Jump to content

Recommended Posts

Posted
Paxi_explores_ice_card_full.jpg Video: 00:04:04

English Paxi explores ice

Join Paxi on an adventure to the North and South poles, to learn more about ice and its role in keeping Earth cool.

 

Italian Paxi osserva il ghiaccio

Unisciti a Paxi in un'avventura ai poli Nord e Sud, per saperne di più sul ghiaccio e sul suo ruolo nel mantenere la Terra fresca.

 

German Paxi erforscht das Eis

Begleiten Sie Paxi auf ein Abenteuer zum Nord- und Südpol, um mehr über Eis und seine Rolle bei der Kühlung der Erde zu erfahren.

 

French Paxi explore la glace

Rejoignez Paxi dans une aventure aux pôles Nord et Sud, pour en savoir plus sur la glace et son rôle dans le refroidissement de la Terre.

 

Spanish Paxi explora el hielo

Únete a Paxi en una aventura a los polos Norte y Sur, para aprender más sobre el hielo y su papel en mantener la Tierra fría.

 

Portuguese Paxi explora o gelo

Junte-se a Paxi numa aventura aos pólos Norte e Sul, para aprender mais sobre o gelo e o seu papel na manutenção da Terra fresca.

 

Greek Ο Πάξι εξερευνά τον πάγο

Ελάτε μαζί με τον Paxi σε μια περιπέτεια στο Βόρειο και το Νότιο Πόλο, για να μάθετε περισσότερα για τον πάγο και το ρόλο του στη διατήρηση της ψύξης της Γης.

 

Polish Paxi bada lód

Dołącz do Paxi podczas przygody na biegunie północnym i południowym, aby dowiedzieć się więcej o lodzie i jego roli w chłodzeniu Ziemi.

 

Swedish Paxi utforskar is

Följ med Paxi på ett äventyr till Nord- och Sydpolen för att lära dig mer om is och dess roll för att hålla jorden sval.

 

Norwegian Paxi utforsker is

Bli med Paxi på et eventyr til Nord- og Sydpolen for å lære mer om is og dens rolle i å holde jorden kjølig.

 

Danish Paxi udforsker is

Tag med Paxi på eventyr til Nord- og Sydpolen for at lære mere om is og dens rolle i at holde Jorden kølig.

 

Romanian Paxi explorează gheață

Alăturați-vă lui Paxi într-o aventură la polii Nord și Sud, pentru a afla mai multe despre gheață și rolul său în menținerea Pământului rece.

 

Finnish Paxi tutkii jäätä

Lähde Paxin mukaan seikkailulle pohjois- ja etelänavoille ja opi lisää jäästä ja sen roolista maapallon viileänä pitämisessä.

 

Estonian Paxi avastab jääd

Liitu Paxiga seiklusel põhja- ja lõunapoolusele, et õppida rohkem jääst ja selle rollist Maa jahedana hoidmisel.

 

Czech Paxi zkoumá led

Vydejte se s Paxi na dobrodružnou výpravu na severní a jižní pól, abyste se dozvěděli více o ledu a jeho úloze při udržování chladu na Zemi.

 

