Jump to content

La NASA identifica causa de pérdida de material del escudo térmico de Orion de Artemis I


Recommended Posts

  • Publishers
Posted
jsc2024e044990~large.jpg?w=1920&h=1280&f
El 28 de junio de 2024, la nave espacial Orion de Artemis II es retirada de la Celda de Ensamblaje Final y Pruebas del Sistema (FAST, por sus siglas en inglés) y colocada en la cámara de altitud oeste dentro del Edificio de Operaciones y Revisión del Centro Espacial Kennedy de la NASA en Florida. Dentro de la cámara de altitud, la nave espacial se sometió a una serie de pruebas que simulaban las condiciones de vacío del espacio profundo.
Crédito de la foto: NASA / Rad Sinyak

Read this story in English here.

Tras extensos análisis y pruebas, la NASA ha identificado la causa técnica de la pérdida imprevista de material carbonizado en el escudo térmico de la nave espacial Orion de Artemis I.

Los ingenieros determinaron que, cuando Orion regresaba de su misión sin tripulación alrededor de la Luna, los gases generados dentro del material ablativo exterior del escudo térmico, denominado Avcoat, no pudieron ventilarse y disiparse como estaba previsto. Esto permitió que se acumulara presión y se produjeran grietas, lo que causó que parte del material carbonizado se desprendiera en varios lugares.

“Nuestros primeros vuelos de Artemis son una campaña de prueba, y el vuelo de prueba de Artemis I nos dio la oportunidad de comprobar nuestros sistemas en el entorno del espacio profundo antes de incorporar a la tripulación en futuras misiones”, dijo Amit Kshatriya, administrador asociado adjunto de la Oficina del programa De la Luna a Marte, en la sede de la NASA en Washington. “La investigación sobre el escudo térmico ayudó a garantizar que comprendiéramos completamente la causa y la naturaleza del problema, así como el riesgo que les pedimos a nuestras tripulaciones que asuman cuando emprendan su viaje a la Luna”.

Los hallazgos


Los equipos técnicos adoptaron un enfoque metódico para comprender e identificar el origen del problema de pérdida de material carbonizado, incluyendo el muestreo detallado del escudo térmico de Artemis I, la revisión de las imágenes y los datos de los sensores de la nave espacial, y pruebas y análisis exhaustivos en tierra.

Durante Artemis I, los ingenieros utilizaron la técnica de guiamiento de reentrada atmosférica doble para el regreso de Orion a la Tierra. Esta técnica ofrece más flexibilidad ya que amplía el alcance del vuelo de Orion después del punto de reentrada para llevarlo hasta un lugar de amerizaje en el océano Pacífico. Con esta maniobra, Orion se sumergió en la parte superior de la atmósfera de la Tierra y utilizó la resistencia atmosférica para reducir su velocidad. A continuación, Orion utilizó la sustentación aerodinámica de la cápsula para rebotar y salir de nuevo de la atmósfera, para luego volver a entrar en el descenso final con paracaídas para su amerizaje.

Utilizando los datos de la respuesta del material Avcoat de Artemis I, el equipo de investigación pudo simular el entorno de la trayectoria de entrada de Artemis I —una parte clave para comprender la causa del problema— dentro de la instalación de chorro en arco del Centro de Investigación Ames de la NASA en California. Observaron que, durante el período entre las inmersiones en la atmósfera, las tasas de calentamiento disminuyeron y la energía térmica se acumuló dentro del material Avcoat del escudo térmico. Esto condujo a la acumulación de gases que forman parte del proceso de ablación (desgaste) previsto. Debido a que el Avcoat no tenía “permeabilidad”, la presión interna se acumuló y produjo el agrietamiento y el desprendimiento desigual de la capa exterior.

Los equipos técnicos realizaron extensas pruebas en tierra para simular el fenómeno de rebote en la reentrada antes de la misión Artemis I. Sin embargo, hicieron pruebas a velocidades de calentamiento mucho más altas que las que la nave espacial experimentó durante su vuelo. Las altas velocidades de calentamiento puestas a prueba en tierra permitieron que el material carbonizado permeable se formara y se desgastara como estaba previsto, liberando la presión del gas. El calentamiento menos severo observado durante la reentrada real de Artemis I desaceleró el proceso de formación de material carbonizado, al tiempo que siguió creando gases en esta capa de material. La presión del gas se acumuló hasta el punto de agrietar el Avcoat y liberar partes de la capa carbonizada. Las mejoras recientes en la instalación de chorro en arco han permitido una reproducción más precisa de los entornos de vuelo registrados por Artemis I, de modo que este comportamiento de agrietamiento pudo demostrarse en pruebas en tierra.

