Members Can Post Anonymously On This Site
NASA Invites Social Creators for Launch of Two NASA Astrophysical Missions
-
Similar Topics
-
By European Space Agency
On 4 December 2024, the European Space Agency (ESA) and the Indian Space Research Organisation (ISRO) signed an agreement that will see ESA provide ground station support to the missions in ISRO’s Gaganyaan human spaceflight programme.
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Watersheds on the U.S. Eastern Seaboard will be among the areas most affected by underground saltwater intrusion by the year 2100 due to sea level rise and changes in groundwater supplies, according to a NASA-DOD study. NASA’s Terra satellite captured this image on April 21, 2023. Intrusion of saltwater into coastal groundwater can make water there unusable, damage ecosystems, and corrode infrastructure.
Seawater will infiltrate underground freshwater supplies in about three of every four coastal areas around the world by the year 2100, according to a recent study led by researchers at NASA’s Jet Propulsion Laboratory in Southern California. In addition to making water in some coastal aquifers undrinkable and unusable for irrigation, these changes can harm ecosystems and corrode infrastructure.
Called saltwater intrusion, the phenomenon happens below coastlines, where two masses of water naturally hold each other at bay. Rainfall on land replenishes, or recharges, fresh water in coastal aquifers (underground rock and soil that hold water), which tends to flow below ground toward the ocean. Meanwhile, seawater, backed by the pressure of the ocean, tends to push inland. Although there’s some mixing in the transition zone where the two meet, the balance of opposing forces typically keeps the water fresh on one side and salty on the other.
Now, two impacts of climate change are tipping the scales in favor of salt water. Spurred by planetary warming, sea level rise is causing coastlines to migrate inland and increasing the force pushing salt water landward. At the same time, slower groundwater recharge — due to less rainfall and warmer weather patterns — is weakening the force moving the underground fresh water in some areas.
Worldwide Intrusion
Saltwater intrusion will affect groundwater in about three of every four coastal aquifers around the world by the year 2100, a NASA-DOD study estimates. Saltwater can make groundwater in coastal areas undrinkable and useless for irrigation, as well as harm ecosystems and corrode infrastructure.NASA/JPL-Caltech The study, published in Geophysical Research Letters in November, evaluated more than 60,000 coastal watersheds (land area that channels and drains all the rainfall and snowmelt from a region into a common outlet) around the world, mapping how diminished groundwater recharge and sea level rise will each contribute to saltwater intrusion while estimating what their net effect will be.
Considering the two factors separately, the study’s authors found that by 2100 rising sea levels alone will tend to drive saltwater inland in 82% of coastal watersheds studied. The transition zone in those places would move a relatively modest distance: no more than 656 feet (200 meters) from current positions. Vulnerable areas include low-lying regions such as Southeast Asia, the coast around the Gulf of Mexico, and much of the United States’ Eastern Seaboard.
Meanwhile, slower recharge on its own will tend to cause saltwater intrusion in 45% of the coastal watersheds studied. In these areas, the transition zone would move farther inland than it will from sea level rise — as much as three-quarters of a mile (about 1,200 meters) in some places. The regions to be most affected include the Arabian Peninsula, Western Australia, and Mexico’s Baja California peninsula. In about 42% of coastal watersheds, groundwater recharge will increase, tending to push the transition zone toward the ocean and in some areas overcoming the effect of saltwater intrusion by sea level rise.
All told, due to the combined effects of changes in sea level and groundwater recharge, saltwater intrusion will occur by century’s end in 77% of the coastal watersheds evaluated, according to the study.
Generally, lower rates of groundwater recharge are going to drive how far saltwater intrudes inland, while sea level rise will determine how widespread it is around the world. “Depending on where you are and which one dominates, your management implications might change,” said Kyra Adams, a groundwater scientist at JPL and the paper’s lead author.
For example, if low recharge is the main reason intrusion is happening in one area, officials there might address it by protecting groundwater resources, she said. On the other hand, if the greater concern is that sea level rise will oversaturate an aquifer, officials might divert groundwater.
