Jump to content

NASA’s PACE, US-European SWOT Satellites Offer Combined Look at Ocean


Recommended Posts

  • Publishers
Posted

6 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

This animation shows data taken by NASA’s PACE and the international SWOT satellites over a region of the North Atlantic Ocean. PACE captured phytoplankton data on Aug. 8, 2024; layered on top is SWOT sea level data taken on Aug. 7 and 8, 2024. NASA’s Scientific Visualization Studio

One Earth satellite can see plankton that photosynthesize. The other measures water surface height. Together, their data reveals how sea life and the ocean are intertwined.

The ocean is an engine that drives Earth’s weather patterns and climate and sustains a substantial portion of life on the planet. A new animation based on data from two recently launched missions — NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) and the international Surface Water and Ocean Topography (SWOT) satellites — gives a peek into the heart of that engine.

Physical processes, including localized swirling water masses called eddies and the vertical movement of water, can drive nutrient availability in the ocean. In turn, those nutrients determine the location and concentration of tiny floating organisms known as phytoplankton that photosynthesize, converting sunlight into food. These organisms have not only contributed roughly half of Earth’s oxygen since the planet formed, but also support economically important fisheries and help draw carbon out of the atmosphere, locking it away in the deep sea.

“We see great opportunity to dramatically accelerate our scientific understanding of our oceans and the significant role they play in our Earth system,” said Karen St. Germain, director of the Earth Science Division at NASA Headquarters in Washington. “This visualization illustrates the potential we have when we begin to integrate measurements from our separate SWOT and PACE ocean missions. Each of those missions is significant on its own. But bringing their data together — the physics from SWOT and the biology from PACE — gives us an even better view of what’s happening in our oceans, how they are changing, and why.”

A collaboration between NASA and the French space agency CNES (Centre National d’Études Spatiales), the SWOT’ satellite launched in December 2022 to measure the height of nearly all water on Earth’s surface. It is providing one of the most detailed, comprehensive views yet of the planet’s ocean and its freshwater lakes, reservoirs, and rivers.

Launched in February 2024, NASA’s PACE satellite detects and measures the distribution of phytoplankton communities in the ocean. It also provides data on the size, amount, and type of tiny particles called aerosols in Earth’s atmosphere, as well as the height, thickness, and opacity of clouds.

“Integrating information across NASA’s Earth System Observatory and its pathfinder missions SWOT and PACE is an exciting new frontier in Earth science,” said Nadya Vinogradova Shiffer, program scientist for SWOT and the Integrated Earth System Observatory at NASA Headquarters.

Where Physics and Biology Meet

The animation above starts by depicting the orbits of SWOT (orange) and PACE (light blue), then zooms into the North Atlantic Ocean. The first data to appear was acquired by PACE on Aug. 8. It reveals concentrations of chlorophyll-a, a vital pigment for photosynthesis in plants and phytoplankton. Light green and yellow indicate higher concentrations of chlorophyll-a, while blue signals lower concentrations.

Next is sea surface height data from SWOT, taken during several passes over the same region between Aug. 7 and 8. Dark blue represents heights that are lower than the mean sea surface height, while dark orange and red represent heights higher than the mean. The contour lines that remain once the color fades from the SWOT data indicate areas of the ocean with the same height, much like the lines on a topographic map indicate areas with the same elevation.

The underlying PACE data then cycles through several groups of phytoplankton, starting with picoeukaryotes. Lighter green indicates greater concentrations of this group. The final two groups are cyanobacteria — some of the smallest and most abundant phytoplankton in the ocean — called Prochlorococcus and Synechococcus. For Prochlorococcus, lighter raspberry colors represent higher concentrations. Lighter teal colors for Synechococcus signal greater amounts of the cyanobacteria.

The animation shows that higher phytoplankton concentrations on Aug. 8 tended to coincide with areas of lower water height. Eddies that spin counterclockwise in the Northern Hemisphere tend to draw water away from their center. This results in relatively lower sea surface heights in the center that draw up cooler, nutrient-rich water from the deep ocean. These nutrients act like fertilizer, which can boost phytoplankton growth in sunlit waters at the surface.