Si bien Artemis I no estaba tripulado, los datos del vuelo mostraron que, si la tripulación hubiera estado a bordo, habría estado a salvo. Los datos de la temperatura de los sistemas del módulo de tripulación dentro de la cabina también estaban dentro de los límites y se mantenían estables, con temperaturas alrededor de los 24 grados centígrados (75 grados Fahrenheit). El desempeño del escudo térmico superó las expectativas.

Los ingenieros comprenden tanto el fenómeno material como el entorno con el que interactúan los materiales durante la entrada a la atmósfera. Al cambiar el material o el entorno, pueden predecir cómo responderá la nave espacial. Los equipos de la NASA acordaron por unanimidad que la agencia puede desarrollar un análisis de vuelo aceptable que mantenga a la tripulación segura utilizando el actual escudo térmico de Artemis II con cambios operativos para su entrada en la atmósfera.

El proceso de investigación de la NASA

Poco después de que los ingenieros de la NASA descubrieran las condiciones del escudo térmico de Artemis I, la agencia comenzó un extenso proceso de investigación, el cual contó con un equipo multidisciplinario de expertos en sistemas de protección térmica, aerotermodinámica, pruebas y análisis térmicos, análisis de estrés (fatiga de materiales), pruebas y análisis de materiales, y muchos otros campos técnicos relacionados. El Centro de Ingeniería y Seguridad de la NASA también participó para aportar su experiencia técnica, incluyendo evaluación no destructiva, análisis térmico y estructural, análisis de árbol de fallas y otros métodos de respaldo de las pruebas.

“Nos tomamos muy en serio nuestro proceso de investigación del escudo térmico, con la seguridad de la tripulación como la fuerza impulsora que mueve esta investigación”, dijo Howard Hu, gerente del Programa Orion del Centro Espacial Johnson de la NASA en Houston. “El proceso fue extenso. Le dimos al equipo el tiempo necesario para investigar todas las causas posibles, y trabajaron incansablemente para asegurarse de que entendiéramos el fenómeno y los pasos necesarios para mitigar este problema en futuras misiones”.

El escudo térmico de Artemis I estaba muy cargado de instrumentos para este vuelo, e incluía sensores de presión, extensómetros y termopares a diferentes profundidades del material ablativo. Los datos de estos instrumentos acrecentaron el análisis de muestras físicas, lo que permitió al equipo validar modelos informáticos, crear reconstrucciones de entornos, proporcionar perfiles de temperatura interna y dar información sobre el momento de la pérdida de material carbonizado.

Alrededor de 200 muestras de Avcoat fueron extraídas del escudo térmico de Artemis I en el Centro de Vuelo Espacial Marshall de la NASA en Alabama para su análisis e inspección. El equipo llevó a cabo una evaluación no destructiva para “ver” dentro del escudo térmico.

Uno de los hallazgos más importantes que arrojó el examen de estas muestras fue que algunas superficies en la zona del Avcoat permeable, las cuales habían sido identificadas antes del vuelo, no sufrieron agrietamiento ni pérdida de material carbonizado. Dado que estas superficies eran permeables al comienzo de la entrada en la atmósfera, los gases producidos por la ablación pudieron ventilarse adecuadamente, eliminando la acumulación de la presión, el agrietamiento y la pérdida de material carbonizado.

Los ingenieros hicieron ocho campañas separadas de pruebas térmicas posteriores al vuelo para respaldar el análisis del origen de estas condiciones, y completaron 121 pruebas individuales. Estas pruebas fueron llevadas a cabo en instalaciones en diferentes lugares de Estados Unidos que cuentan con capacidades únicas, entre ellas: la Instalación de Calentamiento Aerodinámico en el Complejo de Chorro en Arco del centro Ames, para poner a prueba perfiles de calentamiento convectivo con diversos gases de prueba; el Laboratorio de Evaluación de Materiales Endurecidos por Láser en la Base de la Fuerza Aérea Patterson-Wright en Ohio, con el fin de poner a prueba perfiles de calentamiento radiativo y proporcionar radiografías en tiempo real; y la Instalación de Calentamiento por Interacción del centro Ames, para poner a prueba perfiles combinados de calentamiento convectivo y radiativo en el aire en bloques completos, esto es, aplicando todas las pruebas en cada bloque de material.