Global Consistency
Co-funded by NASA and the U.S. Department of Defense (DOD), the study is part of an effort to evaluate how sea level rise will affect the department’s coastal facilities and other infrastructure. It used information on watersheds collected in HydroSHEDS, a database managed by the World Wildlife Fund that uses elevation observations from the NASA Shuttle Radar Topography Mission. To estimate saltwater intrusion distances by 2100, the researchers used a model accounting for groundwater recharge, water table rise, fresh- and saltwater densities, and coastal migration from sea level rise, among other variables.
Study coauthor Ben Hamlington, a climate scientist at JPL and a coleader of NASA’s Sea Level Change Team, said that the global picture is analogous to what researchers see with coastal flooding: “As sea levels rise, there’s an increased risk of flooding everywhere. With saltwater intrusion, we’re seeing that sea level rise is raising the baseline risk for changes in groundwater recharge to become a serious factor.”
A globally consistent framework that captures localized climate impacts is crucial for countries that don’t have the expertise to generate one on their own, he added.
“Those that have the fewest resources are the ones most affected by sea level rise and climate change,” Hamlington said, “so this kind of approach can go a long way.”
News Media Contacts
Andrew Wang / Jane J. Lee
Jet Propulsion Laboratory, Pasadena, Calif.
626-379-6874 / 818-354-0307
andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov
Share
Details
Last Updated Dec 11, 2024 Related Terms
Shuttle Radar Topography Mission (SRTM) Earth Earth Science Division Jet Propulsion Laboratory Oceans Explore More
5 min read NASA Performs First Aircraft Accident Investigation on Another World
Article 3 hours ago 6 min read NASA’s PACE, US-European SWOT Satellites Offer Combined Look at Ocean
Article 2 days ago 3 min read Leader of NASA’s VERITAS Mission Honored With AGU’s Whipple Award
Article 2 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Earth (ESD) Earth Explore Climate Change Science in Action Multimedia Data For Researchers About Us 4 min read
NASA Study: Crops, Forests Responding to Changing Rainfall Patterns
Earth’s rainy days are changing and plant life is responding. This visualization shows average precipitation for the entire globe based on more than 20 years of data from 2000 to 2023. Cooler colors indicate areas that receive less rain. Warm colors receive more rain. NASA’s Scientific Visualization Studio A new NASA-led study has found that how rain falls in a given year is nearly as important to the world’s vegetation as how much. Reporting Dec. 11 in Nature, the researchers showed that even in years with similar rainfall totals, plants fared differently when that water came in fewer, bigger bursts.
In years with less frequent but more concentrated rainfall, plants in drier environments like the U.S. Southwest were more likely to thrive. In humid ecosystems like the Central American rainforest, vegetation tended to fare worse, possibly because it could not tolerate the longer dry spells.
Scientists have previously estimated that almost half of the world’s vegetation is driven primarily by how much rain falls in a year. Less well understood is the role of day-to-day variability, said lead author Andrew Feldman, a hydrologist and ecosystem scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Shifting precipitation patterns are producing stronger rainstorms — with longer dry spells in between — compared to a century ago.
“You can think of it like this: if you have a house plant, what happens if you give it a full pitcher of water on Sunday versus a third of a pitcher on Monday, Wednesday, and Friday?” said Feldman. Scale that to the size of the U.S. Corn Belt or a rainforest and the answer could have implications for crop yields and ultimately how much carbon dioxide plants remove from the atmosphere.
Blooms in Desert
The team, including researchers from the U.S. Department of Agriculture and multiple universities, analyzed two decades of field and satellite observations, spanning millions of square miles. Their study area encompassed diverse landscapes from Siberia to the southern tip of Patagonia.
Yellow wildflowers and orange poppies carpet the desert following a wet winter for the Antelope Valley in California. NASA/Jim Ross They found that plants across 42% of Earth’s vegetated land surface were sensitive to daily rainfall variability. Of those, a little over half fared better — often showing increased growth — in years with fewer but more intense wet days. These include croplands as well as drier landscapes like grasslands and deserts.