Overlapping SWOT and PACE data enables a better understanding of the connections between ocean dynamics and aquatic ecosystems, which can help improve the management of resources such as fisheries, since phytoplankton form the base of most food chains in the sea. Integrating these kinds of datasets also helps to improve calculations of how much carbon is exchanged between the atmosphere and the ocean. This, in turn, can indicate whether regions of the ocean that absorb excess atmospheric carbon are changing.

More About SWOT

The SWOT satellite was jointly developed by NASA and CNES, with contributions from the Canadian Space Agency (CSA) and the UK Space Agency. NASA’s Jet Propulsion Laboratory, managed for the agency by Caltech in Pasadena, California, leads the U.S. component of the project. For the flight system payload, NASA provided the Ka-band radar interferometer (KaRIn) instrument, a GPS science receiver, a laser retroreflector, a two-beam microwave radiometer, and NASA instrument operations.  The Doppler Orbitography and Radioposition Integrated by Satellite system, the dual frequency Poseidon altimeter (developed by Thales Alenia Space), the KaRIn radio-frequency subsystem (together with Thales Alenia Space and with support from the UK Space Agency), the satellite platform, and ground operations were provided by CNES. The KaRIn high-power transmitter assembly was provided by CSA.

To learn more about SWOT, visit:

https://swot.jpl.nasa.gov

More About PACE

The PACE mission is managed by NASA Goddard Space Flight Center, which also built and tested the spacecraft and the Ocean Color Instrument, which collected the data shown in the visualization. The satellite’s Hyper-Angular Rainbow Polarimeter #2  was designed and built by the University of Maryland, Baltimore County, and the Spectro-polarimeter for Planetary Exploration  was developed and built by a Dutch consortium led by Netherlands Institute for Space Research, Airbus Defence, and Space Netherlands.

To learn more about PACE, visit:

https://pace.gsfc.nasa.gov

News Media Contacts

Jacob Richmond (for PACE)
NASA’s Goddard Space Flight Center, Greenbelt, Md.
jacob.a.richmond@nasa.gov

Jane J. Lee / Andrew Wang (for SWOT)
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307 / 626-379-6874
jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov

2024-169

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      1 min read
      An Ocean in Motion: NASA’s Mesmerizing View of Earth’s Underwater Highways
      Earth (ESD) Earth Explore Explore Earth Science Climate Change Science in Action Multimedia Image Collections Videos Data For Researchers About Us This data visualization showing ocean currents around the world uses data from NASA’s ECCO model, or Estimating the Circulation and Climate of the Ocean. The model pulls data from spacecraft, buoys, and other measurements.

      Original Video and Assets

      Share








      Details
      Last Updated Mar 03, 2025 Editor Earth Science Division Editorial Team Related Terms
      Oceans Earth Video Series Explore More
      8 min read Going With the Flow: Visualizing Ocean Currents with ECCO
      NASA scientists and collaborators built the ECCO model to be the most realistic, detailed, and…


      Article


      51 mins ago
      2 min read Newly Minted Ph.D. Studies Phytoplankton with NASA’s FjordPhyto Project


      Article


      3 weeks ago
      1 min read 2024 is the Warmest Year on Record
      Earth’s average surface temperature in 2024 was the warmest on record.


      Article


      2 months ago
      Keep Exploring Discover More Topics From NASA
      Earth


      Your home. Our Mission. And the one planet that NASA studies more than any other.


      Climate Change


      NASA is a global leader in studying Earth’s changing climate.


      Explore Earth Science



      Earth Science in Action


      NASA’s unique vantage point helps us inform solutions to enhance decision-making, improve livelihoods, and protect our planet.