Dutch Paxi onderzoekt ijs

Ga mee met Paxi op avontuur naar de Noord- en Zuidpool om meer te leren over ijs en de rol die ijs speelt bij het koel houden van de aarde.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Video: 00:09:17 Meet Aleš Svoboda— A skilled pilot with over 1500 flight hours, Aleš holds a PhD in aircraft and rocket technology and has commanded Quick Reaction Alerts. From flying high to training underwater, he’s always ready to take on new challenges—now including astronaut reserve training with ESA.
      In this miniseries, we take you on a journey through the ESA Astronaut Reserve, diving into the first part of their Astronaut Reserve Training (ART) at the European Astronaut Centre (EAC) near Cologne, Germany. Our “ARTists” are immersing themselves in everything from ESA and the International Space Station programme to the European space industry and institutions. They’re gaining hands-on experience in technical skills like spacecraft systems and robotics, alongside human behaviour, scientific lessons, scuba diving, and survival training.
      ESA’s Astronaut Reserve Training programme is all about building Europe’s next generation of space explorers—preparing them for the opportunities of future missions in Earth orbit and beyond.
      This interview was recorded in November 2024.
      You can listen to this episode on all major podcast platforms.
      Keep exploring with ESA Explores!
      View the full article
    • By European Space Agency
      Video: 00:08:54 Meet Amelie Schoenenwald— biotechnologist, business expert, and PhD in structural biology. Whether in the lab or the great outdoors, she thrives in extreme environments, ready to embrace the adventure of ESA’s Astronaut Reserve.
      In this miniseries, we take you on a journey through the ESA Astronaut Reserve, diving into the first part of their Astronaut Reserve Training (ART) at the European Astronaut Centre (EAC) near Cologne, Germany. Our “ARTists” are immersing themselves in everything from ESA and the International Space Station programme to the European space industry and institutions. They’re gaining hands-on experience in technical skills like spacecraft systems and robotics, alongside human behaviour, scientific lessons, scuba diving, and survival training. 
      ESA’s Astronaut Reserve Training programme is all about building Europe’s next generation of space explorers—preparing them for the opportunities of future missions in Earth orbit and beyond.
      This interview was recorded in November 2024.
      Learn more about Amelie’s favourite space mission.
      You can listen to this episode on all major podcast platforms.
      Keep exploring with ESA Explores!
      View the full article
    • By European Space Agency
      For decades, satellites have played a crucial role in our understanding of the remote polar regions. The ongoing loss of Antarctic ice, owing to the climate crisis, is, sadly, no longer surprising. However, satellites do more than just track the accelerating flow of glaciers towards the ocean and measure ice thickness.
      New research highlights how ESA’s CryoSat mission has been used to uncover the hidden impact of subglacial lakes – vast reservoirs of water buried deep under the ice – that can suddenly drain into the ocean in dramatic outbursts and affect ice loss.
      View the full article
    • By NASA
      Explore This Section Webb News Latest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read NASA Webb Explores Effect of Strong Magnetic Fields on Star Formation
      An image of the Milky Way captured by the MeerKAT radio telescope array puts the James Webb Space Telescope’s image of the Sagittarius C region in context. Full image below. Credits:
      NASA, ESA, CSA, STScI, SARAO, Samuel Crowe (UVA), John Bally (CU), Ruben Fedriani (IAA-CSIC), Ian Heywood (Oxford) Follow-up research on a 2023 image of the Sagittarius C stellar nursery in the heart of our Milky Way galaxy, captured by NASA’s James Webb Space Telescope, has revealed ejections from still-forming protostars and insights into the impact of strong magnetic fields on interstellar gas and the life cycle of stars.  
      “A big question in the Central Molecular Zone of our galaxy has been, if there is so much dense gas and cosmic dust here, and we know that stars form in such clouds, why are so few stars born here?” said astrophysicist John Bally of the University of Colorado Boulder, one of the principal investigators. “Now, for the first time, we are seeing directly that strong magnetic fields may play an important role in suppressing star formation, even at small scales.”
      Detailed study of stars in this crowded, dusty region has been limited, but Webb’s advanced near-infrared instruments have allowed astronomers to see through the clouds to study young stars like never before.
      “The extreme environment of the galactic center is a fascinating place to put star formation theories to the test, and the infrared capabilities of NASA’s James Webb Space Telescope provide the opportunity to build on past important observations from ground-based telescopes like ALMA and MeerKAT,” said Samuel Crowe, another principal investigator on the research, a senior undergraduate at the University of Virginia and a 2025 Rhodes Scholar.
      Bally and Crowe each led a paper published in The Astrophysical Journal.
      Image A: Milky Way Center (MeerKAT and Webb)
      An image of the Milky Way captured by the MeerKAT (formerly the Karoo Array Telescope) radio telescope array puts the James Webb Space Telescope’s image of the Sagittarius C region in context. Like a super-long exposure photograph, MeerKAT shows the bubble-like remnants of supernovas that exploded over millennia, capturing the dynamic nature of the Milky Way’s chaotic core. At the center of the MeerKAT image the region surrounding the Milky Way’s supermassive black hole blazes bright. Huge vertical filamentary structures echo those captured on a smaller scale by Webb in Sagittarius C’s blue-green hydrogen cloud. NASA, ESA, CSA, STScI, SARAO, Samuel Crowe (UVA), John Bally (CU), Ruben Fedriani (IAA-CSIC), Ian Heywood (Oxford) Image B: Milky Way Center (MeerKAT and Webb), Labeled