Los expertos en aerotermia también completaron dos campañas de pruebas en el túnel de viento hipersónico del Centro de Investigación Langley de la NASA en Virginia y en las instalaciones de pruebas aerodinámicas del CUBRC en Buffalo, Nueva York, para realizar pruebas con una diversidad de configuraciones de pérdida de material carbonizado, y mejorar y validar los modelos analíticos. También se realizaron pruebas de permeabilidad en el centro Kratos en Alabama, en la Universidad de Kentucky y en el centro Ames para caracterizar aún mejor el volumen elemental y la porosidad del Avcoat. La instalación de pruebas del centro de investigaciones Advanced Light Source, una instalación para usuarios científicos del Departamento de Energía de Estados Unidos en el Laboratorio Nacional Lawrence Berkeley, también fue utilizada por los ingenieros para examinar el comportamiento del calentamiento del Avcoat a nivel microestructural.

En la primavera de 2024, la NASA creó un equipo de revisión independiente que realizó una revisión exhaustiva del proceso de investigación, los hallazgos y los resultados de la agencia. La revisión independiente fue dirigida por Paul Hill, un exdirectivo de la NASA que se desempeñó como director principal de vuelo del transbordador espacial para el programa Return to Flight (Regreso a los vuelos) después del accidente del Columbia, quien también dirigió la Dirección de Operaciones de Misiones de la NASA y es miembro actual del Panel Asesor de Seguridad Aeroespacial de la agencia. La revisión se llevó a cabo durante un período de tres meses a fin de evaluar las condiciones del escudo térmico posteriores al vuelo, los datos del entorno para la entrada a la atmósfera, la respuesta térmica del material ablativo y el avance de las investigaciones de la NASA. El equipo de revisión estuvo de acuerdo con los hallazgos de la NASA sobre la causa técnica del comportamiento físico del escudo térmico.

Avances en el escudo térmico

Al saber que la permeabilidad de Avcoat es un parámetro clave para evitar o minimizar la pérdida de material carbonizado, la NASA tiene la información correcta para garantizar la seguridad de la tripulación y mejorar el desempeño de los futuros escudos térmicos del programa Artemis. A lo largo de su historia, la NASA ha aprendido de cada uno de sus vuelos e incorporado mejoras en el hardware y las operaciones. Los datos recopilados a lo largo del vuelo de prueba de Artemis I han proporcionado a los ingenieros información valiosísima para guiar futuros diseños y refinamientos. Los datos de desempeño del vuelo de retorno lunar y un sólido programa de calificación de pruebas en tierra, mejorado después de la experiencia del vuelo de Artemis I, están respaldando las mejoras en la producción del escudo térmico de Orion. Los futuros escudos térmicos para el regreso de Orion en las misiones de alunizaje de Artemis están en producción para lograr una uniformidad y permeabilidad consistente. El programa de calificación se está completando actualmente, junto con la producción de bloques de Avcoat más permeables, en la Instalación de Ensamblaje Michoud de la NASA en Nueva Orleans.

Para obtener más información sobre las campañas Artemis de la NASA, visita el sitio web (en inglés):

https://www.nasa.gov/artemis

-fin-


Meira Bernstein / Rachel Kraft / María José Viñas
Sede, Washington
202-358-1600
meira.b.bernstein@nasa.gov / rachel.h.kraft@nasa.gov / maria-jose.vinasgarcia@nasa.gov

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Caption: The Intuitive Machines lunar lander that will deliver NASA science and technology to the Moon as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign is encapsulated in the fairing of the SpaceX Falcon 9 rocket. Credit: SpaceX Carrying NASA science and technology to the Moon as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, the Intuitive Machines IM-2 mission is targeted to launch no earlier than Wednesday, Feb. 26. The mission will lift off on a SpaceX Falcon 9 rocket from Launch Complex 39A at the agency’s Kennedy Space Center in Florida.

      Live launch coverage will air on NASA+ with prelaunch events starting Tuesday, Feb. 25. Learn how to watch NASA content through a variety of platforms, including social media. Follow all events at:
      https://www.nasa.gov/live
      After the launch, Intuitive Machines’ lunar lander, Athena, will spend approximately one week in transit to the Moon before landing on the lunar surface no earlier than Thursday, March 6. The lander will carry NASA science investigations and technology demonstrations to further our understanding of the Moon’s environment and help prepare for future human missions to the lunar surface, as part of the agency’s Moon to Mars exploration approach. 