In contrast, broadleaf (e.g., oak, maple, and beech) forests and rainforests in lower and middle latitudes tended to fare worse under those conditions. The effect was especially pronounced in Indo-Pacific rainforests, including in the Philippines and Indonesia.
Statistically, daily rainfall variability was nearly as important as annual rainfall totals in driving growth worldwide.
Red Light, Green Light
The new study relied primarily on a suite of NASA missions and datasets, including the Integrated Multi-satellitE Retrievals for GPM (IMERG) algorithm, which provides rain and snowfall rates for most of the planet every 30 minutes using a network of international satellites.
To gauge plant response day to day, the researchers calculated how green an area appeared in satellite imagery. “Greenness”, also known asthe Normalized Difference Vegetation Index, is commonly used to estimate vegetation density and health. They also tracked a faint reddish light that plants emit during photosynthesis, when a plant absorbs sunlight to convert carbon dioxide and water into food, its chlorophyll “leaks” unused photons. This faint light is called solar-induced fluorescence, and it’s a telltale sign of flourishing vegetation.
Growing plants emit a form of light detectable by NASA satellites orbiting hundreds of miles above Earth. Parts of North America appear to glimmer in this visualization, depicting an average year. Gray indicates regions with little or no fluorescence; red, pink, and white indicate high fluorescence. NASA Scientific Visualization Studio Not visible bythe naked eye, plant fluorescence can be detected by instruments aboard satellites such as NASA’s Orbiting Carbon Observatory-2 (OCO-2). Launched in 2014, OCO-2 has observed the U.S. Midwest fluorescing strongly during the growing season.
Feldman said the findings highlight the vital role that plants play in moving carbon around Earth — a process called the carbon cycle. Vegetation, including crops, forests, and grasslands, forms a vast carbon “sink,” absorbing excess carbon dioxide from the atmosphere.
“A finer understanding of how plants thrive or decline day to day, storm by storm, could help us better understand their role in that critical cycle,” Feldman said.
The study also included researchers from NASA’s Jet Propulsion Laboratory in Southern California, Stanford University, Columbia University, Indiana University, and the University of Arizona.
By Sally Younger
NASA’s Earth Science News Team
About the Author
Sally Younger
Share
Details
Last Updated Dec 11, 2024 Related Terms
Climate Change Earth Water on Earth Explore More
3 min read Annual Science Conference to Highlight NASA Research
Article
5 days ago
6 min read NASA Flights Map Critical Minerals from Skies Above Western US
Technology used to chart other worlds is revealing minerals in the American West that are…
Article
6 days ago
4 min read Expanded AI Model with Global Data Enhances Earth Science Applications
Article
1 week ago
Keep Exploring Discover More Topics From NASA
Earth
Your home. Our Mission. And the one planet that NASA studies more than any other.
Climate Change
NASA is a global leader in studying Earth’s changing climate.
Earth Science in Action
NASA’s unique vantage point helps us inform solutions to enhance decision-making, improve livelihoods, and protect our planet.
Explore Earth Science
View the full article
-
By NASA
3 Min Read They Grow So Fast: Moon Tree Progress Since NASA’s Artemis I Mission
In the two years since NASA’s Orion spacecraft returned to Earth with more than 2,000 tree seedlings sourced in a partnership with USDA Forest Service, Artemis I Moon trees have taken root at 236 locations across the contiguous United States. Organizations are cultivating more than just trees, as they nurture community connections, spark curiosity about space, and foster a deeper understanding of NASA’s missions.
Universities, federal agencies, museums, and other organizations who were selected to be Moon tree recipients have branched out to provide their community unique engagements with their seedling.
Children sitting in a circle around a newly planted Moon tree and learning about NASA’s Artemis I mission. Adria Gillespie “Through class visits to the tree, students have gained a lot of interest in caring for the tree, and their curiosity for the unknown in outer space sparked them to do research of their own to get answers to their inquiries,” said Adria Gillespie, the district science coach at Greenfield Union School District in Greenfield, California.
The presence of a Moon tree at schools has blossomed into more student engagements surrounding NASA’s missions. Along with planting their American Sycamore, students from Eagle Pointe Elementary in Plainfield, Illinois, are participating in a Lunar Quest club to learn about NASA and engage in a simulated field trip to the Moon.