      View the full article
    • By NASA
      Earth (ESD) Earth Explore Explore Earth Science Climate Change Science in Action Multimedia Image Collections Videos Data For Researchers About Us 8 Min Read Going With the Flow: Visualizing Ocean Currents with ECCO
      The North American Gulf Stream as illustrated with the ECCO model. Credits:
      Greg Shirah/NASA’s Scientific Visualization Studio Historically, the ocean has been difficult to model. Scientists struggled in years past to simulate ocean currents or accurately predict fluctuations in temperature, salinity, and other properties. As a result, models of ocean dynamics rapidly diverged from reality, which meant they could only provide useful information for brief periods.
      In 1999, a project called Estimating the Circulation and Climate of the Ocean (ECCO) changed all that. By applying the laws of physics to data from multiple satellites and thousands of floating sensors, NASA scientists and their collaborators built ECCO to be a realistic, detailed, and continuous ocean model that spans decades. ECCO enabled thousands of scientific discoveries, and was featured during the announcement of the Nobel Prize for Physics in 2021.
      NASA ECCO is a powerful integrator of decades of ocean data, narrating the story of Earth’s changing ocean as it drives our weather, and sustains marine life.
      The ECCO project includes hundreds of millions of real-world measurements of temperature, salinity, sea ice concentration, pressure, water height, and flow in the world’s oceans. Researchers rely on the model output to study ocean dynamics and to keep tabs on conditions that are crucial for ecosystems and weather patterns. The modeling effort is supported by NASA’s Earth science programs and by the international ECCO consortium, which includes researchers from NASA’s Jet Propulsion Laboratory in Southern California and eight research institutions and universities.
      The project provides models that are the best possible reconstruction of the past 30 years of the global ocean. It allows us to understand the ocean’s physical processes at scales that are not normally observable.
      ECCO and the Western Boundary Currents
      Western boundary currents stand out in white in this visualization built with ECCO data. Download this visualization from NASA Goddard’s Scientific Visualization Studio. Credits: Greg Shirah/NASA’s Scientific Visualization Studio Large-scale wind patterns around the globe drag ocean surface waters with them, creating complex currents, including some that flow toward the western sides of the ocean basins. The currents hug the eastern coasts of continents as they head north or south from the equator: These are the western boundary currents. The three most prominent are the Gulf Stream, Agulhas, and Kuroshio. NASA Goddard’s Scientific Visualization Studio.
      The North American Gulf Stream as illustrated with the ECCO model. Download this visualization from NASA Goddard’s Scientific Visualization Studio. Credits: Greg Shirah/NASA’s Scientific Visualization Studio Seafarers have known about the Gulf Stream — the Atlantic Ocean’s western boundary current — for more than 500 years. By the volume of water it moves, the Gulf Stream is the largest of the western boundary currents, transporting more water than all the planet’s rivers combined.
      In 1785, Benjamin Franklin added it to maritime charts showing the current flowing up from the Gulf, along the eastern U.S. coast, and out across the North Atlantic. Franklin noted that riding the current could improve a ship’s travel time from the Americas to Europe, while avoiding the current could shorten travel times when sailing back.
      A visualization built of ECCO data reveals a cold, deep countercurrent that flows in the opposite direction of the warm Gulf Stream above it. Download this visualization from NASA Goddard’s Scientific Visualization Studio. Credits: Greg Shirah/NASA’s Scientific Visualization Studio Franklin’s charts showed a smooth Gulf Stream rather than the twisted, swirling path revealed in ECCO data. And Franklin couldn’t have imagined the opposing flow of water below the Gulf Stream. The countercurrent runs at depths of about 2,000 feet (600 meters) in a cold river of water that is roughly the opposite of the warm Gulf Stream at the surface. The submarine countercurrent is clearly visible when the upper layers in the ECCO model are peeled away in visualizations.
      The Gulf Stream is a part of the Atlantic Meridional Overturning Circulation (AMOC), which moderates climate worldwide by transporting warm surface waters north and cool underwater currents south. The Gulf Stream, in particular, stabilizes temperatures of the southeastern United States, keeping the region warmer in winter and cooler in summer than it would be without the current. After the Gulf Stream crosses the Atlantic, it tempers the climates of England and the European coast as well.
      The Agulhas current originates along the equator in the Indian Ocean, travels down the western coast of Africa, and spawns swirling Agulhas rings that travel across the Atlantic toward South America. Download this visualization from NASA Goddard’s Scientific Visualization Studio. Credits: Greg Shirah/NASA’s Scientific Visualization Studio The Agulhas Current flows south along the western side of the Indian Ocean. When it reaches the southern tip of Africa, it sheds swirling vortices of water called Agulhas Rings. Sometimes persisting for years, the rings glide across the Atlantic toward South America, transporting small fish, larvae, and other microorganisms from the Indian Ocean. 
      Researchers using the ECCO model can study Agulhas Current flow as it sends warm, salty water from the tropics in the Indian Ocean toward the tip of South Africa. The model helps tease out the complicated dynamics that create the Agulhas rings and large loop of current called a supergyre that surrounds the Antarctic. The Southern Hemisphere supergyre links the southern portions of other, smaller current loops (gyres) that circulate in the southern Atlantic, Pacific, and Indian oceans. Together with gyres in the northern Atlantic and Pacific, the southern gyres and Southern Hemisphere supergyre influence climate while transporting carbon around the globe. 
