Jump to content

NASA Accelerates Space Exploration, Earth Science for All in 2024


Recommended Posts

  • Publishers
Posted

With a look back at 2024, NASA is celebrating its many innovative and inspiring accomplishments this year including for the first time, landing new science and technology on the Moon with an American company, pushing the boundaries of exploration by launching a new mission to study Jupiter’s icy moon Europa; maintaining 24 years of continuous human exploration off the Earth aboard the International Space Station, and unveiling the first look at its supersonic quiet aircraft for the benefit of humanity.

The agency also shared the wonder of a total eclipse with millions of Americans, conducted the final flight of its Ingenuity helicopter on the Red Planet, demonstrated the first laser communications capability in deep space, tested the next generation solar sail in space, made new scientific discoveries with its James Webb Space Telescope, completed a year-long Mars simulation on Earth with crew, announced the newest class of Artemis Generation astronauts, and much more.

“In 2024, NASA made leap after giant leap to explore, discover, and inspire – all while bringing real, tangible, and substantial benefits to the American people and to all of humanity,” said NASA Administrator Bill Nelson. “We deepened the commercial and international partnerships that will help NASA lead humanity back to the Moon and then to the red sands of Mars. We launched new missions to study our solar system and our universe in captivating new ways. We observed our changing Earth through our eyes in the sky – our ever-growing fleet of satellites and instruments – and shared that data with all of humanity. And we opened the doors to new possibilities in aviation, new breakthroughs on the International Space Station, and new wonders in space travel.” 

Through its Moon to Mars exploration approach, the agency continued moving forward with its Artemis campaign, including progress toward its first mission around the Moon with crew in more than 50 years and advancing plans to explore more of the Moon than ever before. So far in 2024, 15 countries signed the Artemis Accords, committing to the safe, transparent, and responsible exploration of space with the United States.

As part of efforts to monitor climate change, the agency launched multiple satellites to study our changing planet and opened its second Earth Information Center to provide data to a wider audience.

With the release of its latest Economic Impact Report, NASA underscored the agency’s $75.6 billion impact on the U.S. economy, value to society, and return on investment for taxpayers. 

“To invest in NASA is to invest in American workers, American innovation, the American economy, and American economic competitiveness. Through continued investments in our workforce and our infrastructure, NASA will continue to propel American leadership on Earth, in the skies, and in the stars,” said Nelson. 

Key 2024 agency highlights across its mission areas include:

Preparing for Moon, Mars

This year, NASA made strides toward the Artemis Generation of scientific discovery at the Moon while validating operations and systems to prepare for human missions to Mars. The agency advanced toward Artemis II, the first crewed flight under Artemis:

  • NASA announced results of its Orion heat shield investigation and updated its timelines for Artemis II and III.
  • Teams delivered the core stage and launch vehicle stage adapter of the SLS (Space Launch System) rocket from NASA’s Michoud Assembly Facility in New Orleans to NASA’s Kennedy Space Center in Florida and began stacking the rocket’s booster segments.
  • Engineers carried out a series of tests of the mobile launcher and systems at NASA Kennedy’s Launch Pad 39B ahead of the test flight and added an emergency egress system to keep crew and other personnel at the launch pad safe in the case of an emergency.
  • NASA performed key integrated testing of the Orion spacecraft that will send four astronauts around the Moon and bring them home, including testing inside an altitude chamber simulating the vacuum conditions of deep space.
  • The crew and other teams performed key training activities to prepare for flight, including practicing recovery operations at sea, as well as launch countdown and mission simulations. 
  • In February, the first Moon landing through the agency’s CLPS (Commercial Lunar Payload Services) initiative brought NASA science to the lunar surface on Intuitive Machines’ Nova-C lander successfully capturing data that will help us better understand the Moon’s environment and improve landing precision and safety.
  • In August, NASA announced that a new set of NASA science experiments and technology demonstrations will arrive at the lunar South Pole in 2027 following the agency’s latest CLPS initiative delivery award.
  • To return valuable samples from Mars to Earth, NASA sought innovative designs and announced a new strategy review team to assess various design studies to reduce cost, risk, and complexity.
  • NASA’s MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft celebrated 10 years of exploration of the Red Planet’s upper atmosphere.
  • After three years, NASA’s Ingenuity Mars Helicopter ended its mission in January, with dozens more flights than planned.
  • In September, the NASA Space Communications and Navigation team awarded a contract to Intuitive Machines to support the agency’s lunar relay systems as part of the Near Space Network, operated by NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
  • NASA identified an updated set of nine potential landing regions near the lunar South Pole for its Artemis III mission.
  • Capturing the current state of the Moon to Mars architecture, NASA released the second revision of its Architecture Definition Document.
  • NASA formalized two international agreements for key Artemis elements, including with the United Arab Emirates for the Gateway airlock module, and with Japan to provide a pressurized rover for the lunar surface.
  • Astronauts, scientists, and engineers took part in testing key technologies and evaluating hardware needed to work at the Moon, including simulating moonwalks in geologically Moon-like areas of Arizona, practiced integration between the crew and mission controllers, participated in human factors testing for Gateway, and evaluated the developmental hardware.
  • NASA worked collaboratively with SpaceX and Blue Origin on their human lunar landers for Artemis missions, exercising an option under existing contracts to develop cargo variants of their human landers.
  • In August, as part of its commitment to a robust, sustainable lunar exploration program for the benefit of all, NASA announced it issued a Request for Information to seek interest from American companies and institutions in conducting a mission using the agency’s VIPER (Volatiles Investigating Polar Exploration Rover) Moon rover.
  • The agency selected three companies to advance capabilities for a lunar terrain vehicle that Artemis astronauts will use to travel around the lunar surface.
  • NASA completed a critical design review on the second mobile launcher, which will launch the more powerful Block 1B version of the SLS rocket.
  • Engineers at NASA Kennedy continued outfitting the Artemis III and IV Orion crew modules and received the European-built Orion service module for Artemis III; they also received several sections of the Artemis III and IV SLS core stages, and upgraded High Bay 2 in the Vehicle Assembly Building.
  • NASA completed its second RS-25 certification test series at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, setting the stage for production of new engines to help power future Artemis missions to the Moon and beyond.
  • The CHAPEA (Crew Health and Performance Exploration Analog) 1 crew completed a 378-day mission in a ground-based Mars habitat at NASA’s Johnson Space Center in Houston. 

Observing, Learning About Earth

NASA collects data about our home planet from space and on land, helping understand how our climate on Earth is changing. Some of the agency’s key accomplishments in Earth science this year include:

  • After launching into space in February, NASA’s PACE (Plankton, Aerosol, Cloud, ocean Ecosystem) satellite mission is successfully transmitting first-of-their-kind measurements of ocean health, air quality, and the effects of a changing climate.
  • Using the agency’s TEMPO (Tropospheric Emissions: Monitoring of Pollution) instrument, NASA made available new near-real time data providing air pollution observations at unprecedented resolutions – down to the scale of individual neighborhoods.
  • Launched in May and June, NASA’s PREFIRE (Polar Radiant Energy in the Far-Infrared Experiment) CubeSats started collecting data on the amount of heat in the form of far-infrared radiation that the Arctic and Antarctic environments emit to space.
  • NASA rolled out the Disaster Response Coordination System, a new resource that delivers up-to-date information on fires, earthquakes, landslides, floods, tornadoes, hurricanes, and other extreme events to emergency managers.
  • The agency partnered with the Smithsonian National Museum of Natural History to open the Earth Information Center exhibit.

