Jump to content

NASA Scientific Balloon Flights to Lift Off From Antarctica


Recommended Posts

  • Publishers
Posted

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A large scientific balloon is tethered to the snow-covered ground as it inflates before liftoff in Antarctica.
A scientific balloon is inflated during NASA’s 2023 Antarctic campaign in McMurdo, Antarctica.
NASA/Scott Battaion

NASA’s Scientific Balloon Program has returned to Antarctica’s icy expanse to kick off the annual Antarctic Long-Duration Balloon Campaign, where two balloon flights will carry a total of nine missions to near space. Launch operations will begin mid-December from the agency’s Long Duration Balloon camp located near the U.S. National Science Foundation’s McMurdo Station on the Ross Ice Shelf.

“Antarctica is our cornerstone location for long-duration balloon missions, and we always look forward to heading back to ‘the ice,’” said Andrew Hamilton, acting chief of NASA’s Balloon Program Office at the agency’s Wallops Flight Facility in Virginia. “It’s a tremendous effort to stage a campaign like this in such a remote location, and we are grateful for the support provided to us by the U.S. National Science Foundation, New Zealand, and the U.S. Air Force.”

This year’s Antarctic campaign includes investigations in astrophysics, space biology, heliospheric research, and upper atmospheric research, along with technology demonstrations. The campaign’s two primary missions include:

  • GAPS (General Anti-Particle Spectrometer), led by Columbia University in New York, is an experiment to detect anti-matter particles produced by dark matter interactions. The anti-particles stemming from these interactions in our galaxy can only be observed from a suborbital platform or in space, since Earth’s atmosphere shields us from the cosmic radiation. GAPS aims to provide an unprecedented level of sensitivity to certain classes of anti-particles, allowing the exploration of a currently unexplored energy regime of the elusive dark matter.
  • Salter Test Flight Universal, led by NASA’s Columbia Scientific Balloon Facility in Palestine, Texas, will test and validate long-duration balloon and subsystems, while supporting several piggyback missions on the flight.

Piggyback missions, or smaller payloads, riding along with the Salter Test Flight Universal mission include:

  • MARSBOx (Microbes in Atmosphere for Radiation, Survival, and Biological Outcomes Experiments), led by the U.S. Naval Research Laboratory, will expose melanized fungus, called Aspergillus niger, to the stratosphere’s extreme radiation and temperature fluctuations, low atmospheric pressure, and absence of water — conditions much like the surface of Mars. Knowledge of how this fungus adapts to protect itself in this harsh environment could lead to the development of treatments to protect astronauts from high radiation exposure.
  • EMIDSS-6 (Experimental Module for Iterative Design of Satellite Subsystems 6), led by National Polytechnical Institute − Mexico, is a technological platform with experimental design and operational validation of instrumentation that will collect and store data from the stratospheric environment to contribute to the study of climate change.
  • SPARROW-6 (Sensor Package for Attitude, Rotation, and Relative Observable Winds – 6), led by NASA’s Balloon Program Office at NASA Wallops, will demonstrate relative wind measurements using an ultrasonic anemometer designed for the balloon float environment.  
  • WALRUSS (Wallops Atmospheric Light Radiation and Ultraviolet Spectrum Sensor), led by the Balloon Program Office at NASA Wallops, is a technology demonstration of a sensor package capable of measuring the total ultraviolet wavelength spectrum and ozone concentration.
  • INDIGO (INterim Dynamics Instrumentation for Gondolas), led by the Balloon Program Office at NASA Wallops, is a data recorder meant to measure the shock, rotation, and attitude of the gondola during the launch, float, and landing phases of flight. Data will be used to improve understanding of the dynamics of flight and to inform the design of future components and hardware.