      The Kuroshio Current flows on the western side of the Pacific Ocean, past the east coast of Japan, east across the Pacific, and north toward the Arctic. Along the way, it provides warm water to drive seasonal storms, while also creating ocean upwellings that carry nutrients that sustain fisheries off the coasts of Taiwan and northern Japan. Download this visualization from NASA Goddard’s Scientific Visualization Studio. Credits: Greg Shirah/NASA’s Scientific Visualization Studio In addition to affecting global weather patterns and temperatures, western boundary currents can drive vertical flows in the oceans known as upwellings. The flows bring nutrients up from the depths to the surface, where they act as fertilizer for phytoplankton, algae, and aquatic plants.
      The Kuroshio Current that runs on the west side of the Pacific Ocean and along the east side of Japan has recently been associated with upwellings that enrich coastal fishing waters. The specific mechanisms that cause the vertical flows are not entirely clear. Ocean scientists are now turning to ECCO to tease out the connection between nutrient transport and currents like the Kuroshio that might be revealed in studies of the water temperature, density, pressure, and other factors included in the ECCO model.
      Tracking Ocean Temperatures and Salinity
      When viewed through the lens of ECCO’s temperature data, western boundary currents carry warm water away from the tropics and toward the poles. In the case of the Gulf Stream, as the current moves to far northern latitudes, some of the saltwater freezes into salt-free sea ice. The saltier water left behind sinks and then flows south all the way toward the Antarctic before rising and warming in other ocean basins. 
      Colors indicate temperature in this visualization of ECCO data. Warm water near the equator is bright yellow. Water cools when it flows toward the poles, indicated by the transition to orange and red shades farther from the equator. Download this visualization from NASA Goddard’s Scientific Visualization Studio. Credits: Greg Shirah/NASA’s Scientific Visualization Studio Currents also move nutrients and salt throughout Earth’s ocean basins. Swirling vortexes of the Agulhas rings stand out in ECCO temperature and salinity maps as they move warm, salty water from the Indian Ocean into the Atlantic.
      The Mediterranean Sea has a dark red hue that indicates its high salt content. Other than the flow through the narrow Strait of Gibraltar, the Mediterranean is cut off from the rest of the world’s oceans. Because of this restricted flow, salinity increases in the Mediterranean as its waters warm and evaporate, making it one of the saltiest parts of the global ocean. Download this visualization from NASA Goddard’s Scientific Visualization Studio. Credits: Greg Shirah/NASA’s Scientific Visualization Studio Experimenting with ECCO 
      ECCO offers researchers a way to run virtual experiments that would be impractical or too costly to perform in real oceans. Some of the most important applications of the ECCO model are in ocean ecology, biology, and chemistry. Because the model shows where the water comes from and where it goes, researchers can see how currents transport heat, minerals, nutrients, and organisms around the planet. 
      In prior decades, for example, ocean scientists relied on extensive temperature and salinity measurements by floating sensors to deduce that the Gulf Stream is primarily made of water flowing past the Gulf rather than through it. The studies were time-consuming and expensive. With the ECCO model, data visualizers at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, virtually replicated the research in a simulation that was far quicker and cheaper.
      A simulation built with data from the ECCO model shows that very little of the water in the gulf contributes to the water flowing in the Gulf Stream.
      Download this visualization from NASA Goddard’s Scientific Visualization Studio. Credits: Atousa Saberi/NASA’s Scientific Visualization Studio The example illustrated here relies on ECCO to track the flow of water by virtually filling the Gulf with 115,000 particles and letting them move for a year in the model. The demonstration showed that less than 1% of the particles escape the Gulf to join the Gulf Stream. 
      Running such particle-tracking experiments within the ocean circulation models helps scientists understand how and where environmental contaminants, such as oil spills, can spread.
      Take an ECCO Deep Dive
      Today, researchers turn to ECCO for a broad array of studies. They can choose ECCO modeling products that focus on one feature – such as global flows or the biology and chemistry of the ocean – or they can narrow the view to the poles or specific ocean regions. Every year, more than a hundred scientific papers include data and analyses from the ECCO model that delve into our oceans’ properties and dynamics. 
      Credits: Kathleen Gaeta Greer/ NASA’s Scientific Visualization Studio  Composed by James Riordon / NASA’s Earth Science News Team
      Information in this piece came from the resources below and interviews with the following sources: Nadya Vinogradova Shiffer, Dimitris Menemenlis, Ian Fenty, and Atousa Saberi.  
      References and Sources
      Liao, F., Liang, X., Li, Y., & Spall, M. (2022). Hidden upwelling systems associated with major western boundary currents. Journal of Geophysical Research: Oceans, 127(3), e2021JC017649.
      Richardson, P. L. (1980). The Benjamin Franklin and Timothy Folger charts of the Gulf Stream. In Oceanography: The Past: Proceedings of the Third International Congress on the History of Oceanography, held September 22–26, 1980 at the Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA on the occasion of the Fiftieth Anniversary of the founding of the Institution (pp. 703-717). New York, NY: Springer New York.
      Biastoch, A., Rühs, S., Ivanciu, I., Schwarzkopf, F. U., Veitch, J., Reason, C., … & Soltau, F. (2024). The Agulhas Current System as an Important Driver for Oceanic and Terrestrial Climate. In Sustainability of Southern African Ecosystems under Global Change: Science for Management and Policy Interventions (pp. 191-220). Cham: Springer International Publishing.
      Lee-Sánchez, E., Camacho-Ibar, V. F., Velásquez-Aristizábal, J. A., Valencia-Gasti, J. A., & Samperio-Ramos, G. (2022). Impacts of mesoscale eddies on the nitrate distribution in the deep-water region of the Gulf of Mexico. Journal of Marine Systems, 229, 103721.
      Share