Exploring Our Solar System, Universe

NASA’s Europa Clipper embarked Oct. 14 on its long voyage to Jupiter, where it will investigate Europa, a moon with an enormous subsurface ocean that may have conditions to support life. NASA collaborated with multiple partners on content and social media related to the launch, including engagements with the National Hockey League, U.S. Figure Skating, 7-Eleven, e.l.f., Girl Scouts, Crayola, Library of Congress, and others. NASA’s 2024 space exploration milestones also include: 

  • NASA’s groundbreaking James Webb Space Telescope marked more than two years in space, transforming our view of the universe as designed, by studying the most distant galaxies ever observed, while raising exciting new questions about the atmospheres of planets outside our solar system.
  • As part of an asteroid sample exchange, NASA officially transferred to JAXA (Japan Aerospace Exploration Agency) a portion of the asteroid Bennu sample collected by the agency’s OSIRIS-Rex (Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer) mission in a ceremony on Aug. 22.
  • After surviving multiple challenges this year, NASA’s Voyager mission continues to collect data on the furthest reaches of our Sun’s influences.
  • NASA selected a new space telescope for development that will survey ultraviolet light across the entire sky, called UVEX (UltraViolet Explorer).
  • This year, all remaining major components were delivered to NASA Goddard to begin the integration phase for the agency’s Nancy Grace Roman Space Telescope.
  • NASA developed, tested, and launched the patch kit that astronauts will use to repair the agency’s NICER (Neutron star Interior Composition Explorer) telescope on the International Space Station.
  • The agency continued preparing the SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) mission to launch by April 2025.
  • To manage the maturation of technologies necessary to develop the Habitable Worlds Observatory telescope, NASA established a project office at NASA Goddard.
  • NASA and partners declared that the Sun reached solar maximum in 2024, a period of heightened solar activity when space weather becomes more frequent.
  • The Solar and Heliospheric Observatory, a joint mission between ESA (European Space Agency) and NASA, discovered its 5,000th comet in March.
  • NASA’s Sounding Rocket Program provided low-cost access to space for scientific research, technology development, and educational missions. NASA launched 14 sounding rocket missions in 2024. Scientists announced findings from a sounding rocket launched in 2022 that confirmed the existence of a long-sought global electric field at Earth.
  • The agency established a new class of astrophysics missions, called Astrophysics Probe Explorers, designed to fill a gap between NASA’s flagship and smaller-scale missions.

Living, Conducting Research in Space

In 2024, a total of 25 people lived and worked aboard the International Space Station, helping to complete science for the benefit of humanity, open access to space to more people, and support exploration to the Moon in preparation for Mars. A total of 14 spacecraft visited the microgravity laboratory in 2024, including eight commercial resupply missions from Northrop Grumman and SpaceX, as well as international partner missions, delivering more than 40,000 pounds of science investigations, tools, and critical supplies to the space station. NASA also helped safely return the uncrewed Boeing Starliner spacecraft to Earth, concluding a three-month flight test to the International Space Station. In addition:

  • In March, NASA welcomed its newest class of Artemis Generation astronauts in a graduation ceremony. The agency also sought new astronaut candidates, and more 8,000 people applied.
  • NASA astronaut Jasmin Moghbeli, ESA (European Space Agency) astronaut Andreas Mogensen, and JAXA (Japan Aerospace Exploration Agency) astronaut Satoshi Furukawa returned to Earth at the conclusion of NASA’s SpaceX Crew-7 mission aboard the International Space Station. The three crew members, along with Roscosmos cosmonaut Konstantin Borisov, splashed down in March off the coast of Pensacola, Florida, completing a six-and-a-half-month mission contributing to hundreds of experiments and technology demonstrations.
  • In June, NASA astronauts Butch Wilmore and Suni Williams safely arrived at the space station aboard Boeing’s Starliner spacecraft following launch of their flight test. With Starliner’s arrival, it was the first time in station history three different spacecraft that carried crew to station were docked at the same time. Starliner returned uncrewed in September following a decision by NASA. Wilmore and Williams, now serving as part of the agency’s Crew-9 mission, will return to Earth in February 2025.
  • NASA astronaut Don Pettit, accompanied by Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner, arrived at the orbital laboratory in September to begin a six-month mission.
  • Completing a six-month research mission in September, NASA astronaut Tracy C. Dyson returned to Earth with Roscosmos cosmonauts Oleg Kononenko and Nikolai Chub aboard the Soyuz MS-25 spacecraft.
  • NASA astronaut Nick Hague and Roscosmos cosmonaut Aleksandr Gorbunov launched on the agency’s SpaceX Crew-9 mission to the space station.
  • Concluding a nearly eight-month science mission, NASA’s SpaceX Crew-8 mission safely returned to Earth, splashing down on Oct. 25, off the coast of Pensacola, Florida.
  • NASA and Axiom Space successfully completed the third private astronaut mission to the space station in February, following an 18-day mission, where the crew conducted 30 experiments, public outreach, and commercial activities in microgravity.
  • The agency announced SpaceX was selected to develop and deliver the U.S. Deorbit Vehicle, which will safely move the space station out of orbit and into a remote area of an ocean at the end of its operations.
  • NASA and SpaceX monitored operations as the company’s Dragon spacecraft performed its first demonstration of reboost capabilities for the space station.
  • NASA concluded the final mission of its Spacecraft Fire Safety Experiment, or Saffire, putting a blazing end to an eight-year series of investigations looking at  fire’s behavior in space.
  • A robotic surgical tool aboard space station was successfully controlled remotely by surgeons on Earth. The Robotic Surgery Tech Demo tested the performance of a small robot to evaluate the effects of microgravity and time delays between space and ground.
  • The first successful metal 3D print was conducted aboard the space station, depositing a small s-curve in liquified stainless steel for the Metal 3D Printer investigation to test additive manufacturing of small metal parts in microgravity for equipment maintenance on future long-duration missions.
  • In 2024, 17 NASA Biological and Physical Science research payloads were delivered to the orbital laboratory, spanning quantum, plant biology, and physical sciences investigations.
  • More than 825,000 photos of Earth were taken from the space station in 2024 so far, contributing to research tracking how our planet’s landscapes are changing over time. Expedition 71 produced more than 630,000 images, the most taken during a single mission. In total, more than 5.3 million photos have been taken from the space station, providing imagery for urban light studies, studies of lightning flashes, and 14 natural disaster events in 2024 alone.

Imagining Future Flight

NASA researchers worked to advance innovations that will transform U.S. aviation, furthering the Sustainable Flight National Partnership and other efforts to help the country reach net zero carbon emissions by 2050. NASA also unveiled its X-59 quiet supersonic aircraft, the centerpiece of its Quesst mission to make quiet overland supersonic flight a reality. NASA aeronautics initiatives also worked to bring air taxis, delivery drones, and other revolutionary technology closer to deployment to benefit the U.S. public and industry. Over the past year, the agency:

  • Began testing the quiet supersonic X-59’s engine ahead of its first flight.
  • Made further progress in research areas of Quesst mission, including ground recording station testing and advancement and structural tests on the aircraft.
  • Publicly unveiled the X-59 in January, providing the first look at this unique aircraft.
  • Tested a wind-tunnel model of the X-66, an experimental aircraft designed to reduce the carbon footprint.
  • Began building the X-66 simulator that will allow pilots and engineers to run real-life scenarios in a safe environment.
  • Funded new studies looking at the future of sustainable aircraft for the 2050 timeframe and beyond.
  • Built a new simulator to study how passengers may experience air taxi rides. The results will help designers create new aircraft types with passenger comfort in mind.
  • Developed a computer software tool called OVERFLOW to predict aircraft noise and aerodynamic performance. This tool is now being used by several air taxi manufacturers to test how propellers or wings perform.
  • In collaboration with Sikorsky and DARPA (Defense Advanced Research Projects Agency), flew two helicopters autonomously using NASA-designed collision avoidance software.
  • Designed and flew a camera pod with sensors to help advance computer vision for autonomous aviation.
  • Launched a new science, technology, engineering, and mathematics kit focused on Advanced Air Mobility so students can learn more about air taxis and drones.
  • Continued to reduce traffic and save fuel at major U.S. airports as part of NASA’s to work to improve air travel and make it more sustainable.
  • Worked with partners to demonstrate a first-of-its-kind air traffic management concept for aircraft to safely operate at higher altitudes.
  • Advanced Hybrid-Electric technologies with GE Aerospace under the Hybrid Thermally Efficient Core project.
  • Conducted new ground and flight tests for the Electrified Powertrain Flight Demonstration project, which works to create hybrid electric powertrains for regional and single-aisle aircraft, alongside GE Aerospace and magniX.
  • Collaborated with the Federal Aviation Administration and police and fire departments to strategize on integrating public safety drones into the national airspace.
  • Launched a new science, technology, engineering, and mathematics kit focused on Advanced Air Mobility so students can learn more about air taxis and drones.