      Among the items on Intuitive Machines’ lander, the IM-2 mission will be one of the first on-site demonstrations of resource use on the Moon. A drill and mass spectrometer will measure the potential presence of volatiles or gases from lunar soil in Mons Mouton, a lunar plateau in the Moon’s South Pole. In addition, a passive Laser Retroreflector Array (LRA) on the top deck of the lander will bounce laser light back at any orbiting or incoming spacecraft to give future spacecraft a permanent reference point on the lunar surface. Other technology instruments on this delivery will demonstrate a robust surface communications system and deploy a propulsive drone that can hop across the lunar surface.
      Launching as a rideshare with the IM-2 delivery, NASA’s Lunar Trailblazer spacecraft also will begin its journey to lunar orbit, where it will map the distribution of the different forms of water on the Moon.

      The deadline has passed for media accreditation for in-person coverage of this launch. The agency’s media accreditation policy is available online. More information about media accreditation is available by emailing: ksc-media-accreditat@mail.nasa.gov.

      Full coverage of this mission is as follows (all times Eastern):

      Tuesday, Feb. 25

      11 a.m. – Lunar science and technology media teleconference with the following participants:
      Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters Niki Werkheiser, director, technology maturation, Space Technology Mission Directorate, NASA Headquarters Jackie Quinn, Polar Resources Ice Mining Experiment 1 (PRIME-1) project manager, NASA Kennedy Daniel Cremons, LRA deputy principal investigator, NASA’s Goddard Space Flight Center Bethany Ehlmann, Lunar Trailblazer principal investigator, Caltech Trent Martin, senior vice president, space systems, Intuitive Machines Thierry Klein, president, Bell Labs Solution Research, Nokia Audio of the teleconference will stream live on the agency’s website:
      https://www.nasa.gov/live/
      Media may ask questions via phone only. For the dial-in number and passcode, please contact the Kennedy newsroom no later than 10 a.m. EST Tuesday, Feb. 25, at: ksc-newsroom@mail.nasa.gov.

      Wednesday, Feb. 26


      11:30 a.m. – Lunar delivery readiness media teleconference with the following participants:
      Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters Clayton Turner, associate administrator, Space Technology Mission Directorate, NASA Headquarters Trent Martin, senior vice president, space systems, Intuitive Machines William Gerstenmaier, vice president, build and flight reliability, SpaceX Melody Lovin, launch weather officer, Cape Canaveral Space Force Station’s 45th Weather Squadron Audio of the teleconference will stream live on the agency’s website:
      https://www.nasa.gov/live/
      Media may ask questions via phone only. For the dial-in number and passcode, please contact the Kennedy newsroom no later than 10 a.m. EST Wednesday, Feb. 26, at: ksc-newsroom@mail.nasa.gov.

      Launch coverage will begin on NASA+ approximately 45 minutes before liftoff. A specific time will be shared the week of Feb. 24.

      NASA Launch Coverage
      Audio only of the media teleconferences and launch coverage will be carried on the NASA “V” circuits, which may be accessed by dialing 321-867-1220, -1240, or -7135. On launch day, the full mission broadcast can be heard on -1220 and -1240, while the countdown net only can be heard on -7135 beginning approximately one hour before the mission broadcast begins.

      On launch day, a “tech feed” of the launch without NASA TV commentary will be carried on the NASA TV media channel.

      NASA Website Launch Coverage
      Launch day coverage of the mission will be available on the NASA website. Coverage will include live streaming and blog updates beginning Feb. 26, as the countdown milestones occur. On-demand streaming video and photos of the launch will be available shortly after liftoff. For questions about countdown coverage, contact the Kennedy newsroom at 321-867-2468.

      NASA Virtual Guests for Launch
      Members of the public can register to attend this launch virtually. Registrants will receive mission updates and activities by email, including curated mission resources, schedule updates, and a virtual guest passport stamp following a successful launch. Print your passport and get ready to add your stamp!

      Watch, Engage on Social Media
      Let people know you’re following the mission on X, Facebook, and Instagram by using the hashtag #Artemis. You can also stay connected by following and tagging these accounts:

      X: @NASA, @NASAKennedy, @NASAArtemis, @NASAMoon

      Facebook: NASA, NASAKennedy, NASAArtemis

      Instagram: @NASA, @NASAKennedy, @NASAArtemis

      Coverage en Español
      Did you know NASA has a Spanish section called NASA en español? Check out NASA en español on X, Instagram, Facebook, and YouTube for additional mission coverage.