Eagle Pointe Elementary students also took part in a planting ceremony for their seedling, where they buried a time capsule with the seed, and established a student committee responsible for caring for their Moon tree.
At Marshall STEMM Academy in Toledo, Ohio, second grade students were assigned reading activities associated with their Moon tree, fourth graders created Moon tree presentations to show the school, and students engaged with city leaders and school board members to provide a Moon tree dedication.
Two individuals planting a Moon tree. Brandon Dillman A seedling sent to The Gathering Garden in Mount Gilead, North Carolina, is cared for by community volunteers. Lessons with local schools and 4-H clubs, as well as the establishment of newsletters and social media to maintain updates, have sprouted from The Gathering Garden’s Loblolly Pine.
Sprucing Up the Moon Trees’ Environment
In addition to nurturing their Moon tree, many communities have planted other trees alongside their seedling to foster a healthier environment. In Castro Valley, California, a non-profit called ForestR planted oak, fir, and sequoia trees to nestle their seedling among a tree “family.”
New homes for additional Moon tree seedlings are being identified each season through Fall 2025. Communities continue to track how the impact of NASA’s science and innovation grows alongside their Moon trees.
NASA’s “new generation” Moon trees originally blossomed from NASA’s Apollo 14 mission, where NASA astronaut Stuart Roosa carried tree seeds into lunar orbit. NASA’s Next Generation STEM project partnered with USDA Forest Service to bring Moon trees to selected organizations. As NASA continues to work for the benefit of all, its Moon trees have demonstrated how one tiny seed can sprout positive change for communities, the environment, and education.
Learn more about NASA’s STEM engagements: https://stem.nasa.gov
Keep Exploring Discover More Topics From NASA
NASA STEM Artemis Moon Trees
ARTEMIS I
Outside the Classroom
For Kids and Students
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
On Dec. 10, 1974, NASA launched Helios 1, the first of two spacecraft to make close observations of the Sun. In one of the largest international efforts at the time, the Federal Republic of Germany, also known as West Germany, provided the spacecraft, NASA’s Goddard Space Flight Center in Greenbelt, Maryland, had overall responsibility for U.S. participation, and NASA’s Lewis, now Glenn, Research Center in Cleveland provided the launch vehicle. Equipped with 10 instruments, Helios 1 made its first close approach to the Sun on March 15, 1975, passing closer and traveling faster than any previous spacecraft. Helios 2, launched in 1976, passed even closer. Both spacecraft far exceeded their 18-month expected lifetime, returning unprecedented data from their unique vantage points.
The fully assembled Helios 1 spacecraft prepared for launch.Credit: NASA The West German company Messerchmitt-Bölkow-Blohm built the two Helios probes, the first non-Soviet and non-American spacecraft placed in heliocentric orbit, for the West German space agency DFVLR, today’s DLR. Each 815-pound Helios probe carried 10 U.S. and West German instruments, weighing a total of 158 pounds, to study the Sun and its environment. The instruments included high-energy particle detectors to measure the solar wind, magnetometers to study the Sun’s magnetic field and variations in electric and magnetic waves, and micrometeoroid detectors. Once activated and checked out, operators in the German control center near Munich controlled the spacecraft and collected the raw data. To evenly distribute the solar radiation the spacecraft spun on its axis once every second, and optical mirrors on its surface reflected the majority of the heat.