Improving Life on Earth, in Space with Technology

NASA develops essential technologies to drive exploration and the space economy. In 2024, NASA leveraged partnerships to advance technologies and test new capabilities to help the agency develop a sustainable presence on the lunar surface and beyond, while benefiting life on our home planet and in low Earth orbit. The following are 2024 space technology advancements:

  • Deployed NASA’s Advanced Composite Solar Sail System in space, marking a successful test of its composite boom technology.
  • Performed record-breaking laser communications with NASA’s Deep Space Optical Communications technology demonstration by sending a laser signal from Earth to NASA’s Psyche spacecraft about 290 million miles away.
    • NASA’s Advanced Composite Solar Sail System and Deep Space Optical Communications were named among TIME’s Inventions of 2024, along with the agency’s Europa Clipper spacecraft.
  • Supported 84 tests of technology payloads via 38 flights with six U.S. commercial flight providers through NASA’s Flight Opportunities Program.
  • Enabled the first NASA-supported researcher to fly with their payload aboard a commercial suborbital rocket.
  • Advanced critical capabilities for autonomous networks of small spacecraft with NASA’s Starling demonstration, the first satellite swarm to autonomously distribute information and operations data between spacecraft.
  • Demonstrated space-age fuel gauge technology, known as a Radio Frequency Mass Gauge, on Intuitive Machines’ Nova-C lunar lander, to develop technology to accurately measure spacecraft fuel levels.
  • Performed an in-space tank to tank transfer of cryogenic propellent (liquid oxygen) on the third flight test of SpaceX’s Starship.
  • Licensed a new 3-D printed superalloy, dubbed GRX-810, to four American companies to make stronger, more durable airplane and spacecraft parts.
  • Manufactured 3D-printed, liquid oxygen/hydrogen thrust chamber hardware as part of NASA’s Rapid Analysis and Manufacturing Propulsion Technology project, which earned the agency’s 2024 “Invention of The Year” award for its contributions to NASA and commercial industry’s deep space exploration goals.
  • Pioneered quantum discovery using the Cold Atom Lab, including producing the first dual-species Bose-Einstein Condensates in space, the first dual-species atom interferometers in space, and demonstrating the first ultra-cool quantum sensor for the first time in space.
  • Announced two new consortia to carry out ground-based research investigations and conduct activities for NASA’s Biological and Physical Sciences Space Biology Program, totaling $5 million.
  • Awarded $4.25 million across the finales of three major NASA Centennial Challenges, including Break the Ice, Watts on the Moon, and Deep Space Food to support NASA’s Artemis missions and future journeys into deep space. 
  • Launched a collaborative process to capture the aerospace community’s most pervasive technical challenges, resulting in a ranked list of 187 civil space shortfalls to help guide future technology development projects, investments, and technology roadmaps.

Growing Global Partnerships

Through the Artemis Accords, almost 50 nations have joined the United States, led by NASA with the U.S. State Department, in a voluntary commitment to engage in the safe, transparent, and responsible exploration of the Moon, Mars, and beyond. The Artemis Accords represent a robust and diverse group of nation states, representing all regions of the world, working together for the safe, transparent, and responsible exploration of the Moon, Mars and beyond with NASA. More countries are expected to sign the Artemis Accords in the weeks and months ahead.

  • During a May workshop with Artemis Accords signatories in Montreal, Canada, NASA led a tabletop exercise for 24 countries centered on further defining and implementing key tenets, including considering views on non-interference, interoperability, and scientific data sharing among nations.
  • A NASA delegation participated in the 75th International Astronautical Congress in Milan. During the congress, NASA co-chaired the Artemis Accords Principals’ Meeting, which brought together 42 nations furthering discussions on the safe and responsible use of space for the benefit of all.

Celebrating Total Solar Eclipse

During the total solar eclipse on April 8, NASA helped the nation enjoy the event safely and engaged millions of people with in-person events, live online coverage, and citizen science opportunities. NASA also funded scientists around North America to take advantage of this unique position of the Sun, Moon, and Earth to learn more about the Sun and its connection to our home planet. Highlights of the solar celebration include:

  • The space station crew were among the millions viewing the solar eclipse.
  • NASA collaborated with the Indianapolis Motor Speedway, Google, NCAA Women’s Final Four, Peanuts Worldwide, Microsoft, Sésamo, LEGO, Barbie, Major League Baseball, Third Rock Radio, Discovery Education, and others on eclipse-inspired products and social posts to support awareness of the eclipse and the importance of safe viewing.
  • More than 50 student teams participated in NASA’s Nationwide Eclipse Ballooning Project, with some becoming the first to measure atmospheric gravity waves caused by eclipses.

Building Low Earth Orbit Economy

In August, NASA announced the development of its low Earth orbit microgravity strategy by releasing 42 objectives for stakeholder feedback. The strategy helps to guide the next generation of human presence in low Earth orbit and advance microgravity science, technology, and exploration. NASA is refining the objectives with collected input and will finalize the strategy before the end of the year. Additional advancements include:

  • NASA modified agreements for two funded commercial space station partners that are on track to develop low Earth orbit destinations for the agency and other customers.
  • A NASA-funded commercial space station, Blue Origin’s Orbital Reef, completed multiple testing milestones for its critical life support system as part of the agency’s efforts for new destinations in low Earth orbit.
  • A full-scale ultimate burst pressure test on Sierra Space’s LIFE (Large Integrated Flexible Environment) habitat structure was conducted, an element of a NASA-funded commercial space station.
  • The agency’s industry partners, through the second Collaborations for Commercial Space Capabilities initiative and Small Business Innovation Research Ignite initiative, completed safety milestones, successful flight tests, and major technological advancements.
  • As NASA opens access to space by working with private industry, the agency shared its medical expertise, human system integration knowledge, utilization requirements, and commercial space food insight to aid in developing safe, reliable, innovative, and cost-effective space stations.
  • To address a rapidly changing space operating environment and ensure its preservation for generations to come, NASA released its integrated Space Sustainability Strategy in April.
  • The agency tested the Sierra Space Dream Chaser spaceplane for the extreme environments of space at NASA’s Neil Armstrong Test Facility in Sandusky, Ohio.
  • NASA’s Glenn Research Center in Cleveland streamed 4K video footage from an aircraft to the space station and back for the first time using optical, or laser, communications.

Inspiring Artemis Generation of STEM Students

NASA continues to offer a wide range of science, technology, engineering, and mathematics (STEM) initiatives and activities, reaching and engaging the next generation of scientists, engineers, and explorers. The agency’s STEM engagements are enhanced through collaborations with partner organizations, the distribution of various grants, and additional strategic activities. Key 2024 STEM highlights include:

  • Awarded nearly $45 million to 21 higher-education institutions to help build capacity for research, and announced the recipients of grants that will support scientific and technical research projects for more than 20 universities and organizations across the United States.
  • Planted a “Moon Tree,” a seedling that traveled around the Moon and back aboard the agency’s Artemis I mission in 2022, at the U.S. Capitol in Washington. The event highlighted a partnership with the U.S. Forest Service that invited organizations across the country to host the seedlings.
  • Partnered with Microsoft’s Minecraft to engage students in a game-based learning platform, where players can experience NASA’s discoveries with interactive modules on star formation, planets, and galaxy types, modeled using real James Webb Space Telescope images.
  • Collaborate with the U.S. Department of Education to bring STEM to students during after-school hours under the 21st Century Community Learning Centers program, which aims to reach thousands of students in more than 60 sites across 10 states.
  • Launched NASA Engages, a platform to connect and serve the public by providing agency experts to share their experiences working on agency missions and programs.
  • With more than 55,000 applications for NASA internships across the spring, summer and fall sessions, a new recruitment record, NASA helped students and early-career professionals make real contributions to space and science missions.
  • Expanded the agency’s program to help informal educational institutions like museums, science centers, libraries, and other community organizations bring STEM content to communities, resulting in 42 active awards across 26 states and Puerto Rico.
  • Hosted the 30th Human Exploration Rover Challenge, one of NASA’s longest-standing student challenges, with participation from more than 600 students and 72 teams from around the world.