      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo o Messod Bendayan a: antonia.jaramillobotero@nasa.gov o messod.c.bendayan@nasa.gov.

      For more information about the agency’s CLPS initiative, see:
      https://www.nasa.gov/clps
      -end-
      Karen Fox / Jasmine Hopkins
      Headquarters, Washington
      301-286-6284 / 321-432-4624
      karen.c.fox@nasa.gov / jasmine.s.hopkins@nasa.gov

      Natalia Riusech / Nilufar Ramji
      Johnson Space Center, Houston
      281-483-5111
      nataila.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
      Antonia Jaramillo
      Kennedy Space Center, Florida
      321-501-8425
      antonia.jaramillobotero@nasa.gov
      Share
      Details
      Last Updated Feb 21, 2025 Related Terms
      Missions Artemis Commercial Lunar Payload Services (CLPS) Science Mission Directorate Space Technology Mission Directorate View the full article
    • By NASA
      Gateway’s HALO (Habitation and Logistics Outpost) in a cleanroom at Thales Alenia Space in Turin, Italy. After final installations are complete, it will be packaged and transported to the United States for final outfitting before being integrated with Gateway’s Power and Propulsion Element and launched to lunar orbit. Thales Alenia Space Through the Artemis campaign, NASA will send astronauts on missions to and around the Moon. The agency and its international partners report progress continues on Gateway, the first space station that will permanently orbit the Moon, after visiting the Thales Alenia Space facility in Turin, Italy, where initial fabrication for one of two Gateway habitation modules is nearing completion.
      Leaders from NASA, ESA (European Space Agency), and the Italian Space Agency, as well as industry representatives from Northrop Grumman and Thales Alenia Space, were in Turin to assess Gateway’s HALO (Habitation and Logistics Outpost) module before its primary structure is shipped from Italy to Northrop Grumman’s Gilbert, Arizona site in March. Following final outfitting and verification testing, the module will be integrated with the Power and Propulsion Element at NASA’s Kennedy Space Center in Florida.
      “Building and testing hardware for Gateway is truly an international collaboration,” said Jon Olansen, manager, Gateway Program, at NASA’s Johnson Space Center in Houston. “We’re excited to celebrate this major flight hardware milestone, and this is just the beginning – there’s impressive and important progress taking shape with our partners around the globe, united by our shared desire to expand human exploration of our solar system while advancing scientific discovery.”
      Gateway’s HALO (Habitation and Logistics Outpost) in a cleanroom at Thales Alenia Space in Turin, Italy. After final installations are complete, it will be packaged and transported to the United States for final outfitting before being integrated with Gateway’s Power and Propulsion Element and launched to lunar orbit.Thales Alenia Space To ensure all flight hardware is ready to support Artemis IV — the first crewed mission to Gateway – NASA is targeting the launch of HALO and the Power and Propulsion Element no later than December 2027. These integrated modules will launch aboard a SpaceX Falcon Heavy rocket and spend about a year traveling uncrewed to lunar orbit, while providing scientific data on solar and deep space radiation during transit.
      Launching atop HALO will be ESA’s Lunar Link communication system, which will provide high-speed communication between the Moon and Gateway. The system is undergoing testing at another Thales Alenia Space facility in Cannes, France.
      Once in lunar orbit, Gateway will continue scientific observations while awaiting the arrival of Artemis IV astronauts aboard an Orion spacecraft which will deliver and dock Gateway’s second pressurized habitable module, the ESA-led Lunar I-Hab. Thales Alenia Space, ESA’s primary contractor for the Lunar I-Hab and Lunar View refueling module, has begun production of the Lunar I-Hab, and design of Lunar View in Turin.
      Teams from NASA and ESA (European Space Agency), including NASA astronaut Stan Love (far right) and ESA astronaut Luca Parmitano (far left) help conduct human factors testing inside a mockup of Gateway’s Lunar I-Hab module.Thales Alenia Space Northrop Grumman and its subcontractor, Thales Alenia Space, completed welding of HALO in 2024, and the module successfully progressed through pressure and stress tests to ensure its suitability for the harsh environment of deep space.
      Maxar Space Systems is assembling the Power and Propulsion Element, which will make Gateway the most powerful solar electric propulsion spacecraft ever flown. Major progress in 2024 included installation of Xenon and chemical propulsion fuel tanks, and qualification of the largest roll-out solar arrays ever built. NASA and its partners will complete propulsion element assembly, and acceptance and verification testing of next-generation electric propulsion thrusters this year.
      The main bus of Gateway’s Power and Propulsion Element undergoes assembly and installations at Maxar Space Systems in Palo Alto, California.Maxar Space Systems SpaceX will provide both the Starship human landing system that will land astronauts on the lunar surface during NASA’s Artemis III mission and ferry astronauts from Gateway to the lunar South Pole region during Artemis IV, as well as provide logistics spacecraft to support crewed missions.