Workers encapsulate a Helios solar probe into its payload fairing. Credit: NASA
Launch of Helios 1 took place at 2:11 a.m. EST Dec. 10, 1974, from Launch Complex 41 at Cape Canaveral Air Force, now Space Force, Station, on a Titan IIIE-Centaur rocket. This marked the first successful flight of this rocket, at the time the most powerful in the world, following the failure of the Centaur upper stage during the rocket’s inaugural launch on Feb. 11, 1974. The successful launch of Helios 1 provided confidence in the Titan IIIE-Centaur, needed to launch the Viking orbiters and landers to Mars in 1976 and the Mariner Jupiter-Saturn, later renamed Voyager, spacecraft in 1977 to begin their journeys through the outer solar system. The Centaur upper stage placed Helios 1 into a solar orbit with a period of 190 days, with its perihelion, or closest point to the Sun, well inside the orbit of Mercury. Engineers activated the spacecraft’s 10 instruments within a few days of launch, with the vehicle declared fully operational on Jan. 16, 1975. On March 15, Helios 1 reached its closest distance to the Sun of 28.9 million miles, closer than any other previous spacecraft – Mariner 10 held the previous record during its three Mercury encounters. Helios 1 also set a spacecraft speed record, traveling at 148,000 miles per hour at perihelion. Parts of the spacecraft reached a temperature of 261 degrees Fahrenheit, but the instruments continued to operate without problems. During its second perihelion on Sept. 21, temperatures reached 270 degrees, affecting the operation of some instruments. Helios 1 continued to operate and return useful data until both its primary and backup receivers failed and its high-gain antenna no longer pointed at Earth. Ground controllers deactivated the spacecraft on Feb. 18, 1985, with the last contact made on Feb. 10, 1986.
Helios 1 sits atop its Titan IIIE-Centaur rocket at Launch Complex 41 at Cape Canaveral Air Force, now Space Force, Station in Florida.Credit: NASA
Helios 2 launched on Jan. 15, 1976, and followed a path similar to its predecessor’s but one that took it even closer to the Sun. On April 17, it approached to within 27 million miles of Sun, traveling at a new record of 150,000 miles per hour. At that distance, the spacecraft experienced 10% more solar heat than its predecessor. Helios 2’s downlink transmitter failed on March 3, 1980, resulting in no further useable data from the spacecraft. Controllers shut it down on Jan. 7, 1981. Scientists correlated data from the Helios instruments with similar data gathered by other spacecraft, such as the Interplanetary Monitoring Platform Explorers 47 and 50 in Earth orbit, the Pioneer solar orbiters, and Pioneer 10 and 11 in the outer solar system. In addition to their solar observations, Helios 1 and 2 studied the dust and ion tails of the comets C/1975V1 West, C/1978H1 Meier, and C/1979Y1 Bradfield. The information from the Helios probes greatly increased our knowledge of the Sun and its environment, and also raised more questions left for later spacecraft from unique vantage points to try to answer.
llustration of a Helios probe in flight, with all its booms deployed. Credit: NASA The joint ESA/NASA Ulysses mission studied the Sun from vantage points above its poles. After launch from space shuttle Discovery during STS-41 on Oct. 6, 1990, Ulysses used Jupiter’s gravity to swing it out of the ecliptic plane and fly first over the Sun’s south polar region from June to November 1994, then over the north polar region from June and September 1995. Ulysses continued its unique studies during several more polar passes until June 30, 2009, nearly 19 years after launch and more than four times its expected lifetime. NASA’s Parker Solar Probe, launched on Aug. 12, 2018, has made ever increasingly close passes to the Sun, including flying through its corona, breaking the distance record set by Helios 2. The Parker Solar Probe reached its first perihelion of 15 million miles on Nov. 5, 2018, with its closest approach of just 3.86 million miles of the Sun’s surface, just 4.5 percent of the Sun-Earth distance, planned for Dec. 24, 2024. The ESA Solar Orbiter launched on Feb. 10, 2020, and began science operations in November 2021. Its 10 instruments include cameras that have returned the highest resolution images of the Sun including its polar regions from as close as 26 million miles away.
Illustration of the Ulysses spacecraft over the Sun’s pole.Credit: NASA Illustration of the Parker Solar Probe during a close approach to the Sun.Credit: NASA The ESA Solar Orbiter observing the Sun.Credit: NASA About the Author
John J. Uri
Share
Details
Last Updated Dec 10, 2024 Related Terms
Helios 1 Missions NASA History Explore More
3 min read NASA Moves Drone Package Delivery Industry Closer to Reality
Article 1 hour ago 5 min read NASA Scientific Balloon Flights to Lift Off From Antarctica
Article 1 hour ago 6 min read NASA Invites Social Creators for Launch of Two NASA Missions
Article 3 hours ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.