Reaching New, Future Explorers

NASA’s future-forward outreach to current and new audiences is key to providing accessibility to the agency’s scientific discoveries and to growing the future STEM workforce. NASA’s creative and inclusive 2024 strategies to reach the public include:

  • NASA’s on-demand streaming service, NASA+, achieved four times the viewership of the agency’s traditional cable channel, marking a major milestone in its ongoing web modernization efforts. As part of the digital transformation, NASA said goodbye to NASA Television, its over-the-air broadcast, streamlining how it delivers the latest space, science, and technology news. NASA+ marked its first year of operation Sept. 23, and visitors have played 1,036,389 hours of programming.
  • April 8, the day of the total solar eclipse, brought in 32 million views to NASA’s websites, more than 15 times additional views than the average this year. On average, NASA websites receive 33.4 million views every month.
  • NASA social media accounts saw an increase of 4% in followers since 2023, from 391.2 million in 2023 to 406.8 million this year. On average, NASA accounts see close to 25 million engagements each month.
    • Notable live social media events in 2024 included the first-ever Reddit Ask Me Anything with the platform’s 23-million member “Explain Like I’m Five” community; the first X Spaces conversation from space; and NASA’s first Instagram Live of a launch, which contributed 410,000 of the 6.6 million views of the Boeing Starliner Crew Flight Test launch.
    • NASA Twitch launched custom emotes, issued channel points for the first time, and collaborated with an external Twitch creator, a how-to conversation with astrophotographers and NASA experts about photographing the Moon.
  • NASA aired live broadcasts for 14 mission launches in 2024. The agency’s official broadcast of the 2024 total solar eclipse and its telescope feed are the top two most-watched livestreams this year on NASA’s YouTube.
    • The agency’s YouTube livestreams in 2024 surpassed 84.7 million total views.  
    • NASA broadcasts often were enhanced by the presence of well-known athletes, artists, and cultural figures. The solar eclipse broadcast alone featured musician Lance Bass, actor Scarlett Johannson, NFL quarterback Josh Dobbs, and Snoopy.
  • The agency’s podcasts surpassed 9.7 million all-time plays on Apple Podcasts and Spotify.
  • The NASA app was installed more than 2.1 million times in 2024.  
  • The number of subscribers to NASA’s flagship and Spanish newsletters total more than 5 million.
  • NASA celebrated the 5th anniversary of the Hidden Figures Way street renaming. The program honored the legacy of Katherine Johnson, Dorothy Vaughan, Mary Jackson, and Christine M. Darden, and others who were featured in Margot Shetterly’s book – and the subsequent movie – Hidden Figures, and their commitment to science, justice, and humanity.
  • The agency signed Space Act agreements with the National Association for the Advancement of Colored People and the Hispanic Heritage Foundation to increase engagement and equity for underrepresented students pursuing STEM fields and reduce barriers to agency activities and opportunities.
  • As part of its plans to reach new audiences, NASA continued to focus on developing Spanish-language content. This year, the agency:
    • More than doubled the number of yearly posts to its science-focused website in Spanish, Ciencia de la NASA, and grew the website’s traffic by five-fold.
    • Produced live broadcasts for the 2024 total solar eclipse and for the launch of the Europa Clipper mission, which reached a combined audience of more than 5 million viewers around the world.
    • Published a video about how NASA and ESA (European Space Agency) cooperate to train astronauts.
    • Released an astrobiology graphic novel and the agency’s economic impact yearly report in Spanish, among other outreach materials.
  • Relaunched the NASA Art Program with two space-themed murals in New York’s Hudson Square neighborhood in Manhattan. The vision of the reimagined NASA Art Program is to inspire and engage the Artemis Generation with community murals and art projects for the benefit of humanity.
  • A DC-8 Airborne Science Laboratory Workshop documented and celebrated the important scientific work conducted aboard NASA’s legendary DC-8 and captured lessons of the past for current and future operators. 
  • The Deep Space Network beamed a Missy Elliott song to space on July 12. 
  • NASA partnered with Crayola Education to develop content for Crayola’s annual Creativity Week held in January, which reached more than 6 million kids from 100 countries. 
  • On the eve of the 55th anniversary of the Apollo 11 Moon landing, NASA Johnson named one of its central buildings the “Dorothy Vaughan Center in Honor of the Women of Apollo.” Actress Octavia Spencer narrated a video for the event. 
  • NASA’s Ames Research Center in California’s Silicon Valley hosted social media creators in space, science, and engineering for a behind-the-scenes tour of the center’s world-class facilities.
  • Engaging largely untapped NASA audiences of more than 155,000 in Illinois, Michigan, and Minnesota, NASA’s Glenn launched NASA in the Midwest, an integrated approach to bring awareness to the agency’s connections to the region to large-scale festivals and surrounding community institutions.
  • Reaching 500,000 in-person attendees, NASA Stennis supported the agency’s return to the ESSENCE Festival of Culture in New Orleans.
  • NASA’s Wallops Flight Facility in Virginia developed a dance engagement program in partnership with the Eastern Shore Ballet Theatre, introducing new audiences to the agency while blending arts and science.
  • NASA participated in more than 3,700 events planned with an estimated reach of more than 17 million worldwide. This was accomplished through in-person, hybrid, and virtual outreach activities and events.
  • The agency’s Virtual Guest Program engaged 277,370 virtual guests across 13 events, with an average of 145 countries, regions, and territories represented per event.

There also were many notable engagements highlighting the intersection of space and sports in 2024, including the Stanley Cup visiting NASA Kennedy for photographs as part of the agency’s growing partnership with the National Hockey League. NASA Glenn also collaborated with The Ohio State University Marching Band for its halftime show during the university’s football game on Sept. 21. A video greeting from astronauts aboard the International Space Station introduced the show, which featured aerospace-themed music and numerous formations including the final formation the NASA Meatball.

For more about NASA’s missions, research, and discoveries, visit:

https://www.nasa.gov

-end-

Meira Bernstein / Cheryl Warner
Headquarters, Washington
202-358-1600
meira.b.bernstein@nasa.gov / cheryl.m.warner@nasa.gov

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2024 Year in Review – Highlights from NASA in Silicon Valley
      by Tiffany Blake
      As NASA’s Ames Research Center in California’s Silicon Valley enters its 85th year since its founding, join us as we take a look back at some of our highlights of science, engineering, research, and innovation from 2024.

      Ames Arc Jets Play Key Role in Artemis I Orion Spacecraft Heat Shield Findings 

      A block of Avcoat undergoes testing inside an arc jet test chamber at NASA Ames. The test article, configured with both permeable (upper) and non-permeable (lower) Avcoat sections for comparison, helped to confirm understanding of the root cause of the loss of charred Avcoat material that engineers saw on the Orion spacecraft after the Artemis I test flight beyond the Moon. photo credit: NASA Researchers at Ames were part of the team tasked to better understand and identify the root cause of the unexpected char loss across the Artemis I Orion spacecraft’s heat shield. Using Avcoat material response data from Artemis I, the investigation team was able to replicate the Artemis I entry trajectory environment — a key part of understanding the cause of the issue — inside the arc jet facilities at NASA Ames. 

      Starling Swarm Completes Primary Mission

      The four CubeSat spacecraft that make up the Starling swarm have demonstrated success in autonomous operations, completing all key mission objectives. Image credit: NASA After ten months in orbit, the Starling spacecraft swarm successfully demonstrated its primary mission’s key objectives, representing significant achievements in the capability of swarm configurations in low Earth orbit, including distributing and sharing important information and autonomous decision making. 

      Another Step Forward for BioNutrients 

      Research scientists Sandra Vu, left, Natalie Ball, center, and Hiromi Kagawa, right, process BioNutrients production packs.Image credit: NASA NASA’s BioNutrients entered its fifth year in its mission to investigate how microorganisms can produce on-demand nutrients for astronauts during long-duration space missions. Keeping astronauts healthy is critical and as the project comes to a close, researchers have processed production packs on Earth on the same day astronauts processed production packs in space on the International Space Station to demonstrate that NASA can produce nutrients after at least five years in space, providing confidence it will be capable of supporting crewed missions to Mars.  

