchers were able to examine a number of light echoes. Now, NASA’s James Webb Space Telescope has imaged some of these light echoes in much greater detail. Insets at lower right show one epoch of Webb observations, while the inset at left shows a Webb image of the central supernova remnant released in 2023. Spitzer Image: NASA/JPL-Caltech/Y. Kim (Univ. of Arizona/Univ. of Chicago). Cassiopeia A Inset: NASA, ESA, CSA, STScI, Danny Milisavljevic (Purdue University), Ilse De Looze (UGent), Tea Temim (Princeton University). Light Echoes Inset: NASA, ESA, CSA, STScI, J. Jencson (Caltech/IPAC). Future Work
      The team’s science program also includes spectroscopic observations using Webb’s MIRI (Mid-Infrared Instrument). They plan to target the light echo multiple times, weeks or months apart, to observe how it evolves as the light echo passes by.
      “We can observe the same patch of dust before, during, and after it’s illuminated by the echo and try to look for any changes in the compositions or states of the molecules, including whether some molecules or even the smallest dust grains are destroyed,” said Jencson.
      Infrared light echoes are also extremely rare, since they require a specific type of supernova explosion with a short pulse of energetic radiation. NASA’s upcoming Nancy Grace Roman Space Telescope will conduct a survey of the galactic plane that may find evidence of additional infrared light echoes for Webb to study in detail.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Downloads
      Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Science – Jacob Jencson (Caltech/IPAC)
      Related Information
      Articles: Past Webb news releases on Cassiopeia A
      Interactive: Explore light echoes in V838 Monocerotis
      Videos: Learn more about supernovas.
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is a supernova?
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Stars Stories



      Universe



      Spitzer Space Telescope


      Spitzer uses an ultra-sensitive infrared telescope to study asteroids, comets, planets and distant galaxies.

      Share








      Details
      Last Updated Jan 14, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      Astrophysics Goddard Space Flight Center James Webb Space Telescope (JWST) Nebulae Science & Research Supernova Remnants Supernovae The Universe View the full article
    • By NASA
      Firefly Aerospace’s Blue Ghost lander getting encapsulated in SpaceX’s rocket fairing ahead of the planned liftoff for 1:11 a.m. EST Jan. 15 from Launch Complex 39A at NASA’s Kennedy Space Center in FloridaSpaceX As part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, the agency is preparing to fly ten instruments aboard Firefly Aerospace’s first delivery to the Moon. These science payloads and technology demonstrations will help advance our understanding of the Moon and planetary processes, while paving the way for future crewed missions on the Moon and beyond, for the benefit of all.
      Firefly’s lunar lander, named Blue Ghost, is scheduled to launch on a SpaceX Falcon 9 rocket Wednesday, Jan.15, from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. After a 45-day cruise phase, Blue Ghost is targeted to land near a volcanic feature called Mons Latreille within Mare Crisium, a basin approximately 340 miles wide (550 kilometers) located in the northeast quadrant of the Moon’s near side.
      How can we enable more precise navigation on the Moon? How do spacecraft interact with the lunar surface? How does Earth’s magnetic field influence the effects of space weather on our home planet? NASA’s instruments on this flight will conduct first-of-their-kind demonstrations to help answer these questions and more, including testing regolith sampling technologies, lunar subsurface drilling capabilities, increasing precision of positioning and navigation abilities, testing radiation tolerant computing, and learning how to mitigate lunar dust during lunar landings.

      The ten NASA payloads aboard Firefly’s Blue Ghost lander include:

      Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity (LISTER) will measure heat flow from the Moon’s interior by measuring the thermal gradient, or changes in temperature at various depths, and thermal conductivity, or the subsurface material’s ability to let heat pass through it. LISTER will take several measurements up to 10 feet deep using pneumatic drilling technology with a custom heat flow needle instrument at its tip. Data from LISTER will help scientists retrace the Moon’s thermal history and understand how it formed and cooled. Lead organization: Texas Tech University
      Lunar PlanetVac (LPV) is designed to collect regolith samples from the lunar surface using a burst of compressed gas to drive the regolith into a sample chamber (sieving) for collection and analysis by various instruments. Additional instrumentation will then transmit the results back to Earth. The LPV payload is designed to help increase the science return from planetary missions by testing low-cost technologies for collecting regolith samples in-situ. Lead organization: Honeybee Robotics
      Next Generation Lunar Retroreflector (NGLR) serves as a target for lasers on Earth to precisely measure the distance between Earth and the Moon by reflecting very short laser pulses from Earth-based Lunar Laser Ranging Observatories. The laser pulse transit time to the Moon and back is used to determine the distance. Data from NGLR could improve the accuracy of our lunar coordinate system and contribute to our understanding of the inner structure of the Moon and fundamental physics questions. Lead organization: University of Maryland
      Regolith Adherence Characterization (RAC) will determine how lunar regolith sticks to a range of materials exposed to the Moon’s environment throughout the lunar day. RAC will measure accumulation rates of lunar regolith on surfaces (for example, solar cells, optical systems, coatings, and sensors) through imaging to determine their ability to repel or shed lunar dust. The data captured will help test, improve, and protect spacecraft, spacesuits, and habitats from abrasive regolith. Lead organization: Aegis Aerospace
      Radiation Tolerant Computer (RadPC) will demonstrate a computer that can recover from faults caused by ionizing radiation. Several RadPC prototypes have been tested aboard the International Space Station and Earth-orbiting satellites, but this flight will provide the biggest trial yet by demonstrating the computer’s ability to withstand space radiation as it passes through Earth’s radiation belts, while in transit to the Moon, and on the lunar surface. Lead organization: Montana State University
      Electrodynamic Dust Shield (EDS) is an active dust mitigation technology that uses electric fields to move and prevent hazardous lunar dust accumulation on surfaces. EDS is designed to lift, transport, and remove particles from surfaces with no moving parts. Multiple tests will demonstrate the feasibility of the self-cleaning glasses and thermal radiator surfaces on the Moon. In the event the surfaces do not receive dust during landing, EDS has the capability to re-dust itself using the same technology. Lead organization: NASA’s Kennedy Space Center
      Lunar Environment heliospheric X-ray Imager (LEXI) will capture a series of X-ray images to study the interaction of solar wind and Earth’s magnetic field that drives geomagnetic disturbances and storms. Deployed and operated on the lunar surface, this instrument will provide the first global images showing the edge of Earth’s magnetic field for critical insights into how space weather and other cosmic forces surrounding our planet impact Earth. Lead organizations: Boston University, NASA’s Goddard Space Flight Center, and Johns Hopkins University
      Lunar Magnetotelluric Sounder (LMS) will characterize the structure and composition of the Moon’s mantle by measuring electric and magnetic fields. This investigation will help determine the Moon’s temperature structure and thermal evolution to understand how the Moon has cooled and chemically differentiated since it formed. Lead organization: Southwest Research Institute
      Lunar GNSS Receiver Experiment (LuGRE) will demonstrate the possibility of acquiring and tracking signals from GNSS (Global Navigation Satellite System) constellations, specifically GPS and Galileo, during transit to the Moon, during lunar orbit, and on the lunar surface. If successful, LuGRE will be the first pathfinder for future lunar spacecraft to use existing Earth-based navigation constellations to autonomously and accurately estimate their position, velocity, and time. Lead organizations: NASA Goddard, Italian Space Agency
      Stereo Camera for Lunar Plume-Surface Studies (SCALPSS) will use stereo imaging photogrammetry to capture the impact of the rocket exhaust plume on lunar regolith as the lander descends on the Moon’s surface. The high-resolution stereo images will aid in creating models to predict lunar regolith erosion, which is an important task as bigger, heavier spacecraft and hardware are delivered to the Moon in close proximity to each other. This instrument also flew on Intuitive Machines’ first CLPS delivery. Lead organization: NASA’s Langley Research Center 
      Through the CLPS initiative, NASA purchases lunar landing and surface operations services from American companies. The agency uses CLPS to send scientific instruments and technology demonstrations to advance capabilities for science, exploration, or commercial development of the Moon. By supporting a robust cadence of lunar deliveries, NASA will continue to enable a growing lunar economy while leveraging the entrepreneurial innovation of the commercial space industry.

      Learn more about CLPS and Artemis at: http://www.nasa.gov/clps 

      Alise Fisher
      Headquarters, Washington
      202-358-2546
      alise.m.fisher@nasa.gov

      Natalia Riusech / Nilufar Ramji  
      Johnson Space Center, Houston 
      281-483-5111 
      natalia.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
      View the full article
  • Check out these Videos

×
×
  • Create New...