      Details
      Last Updated Mar 03, 2025 Editor Michael Carlowicz Contact James Riordon Related Terms
      Oceans Earth Explore More
      1 min read An Ocean in Motion: NASA’s Mesmerizing View of Earth’s Underwater Highways
      This data visualization showing ocean currents around the world uses data from NASA’s Estimating the…


      Article


      6 mins ago
      2 min read Newly Minted Ph.D. Studies Phytoplankton with NASA’s FjordPhyto Project


      Article


      3 weeks ago
      1 min read 2024 is the Warmest Year on Record
      Earth’s average surface temperature in 2024 was the warmest on record.


      Article


      2 months ago
      Keep Exploring Discover More Topics From NASA
      Earth


      Your home. Our Mission. And the one planet that NASA studies more than any other.


      Climate Change


      NASA is a global leader in studying Earth’s changing climate.


      Explore Earth Science



      Earth Science in Action


      NASA’s unique vantage point helps us inform solutions to enhance decision-making, improve livelihoods, and protect our planet.

      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      We’ve been talking about this for 2,000 years. Aristotle mentions it. And in our own time, scientists are designing experiments to figure out exactly what’s going on. But there’s no consensus yet.
      Here’s what we do know.
      The atmosphere isn’t magnifying the Moon. If anything, atmospheric refraction squashes it a little bit. And the Moon’s not closer to us at the horizon. It’s about 1.5 percent farther away. Also, it isn’t just the Moon. Constellations look huge on the horizon, too.
      One popular idea is that this is a variation on the Ponzo illusion. Everything in our experience seems to shrink as it recedes toward the horizon — I mean clouds and planes and cars and ships. But the Moon doesn’t do that. So our minds make up a story to reconcile this inconsistency. Somehow the Moon gets bigger when it’s at the horizon. That’s one popular hypothesis, but there are others. And we’re still waiting for the experiment that will convince everyone that we understand this.
      So why does the Moon look larger on the horizon? We don’t really know, but scientists are still trying to figure it out.
      [END VIDEO TRANSCRIPT]