      Hyperwall Upgrade Helps Scientists Interpret Big Data

      The newly upgraded hyperwall visualization system provides four times the resolution of the previous system. Image credit: NASA/Brandon Torres Navarrete Ames upgraded its powerful hyperwall system, a 300-square foot wall of LCD screens with over a billion pixels to display supercomputer-scale visualizations of the very large datasets produced by NASA supercomputers and instruments. The hyperwall is just one way researchers can utilize NASA’s high-end computing technology to better understand their data and advance the agency’s missions and research. 

      Ames Contributions to NASA Artificial Intelligence Efforts 

      This landscape of “mountains” and “valleys” speckled with glittering stars is actually the edge of a nearby, young, star-forming region called NGC 3324 in the Carina Nebula. Captured in infrared light by NASA’s new James Webb Space Telescope, this image reveals for the first time previously invisible areas of star birth.Image credit: NASA/Bill Ingalls Ames contributes to the agency’s artificial intelligence work through ongoing research and development, agencywide collaboration, and communications efforts. This year, NASA announced David Salvagnini as its inaugural chief artificial intelligence officer and held the first agencywide town hall on artificial intelligence sharing how the agency is safely using and developing artificial intelligence to advance missions and research. 
      Advanced Composite Solar Sail System Successfully Launches, Deploys Sail

      Illustration: NASA NASA’s Advanced Composite Solar Sail System successfully launched from Māhia, New Zealand, in April, and successfully deployed its sail in August to begin mission operations. The small satellite represents a new future in solar sailing, using lightweight composite booms to support a reflective polymer sail that uses the pressure of sunlight as propulsion. 

      Understanding Our Planet 

      Samuel Suleiman, an instructor on NASA’s OCEANOS student training program, gathers loose corals to place around an endangered coral species to help attract fish and other wildlife, giving the endangered coral a better chance of survivalphoto credit: NASA/Milan Loiacono In 2024, Ames researchers studied Earth’s oceans and waterways from multiple angles – from supporting NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem, or PACE, mission to bringing students in Puerto Rico experiences in oceanography and the preservation of coral reefs. Working with multiple partners, our scientists and engineers helped inform ecosystem management by joining satellite measurements of Earth with animal tracking data. In collaboration with the U.S. Geological Survey, a NASA team continued testing a specialized instrument package to stay in-the-know about changes in river flow rates. 

      Revealing the Mysteries of Asteroids in Our Solar System 

      Image credit: NASA Ames researchers used a series of supercomputer simulations to reveal a potential new explanation for how the moons of Mars may have formed: The first step, the findings say, may have involved the destruction of an asteroid. 
      Using NASA’s powerful James Webb Space Telescope, another Ames scientist helped reveal the smallest asteroids ever found in the main asteroid belt. 

      Ames Helps Emerging Space Companies ‘Take the Heat’

      A heat shield made by NASA is visible on the blunt, upward-facing side of a space capsule after its landing in the Utah desert.Image credit: Varda Space Industries/John Kraus A heat shield material invented and made at Ames helped to safely return a spacecraft containing the first product processed on an autonomous, free-flying, in-space manufacturing platform. February’s re-entry of the spacecraft from Varda Space Industries of El Segundo, California, in partnership with Rocket Lab USA of Long Beach, California, marked the first time a NASA-manufactured thermal protection material, called C-PICA (Conformal Phenolic Impregnated Carbon Ablator), ever returned from space. 

      Team Continues to Move Forward with Mission to Learn More about Our Star

      This illustration lays a depiction of the sun’s magnetic fields over an image captured by NASA’s Solar Dynamics Observatory on March 12, 2016.Image credit: NASA/SDO/AIA/LMSAL HelioSwarm’s swarm of nine spacecraft will provide deeper insights into our universe and offer critical information to help protect astronauts, satellites, and communications signals such as GPS. The mission team continues to work toward launching in 2029. 

      CAPSTONE Continues to Chart a New Path Around the Moon 

      CAPSTONE revealed in lunar Sunrise: CAPSTONE will fly in cislunar space – the orbital space near and around the Moon. The mission will demonstrate an innovative spacecraft-to-spacecraft navigation solution at the Moon from a near rectilinear halo orbit slated for Artemis’ Gateway.Illustration credit: NASA Ames/Daniel Rutter The microwave sized CubeSat, CAPSTONE, continues to fly in a cis-lunar near rectilinear halo orbit after launching in 2022. Flying in this unique orbit continues to pave the way for future spacecraft and Gateway, a Moon-orbiting outpost that is part of NASA’s Artemis campaign, as the team continues to collect data. 

      NASA Moves Drone Package Delivery Industry Closer to Reality 

      A drone is shown flying during a test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada in 2016. During the test, five drones simultaneously crossed paths, separated by different altitudes. Two drones flew beyond visual line of sight and three flew within line-of-sight of their operators. More UTM research followed, and it continues today. Image credit: NASA Ames/Dominic Hart NASA’s uncrewed aircraft system traffic management concepts paved the way for newly-approved package delivery drone flights in the Dallas area. 

      NASA’s uncrewed aircraft system traffic management concepts paved the way for newly-approved package delivery drone flights in the Dallas area. 

      NASA Technologies Streamline Air Traffic Management Systems 

      This image shows an aviation version of a smartphone navigation app that makes suggestions for an aircraft to fly an alternate, more efficient route. The new trajectories are based on information available from NASA’s Digital Information Platform and processed by the Collaborative Departure Digital Rerouting tool.Illustration credit: NASA Managing our busy airspace is a complex and important issue, ensuring reliable and efficient movement of commercial and public air traffic as well as autonomous vehicles. NASA, in partnership with AeroVironment and Aerostar, demonstrated a first-of-its-kind air traffic management concept that could pave the way for aircraft to safely operate at higher altitudes. The agency also saw continued fuel savings and reduction in commercial flight delays at Dallas Fort-Worth Airport, thanks to a NASA-developed tool that allows flight coordinators to identify more efficient, alternative takeoff routes.

      Small Spacecraft Gathers Big Solar Storm Data from Deep Space 

      Illustration of NASA’s BioSentinel spacecraft as it enters a heliocentric orbit.Illustration credit: NASA Ames/Daniel Rutter BioSentinel – a small satellite about the size of a cereal box – is currently more than 30 million miles from Earth, orbiting our Sun. After launching aboard NASA’s Artemis I more than two years ago, BioSentinel continues to collect valuable information for scientists trying to understand how solar radiation storms move through space and where their effects – and potential impacts on life beyond Earth – are most intense. In May 2024, the satellite was exposed to a coronal mass ejection without the protection of our planet’s magnetic field and gathered measurements of hazardous solar particles in deep space during a solar storm. 

      NASA, FAA Partner to Develop New Wildland Fire Technologies

      Artist’s rendering of remotely piloted aircraft providing fire suppression, monitoring and communications capabilities during a wildland fire. Illustration credit: NASA NASA researchers continued to develop and test airspace management technologies to enable remotely-piloted aircraft to fight and monitor wildland fires 24 hours a day.  
      The Advanced Capabilities for Emergency Response Operations (ACERO) project seeks to use drones and advanced aviation technologies to improve wildland fire coordination and operations. 

      NASA and Forest Service Use Balloon to Help Firefighters Communicate

      The Aerostar Thunderhead balloon carries the STRATO payload into the sky to reach the stratosphere for flight testing. The balloon appears deflated because it will expand as it rises to higher altitudes where pressures are lower.Image credit: Colorado Division of Fire Prevention and Control Center of Excellence for Advanced Technology Aerial Firefighting/Austin Buttlar  The Strategic Tactical Radio and Tactical Overwatch (STRATO) technology is a collaborative effort to use high-altitude balloons to improve real-time communications among firefighters battling wildland fires. Providing cellular communication from above can improve firefighter safety and firefighting efficiency.