      NASA also has selected Blue Origin to develop Blue Moon, the human landing system for Artemis V, as well as logistics spacecraft for future Artemis missions. Having two distinct lunar landing designs provides flexibility and supports a regular cadence of Moon landings in preparation for future missions to Mars.
      CSA (Canadian Space Agency) is developing Canadarm3, an advanced robotics system, and JAXA (Japan Aerospace Exploration Agency) is designing and testing Lunar I-Hab’s vital life support systems, batteries, and a resupply and logistics vehicle called HTV-XG.
      NASA’s newest Gateway partner, the Mohammad Bin Rashid Space Centre (MBRSC) of the United Arab Emirates, kicked off early design for the Gateway Crew and Science Airlock that will be delivered on Artemis VI. The selection of Thales Alenia Space as its airlock prime contractor was announced by MBRSC on Feb. 4.
      Development continues to advance on three radiation-focused initial science investigations aboard Gateway. These payloads will help scientists better understand unpredictable space weather from the Sun and galactic cosmic rays that will affect astronauts and equipment during Artemis missions to the Moon and beyond.
      The Gateway lunar space station is a multi-purpose platform that offers capabilities for long-term exploration in deep space in support of NASA’s Artemis campaign and Moon to Mars objectives. Gateway will feature docking ports for a variety of visiting spacecraft, as well as space for crew to live, work, and prepare for lunar surface missions. As a testbed for future journeys to Mars, continuous investigations aboard Gateway will occur with and without crew to better understand the long-term effects of deep space radiation on vehicle systems and the human body as well as test and operate next generation spacecraft systems that will be necessary to send humans to Mars.
      Learn More About Gateway Facebook logo @NASAGateway @NASA_Gateway Instagram logo @nasaartemis Share
      Details
      Last Updated Feb 21, 2025 ContactLaura RochonLocationJohnson Space Center Related Terms
      Artemis Artemis 4 Earth's Moon Exploration Systems Development Mission Directorate Gateway Space Station Humans in Space Johnson Space Center Explore More
      2 min read Lunar Space Station Module Will Journey to US ahead of NASA’s Artemis IV Moon Mission
      A key element of the Gateway lunar space station has entered the cleanroom for final…
      Article 1 week ago 2 min read Advanced Modeling Enhances Gateway’s Lunar Dust Defense
      Ahead of more frequent and intense contact with dust during Artemis missions, NASA is developing…
      Article 1 month ago 2 min read Gateway Tops Off
      Gateway’s Power and Propulsion Element is now equipped with its xenon and liquid fuel tanks.
      Article 3 months ago Keep Exploring Discover More Topics From NASA
      Humans In Space
      Orion Spacecraft
      Human Landing System
      Extravehicular Activity and Human Surface Mobility
      View the full article
    • By NASA
      6 Min Read NASA’s PUNCH Mission to Revolutionize Our View of Solar Wind 
      Earth is immersed in material streaming from the Sun. This stream, called the solar wind, is washing over our planet, causing breathtaking auroras, impacting satellites and astronauts in space, and even affecting ground-based infrastructure. 
      NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) mission will be the first to image the Sun’s corona, or outer atmosphere, and solar wind together to better understand the Sun, solar wind, and Earth as a single connected system.  
      Launching no earlier than Feb. 28, 2025, aboard a SpaceX Falcon 9 rocket from Vandenberg Space Force Base in California, PUNCH will provide scientists with new information about how potentially disruptive solar events form and evolve. This could lead to more accurate predictions about the arrival of space weather events at Earth and impact on humanity’s robotic explorers in space. 
      “What we hope PUNCH will bring to humanity is the ability to really see, for the first time, where we live inside the solar wind itself,” said Craig DeForest, principal investigator for PUNCH at Southwest Research Institute’s Solar System Science and Exploration Division in Boulder, Colorado. 
      This video can be freely shared and downloaded at https://svs.gsfc.nasa.gov/14773.
      Video credit: NASA’s Goddard Space Flight Center Seeing Solar Wind in 3D 
      The PUNCH mission’s four suitcase-sized satellites have overlapping fields of view that combine to cover a larger swath of sky than any previous mission focused on the corona and solar wind. The satellites will spread out in low Earth orbit to construct a global view of the solar corona and its transition to the solar wind. They will also track solar storms like coronal mass ejections (CMEs). Their Sun-synchronous orbit will enable them to see the Sun 24/7, with their view only occasionally blocked by Earth.  
      Typical camera images are two dimensional, compressing the 3D subject into a flat plane and losing information. But PUNCH takes advantage of a property of light called polarization to reconstruct its images in 3D. As the Sun’s light bounces off material in the corona and solar wind, it becomes polarized — meaning the light waves oscillate in a particular way that can be filtered, much like how polarized sunglasses filter out glare off of water or metal. Each PUNCH spacecraft is equipped with a polarimeter that uses three distinct polarizing filters to capture information about the direction that material is moving that would be lost in typical images.  