      Full Episode List
      Full YouTube Playlist
      Share
      Details
      Last Updated Feb 12, 2025 Related Terms
      General Earth's Moon Lunar Science Planetary Science Science & Research Skywatching The Solar System Explore More
      4 min read NASA’s Mini Rover Team Is Packed for Lunar Journey
      Article 19 hours ago 1 min read Building Blocks for Enhanced Mission Execution
      Article 20 hours ago 5 min read NASA’s Curiosity Rover Captures Colorful Clouds Drifting Over Mars
      Article 20 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Why Does the Moon Look Larger at the Horizon? We Asked a NASA Expert
    • By NASA
      “I do evolutionary programming,” said NASA Goddard oceanographer Dr. John Moisan. “I see a lot of possibility in using evolutionary programming to solve many large problems we are trying to solve. How did life start and evolve? Can these processes be used to evolve intelligence or sentience?”Courtesy of John Moisan Name: John Moisan
      Formal Job Classification: Research oceanographer
      Organization: Ocean Ecology Laboratory, Hydrosphere, Biosphere, Geophysics (HBG), Earth Science Directorate (Code 616) – duty station at NASA’s Wallops Flight Facility on Virginia’s Eastern Shore
      What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?
      I develop ecosystem models and satellite algorithms to understand how the ocean’s ecology works. My work has evolved over time from when I coded ocean ecosystem models to the present where I now use artificial intelligence to evolve the ocean ecosystem models.
      How did you become an oceanographer?
      As a child, I watched a TV series called “Sea Hunt,” which involved looking for treasure in the ocean. It inspired me to want to spend my life scuba diving.
      I got a Bachelor of Science in marine biology from the University of New England in Biddeford, Maine, and later got a Ph.D. from the Center for Coastal Physical Oceanography at Old Dominion University in Norfolk, Virginia.
      Initially, I just wanted to do marine biology which to me meant doing lots of scuba diving, maybe living on a sailboat. Later, when I was starting my graduate schoolwork, I found a book about mathematical biology and a great professor who helped open my eyes to the world of numerical modeling. I found out that instead of scuba diving, I needed instead to spend my days behind a computer, learning how to craft ideas into equations and then code these into a computer to run simulations on ocean ecosystems.
      I put myself through my initial education. I went to school fulltime, but I lived at home and hitchhiked to college on a daily basis. When I started my graduate school, I worked to support myself. I was in school during the normal work week, but from Friday evening through Sunday night, I worked 40 hours at a medical center cleaning and sterilizing the operating room instrument carts. This was during the height of the AIDS epidemic.
      What was most exciting about your two field trips to the Antarctic?
      In 1987, I joined a six-week research expedition to an Antarctic research station to explore how the ozone hole was impacting phytoplankton. These are single-celled algae that are responsible for making half the oxygen we breathe. Traveling to Antarctica is like visiting another planet. There are more types of blue than I’ve ever seen. It is an amazingly beautiful place to visit, with wild landscapes, glaciers, mountains, sea ice, and a wide range of wildlife. After my first trip I returned home and went back in a few months later as a biologist on a joint Polish–U.S. (National Oceanic and Atmospheric Administration) expedition to carry out a biological survey and measure how much fast the phytoplankton was growing in different areas of the Southern Ocean. We used nets to measure the amounts of fish and shrimp and took water samples to measure salinity, the amount of algae and their growth rates. We ate well, for example the Polish cook made up a large batch of smoked ice fish.
      What other field work have you done?
      While a graduate student, I helped do some benthic work in the Gulf of Maine. This study was focused on understanding the rates of respiration in the muds on the bottom of the ocean and on understanding how much biomass was in the muds. The project lowered a benthic grab device to the bottom where it would push a box core device into the sediments to return it to the surface. This process is sort of like doing a biopsy of the ocean bottom.
      What is your goal as a research oceanographer at Goddard?
      Ocean scientists measure the amount and variability of chlorophyll a, a pigment in algae, in the ocean because it is an analogue to the amount of algae or phytoplankton in the ocean. Chlorophyll a is used to capture solar energy to make sugars, which the algae use for growth. Generally, areas of the ocean that have more chlorophyll are also areas where growth or primary production is higher. So, by estimating how much chlorophyll is in the ocean we can study how these processes are changing with an aim in understanding why. NASA uses the color of the ocean using satellites to estimate chlorophyll a because chlorophyll absorbs sunlight and changes the color of the ocean. Algae have other kinds of pigments, each of which absorbs light at different wavelengths. Because different groups of algae have different levels of pigments, they are like fingerprints that can reveal the type of algae in the water. Some of my research aims at trying to use artificial intelligence and mathematical techniques to create new ways to measure these pigments from space to understand how ocean ecosystems change.