      A Fully Reimagined Visitor Center 

      The NASA Ames Visitor Center includes exhibits and activities, sharing the work of NASA in Silicon Valley with the public.Image credit: NASA Ames/Don RIchey The NASA Ames Visitor Center at Chabot Space & Science Center in Oakland, California includes a fully reimagined 360-degree experience, featuring new exhibits, models, and more. An interactive exhibit puts visitors in the shoes of a NASA Ames scientist, designing and testing rovers, planes, and robots for space exploration. 

      Ames Collaborations in the Community

      Former NASA astronauts Yvonne Cagle and Kenneth Cockrell pose with Eli Toribio and Rhydian Daniels at the University of California, San Francisco Bakar Cancer Hospital. Patients gathered to meet the astronauts and learn more about human spaceflight and NASA’s cancer research effortsImage credit: NASA Ames/Brandon Torres Navarrete NASA astronauts, scientists, and researchers, and leadership from the University of California, San Francisco (UCSF) met with cancer patients and gathered in a discussion about potential research opportunities and collaborations as part of President Biden and First Lady Jill Biden’s Cancer Moonshot initiative on Oct. 4. During the visit with patients, NASA astronaut Yvonne Cagle and former astronaut Kenneth Cockrell answered questions about spaceflight and life in space. 
      Ames and the University of California, Berkeley, expanded their partnership, organizing workshops to exchange on their areas of technical expertise, including in Advanced Air Mobility, and to develop ideas for the Berkeley Space Center, an innovation hub proposed for development at Ames’ NASA Research Park. Under a new agreement, NASA also will host supercomputing resources for UC Berkeley, supporting the development of novel computing algorithms and software for a wide variety of scientific and technology areas.

      NASA’s Ames Research Center Celebrates 85 Years of Innovation
      by Rachel Hoover
      Ames Research Center in California’s Silicon Valley pre-dates a lot of things. The center existed before NASA – the very space and aeronautics agency it’s a critical part of today. And of all the marvelous advancements in science and technology that have fundamentally changed our lives over the last 85 years since its founding, one aspect has remained steadfast; an enduring commitment to what’s known by some on-center simply as, “an atmosphere of freedom.” 
      The NACA Ames laboratory in 1944.Image credit: NASA Years before breaking ground at the site that would one day become home to the world’s preeminent wind tunnels, supercomputers, simulators, and brightest minds solving some of the world’s toughest challenges, Joseph Sweetman Ames, the center’s namesake, described a sentiment that would guide decades of innovation and research: 
      “My hope is that you have learned or are learning a love of freedom of thought and are convinced that life is worthwhile only in such an atmosphere,” he said in an address to the graduates of Johns Hopkins University in June 1935.
      That spirit and the people it attracted and retained are a crucial part of how Ames, along with other N.A.C.A. research centers, ultimately made technological breakthroughs that enabled humanity’s first steps on the Moon, the safe return of spacecraft through Earth’s atmosphere, and many other discoveries that benefit our day-to-day lives.
      Russell Robinson momentarily looks to the camera while supervising the first excavation at what would become Ames Research Center.Image credit: NACA “In the context of my work, an atmosphere of freedom means the freedom to pursue high-risk, high-reward, innovative ideas that may take time to fully develop and — most importantly — the opportunity to put them into practice for the benefit of all,” said Edward Balaban, a researcher at Ames specializing in artificial intelligence, robotics, and advanced mission concepts.
      Balaban’s career at Ames has involved a variety of projects at different stages of development – from early concept to flight-ready – including experimenting with different ways to create super-sized space telescopes in space and using artificial intelligence to help guide the path a rover might take to maximize off-world science results. Like many Ames researchers over the years, Balaban shared that his experience has involved deep collaborations across science and engineering disciplines with colleagues all over the center, as well as commercial and academic partners in Silicon Valley where Ames is nestled and beyond. This is a tradition that runs deep at Ames and has helped lead to entirely new fields of study and seeded many companies and spinoffs.
      Before NASA, Before Silicon Valley: The 1939 Founding of Ames Aeronautical Laboratory “In the fields of aeronautics and space exploration the cost of entry can be quite high. For commercial enterprises and universities pursuing longer term ideas and putting them into practice often means partnering up with an organization such as NASA that has the scale and multi-disciplinary expertise to mature these ideas for real-world applications,” added Balaban.
      “Certainly, the topics of inquiry, the academic freedom, and the benefit to the public good are what has kept me at Ames,” reflected Ross Beyer, a planetary scientist with the SETI Institute at Ames. “There’s not a lot of commercial incentive to study other planets, for example, but maybe there will be soon. In the meantime, only with government funding and agencies like NASA can we develop missions to explore the unknown in order to make important fundamental science discoveries and broadly share them.”
      For Beyer, his boundary-breaking moment came when he searched – and found – software engineers at Ames capable and passionate about open-source software to generate accurate, high-resolution, texture-mapped, 3D terrain models from stereo image pairs. He and other teams of NASA scientists have since applied that software to study and better understand everything from changes in snow and ice characteristics on Earth, as well as features like craters, mountains, and caves on Mars or the Moon. This capability is part of the Artemis campaign, through which NASA will establish a long-term presence at the Moon for scientific exploration with commercial and international partners. The mission is to learn how to live and work away from home, promote the peaceful use of space, and prepare for future human exploration of Mars. 
      “As NASA and private companies send missions to the Moon, they need to plan landing sites and understand the local environment, and our software is freely available for anyone to use,” Beyer said. “Years ago, our management could easily have said ‘No, let’s keep this software to ourselves; it gives us a competitive advantage.’ They didn’t, and I believe that NASA writ large allows you to work on things and share those things and not hold them back.” 
      When looking forward to what the next 85 years might bring, researchers shared a belief that advancements in technology and opportunities to innovate are as expansive as space itself, but like all living things, they need a healthy atmosphere to thrive. Balaban offered, “This freedom to innovate is precious and cannot be taken for granted. It can easily fall victim if left unprotected. It is absolutely critical to retain it going forward, to ensure our nation’s continuing vitality and the strength of the other freedoms we enjoy.”

      Ames Aeronautical Laboratory.Image credit: NACA Today Marks the Retirement of the Astrogram Newsletter
      by Astrid Albaugh
      For 66 years, the Astrogram has told the story of NASA’s Ames Research Center. Over those six-plus decades, the newsletter has documented hundreds of missions led by Ames, the progression of Hangar One’s reclamation, space shuttle launches with Ames’ payloads aboard them, countless VIP visits, and everything in between.
      Ames published the first edition of the Astrogram in October 1958, coinciding with the transition of the center from its original incarnation as the National Advisory Committee for Aeronautics Ames Aeronautical Laboratory to a National Aeronautics and Space Administration (NASA) research center.
      The newsletter has evolved over time, alongside the center. From October 1958 through January 2016, the Astrogram was published in print, before a digital edition was developed. In January 2016, the Astrogram transitioned to a digital-only format. Below are examples of some of the Astrogram issues from over the years. More are forthcoming from 1998 and prior once they are retrieved from the archives.
      October 2014 Astrogram September 2010 Astrogram I have served as the editor of the Astrogram since February 1998. Over the past quarter century, it has been an interesting, and sometimes quite challenging, task for me to capture the breadth and depth of Ames’s story and ensure that we always published the newsletter on time. I still remember trekking over to the center’s imaging office to review the physical negatives and images that the Ames photographers had taken of events onsite and select the most compelling photos. I used a very early version of visual design software to craft the layout. When the paper was completed, I’d file it onto a CD and then hand it to the courier who would drive from the San Francisco printshop to pick it up from me. Once and awhile, someone would request to have an additional feature added, requiring multiple trips up the 101 and back. Sometimes I’d come in on the weekends to work on the paper, due to late submissions, much to the chagrin of my kids.
      July 2007 Astrogram It has been a pleasure serving as the editor over the past quarter century, almost as many years as my kids are old. A person once asked me if I had changed my name to Astrid since it’s so like the word Astrogram. Any relationship between the newsletter and my name is simply serendipity. I have enjoyed being behind the scenes, mostly working diligently at my computer. Many at Ames know my name because of the newsletter but may have never met me in person. It’s been amusing sometimes when I encounter someone who can’t put a finger as to why they knew my name but didn’t recognize me standing in front of them. Their usual response when they realized why they know me was, “Ah, Astrid of the Astrogram.”
      March 20, 1998 Astrogram Just as NASA innovates, the content of the Astrogram has to innovate as well. Many of the stories that you used to read in the Astrogram, you can now find on our NASA Ames web page here. If you would like to access past, archived issues of the Astrogram, going back to 1958, please consult the Ames Research Center Archives. I will continue to help tell Ames’s story, just using new platforms.
      Whether this is your first issue or you have been an Astrogram supporter for decades, thank you for reading!
      – Astrid of the Astrogram officially signing off