      “This new perspective will allow scientists to discern the exact trajectory and speed of coronal mass ejections as they move through the inner solar system,” said DeForest. “This improves on current instruments in two ways: with three-dimensional imaging that lets us locate and track CMEs which are coming directly toward us; and with a broad field of view, which lets us track those CMEs all the way from the Sun to Earth.” 
      All four spacecraft are synchronized to serve as a single “virtual instrument” that spans the whole PUNCH constellation. 
      Crews conduct additional solar array deployment testing for NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) satellites at Astrotech Space Operations located on Vandenberg Space Force Base in California on Wednesday, Jan. 22, 2025. USSF 30th Space Wing/Alex Valdez The PUNCH satellites include one Narrow Field Imager and three Wide Field Imagers. The Narrow Field Imager (NFI) is a coronagraph, which blocks out the bright light from the Sun to better see details in the Sun’s corona, recreating what viewers on Earth see during a total solar eclipse when the Moon blocks the face of the Sun — a narrower view that sees the solar wind closer to the Sun. The Wide Field Imagers (WFI) are heliospheric imagers that view the very faint, outermost portion of the solar corona and the solar wind itself — giving a wide view of the solar wind as it spreads out into the solar system.   
      “I’m most excited to see the ‘inbetweeny’ activity in the solar wind,” said Nicholeen Viall, PUNCH mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This means not just the biggest structures, like CMEs, or the smallest interactions, but all the different types of solar wind structures that fill that in between area.” 
      When these solar wind structures from the Sun reach Earth’s magnetic field, they can drive dynamics that affect Earth’s radiation belts. To launch spacecraft through these belts, including ones that will carry astronauts to the Moon and beyond, scientists need to understand the solar wind structure and changes in this region. 
      Building Off Other Missions 
      “The PUNCH mission is built on the shoulders of giants,” said Madhulika Guhathakurta, PUNCH program scientist at NASA Headquarters in Washington. “For decades, heliophysics missions have provided us with glimpses of the Sun’s corona and the solar wind, each offering critical yet partial views of our dynamic star’s influence on the solar system.” 
      When scientists combine data from PUNCH and NASA’s Parker Solar Probe, which flies through the Sun’s corona, they will see both the big picture and the up-close details. Working together, Parker Solar Probe and PUNCH span a field of view from a little more than half a mile (1 kilometer) to over 160 million miles (about 260 million kilometers). 
      Additionally, the PUNCH team will combine their data with diverse observations from other missions, like NASA’s CODEX (Coronal Diagnostic Experiment) technology demonstration, which views the corona even closer to the surface of the Sun from its vantage point on the International Space Station. PUNCH’s data also complements observations from NASA’s EZIE (Electrojet Zeeman Imaging Explorer) — targeted for launch in March 2025 — which investigates the magnetic field perturbations associated with Earth’s high-altitude auroras that PUNCH will also spot in its wide-field view.  
      A conceptual animation showing the heliosphere, the vast bubble that is generated by the Sun’s magnetic field and envelops all the planets.
      NASA’s Goddard Space Flight Center Conceptual Image Lab As the solar wind that PUNCH will observe travels away from the Sun and Earth, it will then be studied by the IMAP (Interstellar Mapping and Acceleration Probe) mission, which is targeting a launch in 2025. 
      “The PUNCH mission will bridge these perspectives, providing an unprecedented continuous view that connects the birthplace of the solar wind in the corona to its evolution across interplanetary space,” said Guhathakurta. 
      The PUNCH mission is scheduled to conduct science for at least two years, following a 90-day commissioning period after launch. The mission is launching as a rideshare with the agency’s next astrophysics observatory, SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer).  
      “PUNCH is the latest heliophysics addition to the NASA fleet that delivers groundbreaking science every second of every day,” said Joe Westlake, heliophysics division director at NASA Headquarters in Washington. “Launching this mission as a rideshare bolsters its value to the nation by optimizing every pound of launch capacity to maximize the scientific return for the cost of a single launch.” 
      The PUNCH mission is led by Southwest Research Institute’s offices in San Antonio, Texas, and Boulder, Colorado. The mission is managed by the Explorers Program Office at NASA Goddard for NASA’s Science Mission Directorate in Washington. 
      By Abbey Interrante 
      NASA’s Goddard Space Flight Center, Greenbelt, Md. 
      Header Image:
      An artist’s concept showing the four PUNCH satellites orbiting Earth.
      Credits: NASA’s Goddard Space Flight Center Conceptual Image Lab
      Share