The remaining two piggyback missions are led by finalists of NASA’s FLOATing DRAGON (Formulate, Lift, Observe, And Testing; Data Recovery And Guided On-board Node) Balloon Challenge, sponsored by the Balloon Program Office at NASA Wallops and managed by the National Institute of Aerospace. The challenge was created for student teams to design, build, and fly an autonomous aerial vehicle, deployed from a gondola during a high-altitude balloon flight. The teams’ student-built data vaults will be safely dropped from around 120,000 feet with the capability to target a specific landing point on the ground to manage risk. The missions participating in the Antarctic campaign are Purdue University’s Purdue DRAGONfly, and University of Notre Dame’s IRIS v3.

NASA’s zero-pressure balloons, used in the Antarctic campaign, are made of a thin plastic film and are capable of lifting up to 8,000 pounds of payload and equipment to altitudes above 99.8% of Earth’s atmosphere. Zero-pressure balloons, which typically have a shorter flight duration from the loss of gas during the day-to-night cycle, can support long-duration missions in polar regions during summer. The constant daylight of Antarctica’s austral summer and stable stratospheric wind conditions allow the balloon missions to remain in near space for days to weeks, gathering large amounts of scientific data as they circle the continent.

A camp sits outside of a circular launch area carved into the snow-covered landscape of Antarctica.
NASA’s Long Duration Balloon camp is located about eight miles from the U.S. National Science Foundation’s McMurdo Station on Antarctica’s Ross Ice Shelf.
NASA/Scott Battaion

NASA’s Wallops Flight Facility in Virginia manages the agency’s scientific balloon flight program with 10 to 15 flights each year from launch sites worldwide. Peraton, which operates NASA’s Columbia Scientific Balloon Facility in Palestine, Texas, provides mission planning, engineering services, and field operations for NASA’s scientific balloon program. The Columbia team has launched more than 1,700 scientific balloons over some 40 years of operations. NASA’s balloons are fabricated by Aerostar. The NASA Scientific Balloon Program is funded by the NASA Headquarters Science Mission Directorate Astrophysics Division. NASA balloon launch operations from Antarctica receive logistical support from the U.S. National Science Foundation’s Office of Polar Programs, which oversees the U.S. Antarctic Program.

For mission tracking, click here. For more information on NASA’s Scientific Balloon Program, visit: https://www.nasa.gov/scientificballoons.

By Olivia Littleton

NASA’s Wallops Flight Facility, Wallops Island, Va.

Share

Details

Last Updated
Dec 10, 2024
Editor
Olivia F. Littleton
Contact
Olivia F. Littleton
Location
Wallops Flight Facility