      View the full article
    • By NASA
      NASA has selected multiple companies to expand the agency’s Near Space Network’s commercial direct-to-Earth capabilities services, which is a mission-critical communication capability that allows spacecraft to transmit data directly to ground stations on Earth.
      The work will be awarded under new Near Space Network services contracts that are firm-fixed-price, indefinite-delivery/indefinite-quantity contracts. Project timelines span from February 2025 to September 2029, with an additional five-year option period that could extend a contract through Sept. 30, 2034. The cumulative maximum value of all Near Space Network Services contracts is $4.82 billion.
      Some companies received multiple task orders for subcategories identified in their contracts. Awards are as follows:
      Intuitive Machines of Houston will receive two task order awards on its contract for Subcategory 1.2 GEO to Cislunar Direct to Earth (DTE) Services and Subcategory 1.3 xCislunar DTE Services to support NASA’s Lunar Exploration Ground Segment, providing additional capacity to alleviate demand on the Deep Space Network and to meet the mission requirements for unique, highly elliptical orbits. The company also previously received a task order award for Subcategory 2.2 GEO to Cislunar Relay Services. Kongsberg Satellite Services of Tromsø, Norway, will receive two task order awards on its contract for Subcategory 1.1 Earth Proximity DTE and Subcategory 1.2 to support science missions in low Earth orbit and NASA’s Lunar Exploration Ground Segment, providing additional capacity to alleviate demand on the Deep Space Network. SSC Space U.S. Inc. of Horsham, Pennsylvania, will receive two task order awards on its contract for Subcategories 1.1 and 1.3 to support science missions in low Earth orbit and to meet the mission requirements for unique, highly elliptical orbits. Viasat, Inc. of Duluth, Georgia, will be awarded a task order on its contract for Subcategory 1.1 to support science missions in low Earth orbit. The Near Space Network’s direct-to-Earth capability supports many of NASA’s missions ranging from climate studies on Earth to research on celestial objects. It also will play a role in NASA’s Artemis campaign, which calls for long-term exploration of the Moon.
      NASA’s goal is to provide users with communication and navigation services that are secure, reliable, and affordable, so that all NASA users receive the services required by their mission within their latency, accuracy, and availability requirements.
      These awards demonstrate NASA’s ongoing commitment to fostering strong partnerships with the commercial space sector, which plays an essential role in delivering the communications infrastructure critical to the agency’s science and exploration missions.
      As part of the agency’s SCaN (Space Communications and Navigation) Program, teams at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, will carry out the work of the Near Space Network. The Near Space Network provides missions out to 1.2 million miles (2 million kilometers) with communications and navigation services, enabling spacecraft to exchange critical data with mission operators on Earth. Using space relays in geosynchronous orbit and a global system of government and commercial direct-to-Earth antennas on Earth, the network brings down terabytes of data each day.
      Learn more about NASA’s Near Space Network:
      https://www.nasa.gov/near-space-network
      -end-
      Joshua Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Jeremy Eggers
      Goddard Space Flight Center, Greenbelt, Maryland
      757-824-2958
      jeremy.l.eggers@nasa.gov
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A crane lowers the steel reflector framework for Deep Space Station 23 into position Dec. 18 on a 65-foot-high (20-meter) platform above the antenna’s pedestal that will steer the reflector. Panels will be affixed to the structure create a curved surface to collect radio frequency signals.NASA/JPL-Caltech After the steel framework of the Deep Space Station 23 reflector dish was lowered into place on Dec. 18, a crew installed the quadripod, a four-legged support structure that will direct radio frequency signals from deep space that bounce off the main reflector into the antenna’s receiver.NASA/JPL-Caltech Deep Space Station 23’s 133-ton reflector dish was recently installed, marking a key step in strengthening NASA’s Deep Space Network.
      NASA’s Deep Space Network, an array of giant radio antennas, allows agency missions to track, send commands to, and receive scientific data from spacecraft venturing to the Moon and beyond. NASA is adding a new antenna, bringing the total to 15, to support increased demand for the world’s largest and most sensitive radio frequency telecommunication system.
      Installation of the latest antenna took place on Dec. 18, when teams at NASA’s Goldstone Deep Space Communications Complex near Barstow, California, installed the metal reflector framework for Deep Space Station 23, a multifrequency beam-waveguide antenna. When operational in 2026, Deep Space Station 23 will receive transmissions from missions such as Perseverance, Psyche, Europa Clipper, Voyager 1, and a growing fleet of future human and robotic spacecraft in deep space.
      “This addition to the Deep Space Network represents a crucial communication upgrade for the agency,” said Kevin Coggins, deputy associate administrator of NASA’s SCaN (Space Communications and Navigation) program. “The communications infrastructure has been in continuous operation since its creation in 1963, and with this upgrade we are ensuring NASA is ready to support the growing number of missions exploring the Moon, Mars, and beyond.”
      This time-lapse video shows the entire day of construction activities for the Deep Space Station 23 antenna at the NASA Deep Space Network’s Goldstone Space Communications Complex near Barstow, California, on Dec. 18. NASA/JPL-Caltech Construction of the new antenna has been under way for more than four years, and during the installation, teams used a crawler crane to lower the 133-ton metal skeleton of the 112-foot-wide (34-meter-wide) parabolic reflector before it was bolted to a 65-foot-high (20-meter-high) alidade, a platform above the antenna’s pedestal that will steer the reflector during operations.
      “One of the biggest challenges facing us during the lift was to ensure that 40 bolt-holes were perfectly aligned between the structure and alidade,” said Germaine Aziz, systems engineer, Deep Space Network Aperture Enhancement Program of NASA’s Jet Propulsion Laboratory in Southern California. “This required a meticulous emphasis on alignment prior to the lift to guarantee everything went smoothly on the day.”
      Following the main lift, engineers carried out a lighter lift to place a quadripod, a four-legged support structure weighing 16 1/2 tons, onto the center of the upward-facing reflector. The quadripod features a curved subreflector that will direct radio frequency signals from deep space that bounce off the main reflector into the antenna’s pedestal, where the antenna’s receivers are housed.
      In the early morning of Dec. 18, a crane looms over the 112-foot-wide (34-meter-wide) steel framework for Deep Space Station 23 reflector dish, which will soon be lowered into position on the antenna’s base structure.NASA/JPL-Caltech Engineers will now work to fit panels onto the steel skeleton to create a curved surface to reflect radio frequency signals. Once complete, Deep Space Station 23 will be the fifth of six new beam-waveguide antennas to join the network, following Deep Space Station 53, which was added at the Deep Space Network’s Madrid complex in 2022.
      “With the Deep Space Network, we are able to explore the Martian landscape with our rovers, see the James Webb Space Telescope’s stunning cosmic observations, and so much more,” said Laurie Leshin, director of JPL. “The network enables over 40 deep space missions, including the farthest human-made objects in the universe, Voyager 1 and 2. With upgrades like these, the network will continue to support humanity’s exploration of our solar system and beyond, enabling groundbreaking science and discovery far into the future.”
      NASA’s Deep Space Network is managed by JPL, with the oversight of NASA’s SCaN Program. More than 100 NASA and non-NASA missions rely on the Deep Space Network and Near Space Network, including supporting astronauts aboard the International Space Station and future Artemis missions, monitoring Earth’s weather and the effects of climate change, supporting lunar exploration, and uncovering the solar system and beyond. 
      For more information about the Deep Space Network, visit:
      https://www.nasa.gov/communicating-with-missions/dsn
      News Media Contact
      Ian J. O’Neill
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-2649
      ian.j.oneill@jpl.nasa.gov
      2024-179
      Share
      Details
      Last Updated Dec 20, 2024 Related Terms
      Deep Space Network Jet Propulsion Laboratory Space Communications & Navigation Program Space Operations Mission Directorate Explore More
      4 min read Lab Work Digs Into Gullies Seen on Giant Asteroid Vesta by NASA’s Dawn
      Article 8 hours ago 5 min read Avalanches, Icy Explosions, and Dunes: NASA Is Tracking New Year on Mars
      Article 9 hours ago 8 min read NASA’s Kennedy Space Center Looks to Thrive in 2025
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      5 Min Read NASA’s Ames Research Center Celebrates 85 Years of Innovation
      The NACA Ames laboratory in 1944 Credits: NASA Ames Research Center in California’s Silicon Valley pre-dates a lot of things. The center existed before NASA – the very space and aeronautics agency it’s a critical part of today. And of all the marvelous advancements in science and technology that have fundamentally changed our lives over the last 85 years since its founding, one aspect has remained steadfast; an enduring commitment to what’s known by some on-center simply as, “an atmosphere of freedom.” 
      Years before breaking ground at the site that would one day become home to the world’s preeminent wind tunnels, supercomputers, simulators, and brightest minds solving some of the world’s toughest challenges, Joseph Sweetman Ames, the center’s namesake, described a sentiment that would guide decades of innovation and research: 
      My hope is that you have learned or are learning a love of freedom of thought and are convinced that life is worthwhile only in such an atmosphere
      Joseph sweetman ames
      Founding member of the N.A.C.A.
      “My hope is that you have learned or are learning a love of freedom of thought and are convinced that life is worthwhile only in such an atmosphere,” he said in an address to the graduates of Johns Hopkins University in June 1935.
      That spirit and the people it attracted and retained are a crucial part of how Ames, along with other N.A.C.A. research centers, ultimately made technological breakthroughs that enabled humanity’s first steps on the Moon, the safe return of spacecraft through Earth’s atmosphere, and many other discoveries that benefit our day-to-day lives.
      Russell Robinson momentarily looks to the camera while supervising the first excavation at what would become Ames Research Center.NACA “In the context of my work, an atmosphere of freedom means the freedom to pursue high-risk, high-reward, innovative ideas that may take time to fully develop and — most importantly — the opportunity to put them into practice for the benefit of all,” said Edward Balaban, a researcher at Ames specializing in artificial intelligence, robotics, and advanced mission concepts.
      Balaban’s career at Ames has involved a variety of projects at different stages of development – from early concept to flight-ready – including experimenting with different ways to create super-sized space telescopes in space and using artificial intelligence to help guide the path a rover might take to maximize off-world science results. Like many Ames researchers over the years, Balaban shared that his experience has involved deep collaborations across science and engineering disciplines with colleagues all over the center, as well as commercial and academic partners in Silicon Valley where Ames is nestled and beyond. This is a tradition that runs deep at Ames and has helped lead to entirely new fields of study and seeded many companies and spinoffs.
      Before NASA, Before Silicon Valley: The 1939 Founding of Ames Aeronautical Laboratory “In the fields of aeronautics and space exploration the cost of entry can be quite high. For commercial enterprises and universities pursuing longer term ideas and putting them into practice often means partnering up with an organization such as NASA that has the scale and multi-disciplinary expertise to mature these ideas for real-world applications,” added Balaban.
      “Certainly, the topics of inquiry, the academic freedom, and the benefit to the public good are what has kept me at Ames,” reflected Ross Beyer, a planetary scientist with the SETI Institute at Ames. “There’s not a lot of commercial incentive to study other planets, for example, but maybe there will be soon. In the meantime, only with government funding and agencies like NASA can we develop missions to explore the unknown in order to make important fundamental science discoveries and broadly share them.”
      For Beyer, his boundary-breaking moment came when he searched – and found – software engineers at Ames capable and passionate about open-source software to generate accurate, high-resolution, texture-mapped, 3D terrain models from stereo image pairs. He and other teams of NASA scientists have since applied that software to study and better understand everything from changes in snow and ice characteristics on Earth, as well as features like craters, mountains, and caves on Mars or the Moon. This capability is part of the Artemis campaign, through which NASA will establish a long-term presence at the Moon for scientific exploration with commercial and international partners. The mission is to learn how to live and work away from home, promote the peaceful use of space, and prepare for future human exploration of Mars. 
      “As NASA and private companies send missions to the Moon, they need to plan landing sites and understand the local environment, and our software is freely available for anyone to use,” Beyer said. “Years ago, our management could easily have said ‘No, let’s keep this software to ourselves; it gives us a competitive advantage.’ They didn’t, and I believe that NASA writ large allows you to work on things and share those things and not hold them back.” 
      When looking forward to what the next 85 years might bring, researchers shared a belief that advancements in technology and opportunities to innovate are as expansive as space itself, but like all living things, they need a healthy atmosphere to thrive. Balaban offered, “This freedom to innovate is precious and cannot be taken for granted. It can easily fall victim if left unprotected. It is absolutely critical to retain it going forward, to ensure our nation’s continuing vitality and the strength of the other freedoms we enjoy.”
      Ames Aeronautical Laboratory.NACAView the full article
    • By NASA
      A method for evaluating thermophysical properties of metal alloys