      In 2024, NASA plans to launch the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite, which will measure the color of the ocean at many different wavelengths. The data from this satellite can be used with results from my work on genetic programs and inverse modeling to estimate concentrations of different pigments and possibly concentrations of different types of algae in the ocean.
      You have been at Goddard over 22 years. What is most memorable to you?
      I develop ecosystem models. But ecosystems do not have laws in the same way that physics has laws. Equations need to be created so that the ecosystem models represent what is observed in the real world. Satellites have been a great source for those observations, but without a lot of other types of observations that are collected in the field, the ocean, it is difficult to develop these equations. In my time at NASA, I have only been able to develop models because of the great but often tedious work that ocean scientists around the world have been doing when they go on ocean expeditions to measure various ocean features, be it simple temperature or the more complicated measurements of algal growth rates. My experience with their willingness to collaborate and share data is especially memorable. This experience is also what I enjoyed with numerous scientists at NASA who have always been willing to support new ideas and point me in the right direction. It has made working at NASA a phenomenal experience.
      What are the philosophical implications of your work?
      The human capacity to think rapidly, to test and change our opinions based on what we learn, is slow compared to that of a computer. Computers can help us adapt more quickly. I can put 1,000 students in a room developing ecosystem model models. But I know that this process of developing ecosystem models is slow when compared what a computer can do using an artificial intelligence approach called genetic programming, it is a much faster way to generate ecosystem model solutions.
      Philosophically, there is no real ecosystem model that is the best. Life and ecosystems on Earth change and adapt at rates too fast for any present-day model to resolve, especially considering climate change. The only real ecosystem model is the reality itself. No computer model can perfectly simulate ecosystems. By utilizing the fast adaptability that evolutionary computer modeling techniques provide, simulating and ultimately predicting ecosystems can be improved greatly.
      How does your work have implications for scientists in general?
      I do evolutionary programming. I see a lot of possibility in using evolutionary programming to solve many large problems we are trying to solve. How did life start and evolve? Can these processes be used to evolve intelligence or sentience?
      The artificial intelligence (AI) work answers questions, but you need to identify the questions. This is the greater problem when it comes to working with AI. You cannot answer the question of how to create a sentient life if you do not know how to define it. If I cannot measure life, how can I model it? I do not know how to write that equation. How does life evolve? How did the evolutionary process start? These are big questions I enjoy discussing with friends. It can be as frustrating as contemplating “nothing.”
      Who inspires you?
      Many of the scientists that I was fortunate to work with at various research institutes, such as Scripps Institution of Oceanography at the University of California, San Diego. These are groups of scientists are open to always willing to share their ideas. These are individuals who enjoy doing science. I will always be indebted to them for their kindness in sharing of ideas and data.
      Do you still scuba dive?
      Yes, I wish I could dive daily, it is a very calming experience. I’m trying to get my kids to join me.
      What else do you do for fun?
      My wife and I bike and travel. Our next big bike trip will hopefully be to Shangri-La City in China. I also enjoy sailing and trying to grow tropical plants. But, most of all, I enjoy helping raise my children to be resilient, empathic, and intelligent beings.
      What are your words to live by?
      Life. So much to see. So little time.
      Conversations With Goddard is a collection of question and answer profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage. Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      Share
      Details
      Last Updated Feb 10, 2025 EditorJessica EvansContactRob Garnerrob.garner@nasa.gov Related Terms
      Goddard Space Flight Center Artificial Intelligence (AI) People of Goddard Wallops Flight Facility Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...