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      On April 8, 2025, Bangladesh became the 54th nation to sign the accords. The commitments of the Artemis Accords and efforts by the signatories to advance implementation of these principles support the safe and sustainable exploration of space.NASA Following a signing ceremony Tuesday in Bangladesh’s capital city of Dhaka, NASA congratulates Bangladesh as the 54th nation to commit to the safe and responsible exploration of space that benefits humanity.
      “We are thrilled by Bangladesh’s signature of the Accords,” said NASA acting Administrator Janet Petro. “Bangladesh affirms its role in shaping the future of space exploration. This is about ensuring that our journey to the Moon – and beyond – is peaceful, sustainable, and transparent. We look forward to working together, to learning from one another, and to seeing how Bangladesh’s incredible talent and vision contribute to humanity’s next great chapter in space.”
      Ashraf Uddin, the secretary of defense for Bangladesh,signed the Artemis Accords on behalf of the country. Charge d’Affaires Tracey Jacobson for the U.S. Embassy in Dhaka, Bangladesh, participated in the event, and Petro contributed remarks in a pre-recorded video message.
      “Bangladesh’s commitment to the Artemis Accords will enhance the country’s engagement with NASA and the international community,” said Bangladesh’s Chief Advisor Muhammad Yunus. “By signing the accords, Bangladesh builds upon an important foundation for the open, responsible and peaceful exploration of space.”
      In 2020, the United States, led by NASA and the U.S. Department of State, and seven other initial signatory nations established the Artemis Accords, a first-ever set of practical guidelines for nations to increase safety of operations and reduce risk and uncertainty in their civil exploration activities. That group of signatories has grown to more than 50 countries today.
      The Artemis Accords are grounded in the Outer Space Treaty and other agreements, including the Registration Convention and the Rescue and Return Agreement, as well as best practices for responsible behavior that NASA and its partners have supported, including the public release of scientific data. 
      Learn more about the Artemis Accords at:
      https://www.nasa.gov/artemis-accords
      -end-
      Amber Jacobson / Jennifer Dooren
      Headquarters, Washington
      202-358-1600
      amber.c.jacobson@nasa.gov / jennifer.m.dooren@nasa.gov
      Share
      Details
      Last Updated Apr 08, 2025 EditorJennifer M. DoorenLocationNASA Headquarters Related Terms
      Office of International and Interagency Relations (OIIR) Artemis Accords View the full article
    • By NASA
      A Soyuz rocket launches to the International Space Station with Expedition 73 crew members: NASA astronaut Jonny Kim, and Roscosmos cosmonauts Sergey Ryzhikov and Alexey Zubritskiy, onboard, Tuesday, April 8, 2025, at the Baikonur Cosmodrome in Kazakhstan. Photo Credit: (NASA/Joel Kowsky) NASA astronaut Jonny Kim, accompanied by Roscosmos cosmonauts Sergey Ryzhikov and Alexey Zubritsky, arrived at the International Space Station on Tuesday, bringing the number of residents to 10 for the next two weeks.
      The Soyuz MS-27 spacecraft carrying Kim, Ryzhikov, and Zubritsky docked to the Prichal module at 4:57 a.m. EDT, following a three-hour, two-orbit journey to the space station. They launched at 1:47 a.m. (10:47 a.m. Baikonur time) from the Baikonur Cosmodrome in Kazakhstan.
      When hatches open at approximately 7:20 a.m., the trio will join the Expedition 72 crew, including NASA astronauts Nichole Ayers, Anne McClain, and Don Pettit, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonauts Kirill Peskov, Ivan Vagner, and Alexey Ovchinin.
      NASA’s live coverage of hatch opening will begin at 7 a.m. on NASA+. Learn how to watch NASA content through a variety of platforms.
      Expedition 73 will begin on Saturday, April 19, following the departure of Pettit, Ovchinin, and Vagner, as they conclude a seven-month science mission aboard the orbiting laboratory.
      Watch the ceremonial change of command at 2:40 p.m. on Friday, April 18, as Ovchinin transfers the distinction to Onishi, live on NASA+.
      Throughout his eight-month stay aboard the orbital outpost, Kim will conduct scientific research in technology development, Earth science, biology, human research, and more. This is the first flight for Kim and Zubritsky, and the third for Ryzhikov.
      Learn more about space station activities at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Apr 08, 2025 LocationNASA Headquarters Related Terms
      Humans in Space International Space Station (ISS) View the full article
    • By NASA
      NASA Astronaut Jonny Kim Soyuz MS-27 Hatch Opening
    • By NASA
      NASA Astronaut Jonny Kim Soyuz MS-27 Docking
    • By NASA
      Credit: NASA NASA has selected ARES Technical Services of McLean, Virginia, to provide safety and mission assurance services at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, and Wallops Flight Facility in Virginia.
      The Safety and Mission Assurance Services III contract is a cost-plus-fixed-fee contract with an estimated total value of $226 million. The contract will have a five-year effective ordering period starting on June 1, 2025, with an optional six-month extension period.
      Under the contract, the vendor will provide support to the agency’s Safety and Mission Assurance Directorate at NASA Goddard. This includes performing independent surveillance, audits, reviews, and assessments of design, development, test, and mission operations activities on site at NASA and supplier facilities.
      For information about NASA and other agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Jacob Richmond
      Goddard Space Flight Center, Maryland
      301-286-6255
      jacob.a.richmond@nasa.gov
      Share
      Details
      Last Updated Apr 07, 2025 LocationNASA Headquarters Related Terms
      Goddard Space Flight Center Wallops Flight Facility View the full article
  • Check out these Videos

×
×
  • Create New...