      The star-forming region Sagittarius C, captured by the James Webb Space Telescope, is about 200 light-years from the Milky Way’s central supermassive black hole, Sagittarius A*. The spectral index at the lower left shows how color was assigned to the radio data to create the image. On the negative end, there is non-thermal emission, stimulated by electrons spiraling around magnetic field lines. On the positive side, thermal emission is coming from hot, ionized plasma. For Webb, color is assigned by shifting the infrared spectrum to visible light colors. The shortest infrared wavelengths are bluer, and the longer wavelengths appear more red. NASA, ESA, CSA, STScI, SARAO, Samuel Crowe (UVA), John Bally (CU), Ruben Fedriani (IAA-CSIC), Ian Heywood (Oxford) Using Infrared to Reveal Forming Stars
      In Sagittarius C’s brightest cluster, the researchers confirmed the tentative finding from the Atacama Large Millimeter Array (ALMA) that two massive stars are forming there. Along with infrared data from NASA’s retired Spitzer Space Telescope and SOFIA (Stratospheric Observatory for Infrared Astronomy) mission, as well as the Herschel Space Observatory, they used Webb to determine that each of the massive protostars is already more than 20 times the mass of the Sun. Webb also revealed the bright outflows powered by each protostar.
      Even more challenging is finding low-mass protostars, still shrouded in cocoons of cosmic dust. Researchers compared Webb’s data with ALMA’s past observations to identify five likely low-mass protostar candidates.
      The team also identified 88 features that appear to be shocked hydrogen gas, where material being blasted out in jets from young stars impacts the surrounding gas cloud. Analysis of these features led to the discovery of a new star-forming cloud, distinct from the main Sagittarius C cloud, hosting at least two protostars powering their own jets.
      “Outflows from forming stars in Sagittarius C have been hinted at in past observations, but this is the first time we’ve been able to confirm them in infrared light. It’s very exciting to see, because there is still a lot we don’t know about star formation, especially in the Central Molecular Zone, and it’s so important to how the universe works,” said Crowe.
      Magnetic Fields and Star Formation
      Webb’s 2023 image of Sagittarius C showed dozens of distinctive filaments in a region of hot hydrogen plasma surrounding the main star-forming cloud. New analysis by Bally and his team has led them to hypothesize that the filaments are shaped by magnetic fields, which have also been observed in the past by the ground-based observatories ALMA and MeerKAT (formerly the Karoo Array Telescope).
      “The motion of gas swirling in the extreme tidal forces of the Milky Way’s supermassive black hole, Sagittarius A*, can stretch and amplify the surrounding magnetic fields. Those fields, in turn, are shaping the plasma in Sagittarius C,” said Bally.
      The researchers think that the magnetic forces in the galactic center may be strong enough to keep the plasma from spreading, instead confining it into the concentrated filaments seen in the Webb image. These strong magnetic fields may also resist the gravity that would typically cause dense clouds of gas and dust to collapse and forge stars, explaining Sagittarius C’s lower-than-expected star formation rate. 
      “This is an exciting area for future research, as the influence of strong magnetic fields, in the center of our galaxy or other galaxies, on stellar ecology has not been fully considered,” said Crowe.  
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the science paper led by Bally from the The Astrophysical Journal.
      View/Download the science paper led by Crowe from the The Astrophysical Journal.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Leah Ramsay – lramsay@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Read more: press releases about the center of the Milky Way
      NASA’s Universe of Learning: ViewSpace Interactive image tour of the center of the Milky Way
      Learn more about the Milky Way and Sagittarius Constellation
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What Is a Nebula?
      What Is a Galaxy?
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      ¿Qué es una nebulosa?
      ¿Qué es una galaxia?
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Stars



      Galaxies



      Universe


      Share








      Details
      Last Updated Apr 02, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Galaxies Galaxies, Stars, & Black Holes Goddard Space Flight Center Protostars Science & Research Stars The Milky Way The Universe View the full article
    • By NASA
      NASA/Jordan Cochran Thomas Ozoroski, a researcher at NASA’s Glenn Research Center in Cleveland, takes icing accretion measurements in October 2024 as part of transonic truss-braced wing concept research.
      In the future, aircraft with long, thin wings supported by aerodynamic braces could help airlines save on fuel costs – but those same wings could be susceptible to ice buildup. In the historic Icing Research Tunnel at NASA Glenn, scientists and engineers are testing a concept for a transonic truss-braced wing. Their goal: to collect important data to inform the design of these potential efficient aircraft of the future.
      NASA Glenn can simulate icing conditions in its Icing Research Tunnel to identify potential challenges for new aircraft designs. These tests provide valuable information about how ice builds up on wings and can help identify the most critical icing conditions for safety.
      Read more about icing testing at NASA Glenn.
      Image credit: NASA/Jordan Cochran
      View the full article
  • Check out these Videos

×
×
  • Create New...