      Simulation of the solidification of metal alloys, a key step in certain industrial processes, requires reliable data on their thermophysical properties such as surface tension and viscosity. Researchers propose comparing predictive models with experimental outcomes as a method to assess these data.

      Scientists use data on surface tension and viscosity of titanium-based alloys in industrial processes such as casting and crystal growth. Non-Equilibrium Solidification, Modelling for Microstructure Engineering of Industrial Alloys, an ESA (European Space Agency) investigation, examined the microstructure and growth of these alloys using the station’s Electromagnetic Levitator. This facility eliminates the need for containers, which can interfere with experiment results.
      European Space Agency (ESA) astronaut Alexander Gerst is shown in the Columbus module of the International Space Station during the installation of the Electromagnetic Levitator.ESA/Alexander Gerst Overview of techniques for measuring thermal diffusion

      Researchers present techniques for measuring thermal diffusion of molecules in a mixture. Thermal diffusion is measured using the Soret coefficient – the ratio of movement caused by temperature differences to overall movement within the system. This has applications in mineralogy and geophysics such as predicting the location of natural resources beneath Earth’s surface.

      A series of ESA investigations studied diffusion, or how heat and particles move through liquids, in microgravity. Selectable Optical Diagnostics Instrument-Influence of VIbrations on DIffusion of Liquids examined how vibrations affect diffusion in mixtures with two components and SODI-DCMIX measured more-complex diffusion in mixtures of three or more components. Understanding and predicting the effects of thermal diffusion has applications in various industries such as modeling of underground oil reservoirs.
      NASA astronaut Kate Rubins works on Selectable Optical Diagnostics Instrument Experiment Diffusion Coefficient Mixture-3 (SODI) DCMix-3 installation inside the station’s Microgravity Science Glovebox.JAXA (Japan Aerospace Exploration Agency)/Takuya Onishi Research validates ferrofluid technology

      Researchers validated the concept of using ferrofluid technology to operate a thermal control switch in a spacecraft. This outcome could support development of more reliable and long-lasting spacecraft thermal management systems, increasing mission lifespan and improving crew safety.

      Überflieger 2: Ferrofluid Application Research Goes Orbital analyzed the performance of ferrofluids, a technology that manipulates components such as rotors and switches using magnetized liquids and a magnetic field rather than mechanical systems, which are prone to wear and tear. This technology could lower the cost of materials for thermal management systems, reduce the need for maintenance and repair, and help avoid equipment failure. The paper discusses possible improvements to the thermal switch, including optimizing the geometry to better manage heat flow.
      A view of the Ferrofluid Application Research Goes Orbital investigation hardware aboard the International Space Station. UAE (United Arab Emirates)/Sultan AlneyadiView the full article
  • Check out these Videos

×
×
  • Create New...