      Details
      Last Updated Feb 21, 2025 Related Terms
      Heliophysics Coronal Mass Ejections Goddard Space Flight Center Heliophysics Division Polarimeter to Unify the Corona and Heliosphere (PUNCH) Science Mission Directorate Solar Wind Space Weather The Sun Explore More
      2 min read Hubble Spies a Spiral That May Be Hiding an Imposter


      Article


      3 hours ago
      3 min read Eclipses to Auroras: Eclipse Ambassadors Experience Winter Field School in Alaska


      Article


      3 days ago
      2 min read NASA Science: Being Responsive to Executive Orders


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      Jorge Chong is helping shape the future of human spaceflight, one calculation at a time. As a project manager for TRON (Tracking and Ranging via Optical Navigation) and a guidance, navigation, and control (GNC) test engineer in the Aeroscience and Flight Mechanics Division, he is leading efforts to ensure the Orion spacecraft can navigate deep space autonomously. 
      Jorge Chong in front of the Mission Control Center at NASA’s Johnson Space Center in Houston when he helped with optical navigation operations during Artemis I.Image courtesy of Jorge Chong “GNC is like the brain of a spacecraft. It involves a suite of sensors that keep track of where the vehicle is in orbit so it can return home safely,” he said. “Getting to test the components of a GNC system makes you very familiar with how it all works together, and then to see it fly and help it operate successfully is immensely rewarding.” 

      His work is critical to the Artemis campaign, which aims to return humans to the Moon and pave the way for Mars. From developing optical navigation technology that allows Orion to determine its position using images of Earth and the Moon to testing docking cameras and Light Detection and Ranging systems that enable autonomous spacecraft rendezvous, Chong is pushing the limits of exploration. He also runs high-fidelity flight simulations at Lockheed Martin’s Orion Test Hardware facility in Houston, ensuring Orion’s software is ready for the demands of spaceflight. 

      Chong’s NASA career spans seven years as a full-time engineer, plus three years as a co-op student at NASA’s Johnson Space Center in Houston. In 2024, he began leading Project TRON, an optical navigation initiative funded by a $2 million Early Career Initiative award. The project aims to advance autonomous space navigation—an essential capability for missions beyond Earth’s orbit. 
      Jorge Chong and his colleagues with the Artemis II docking camera in the Electro-Optics Lab at Johnson. From left to right: Paul McKee, Jorge Chong, and Kevin Kobylka. Bottom right: Steve Lockhart and Ronney Lovelace. Thanks to Chong’s work, the Artemis Generation is one step closer to exploring the Moon, Mars, and beyond. He supported optical navigation operations during Artemis I, is writing software that will fly on Artemis II, and leads optical testing for Orion’s docking cameras. But his path to NASA wasn’t always written in the stars. 

      “I found math difficult as a kid,” Chong admits. “I didn’t enjoy it at first, but my parents encouraged me patiently, and eventually it started to click and then became a strength and something I enjoyed. Now, it’s a core part of my career.” He emphasizes that perseverance is key, especially for students who may feel discouraged by challenging subjects. 

      Most of what Chong has learned, he says, came from working collaboratively on the job. “No matter how difficult something may seem, anything can be learned,” he said. “I could not have envisioned being involved in projects like these or working alongside such great teams before coming to Johnson.” 
      Jorge Chong (left) and his siblings Ashley and Bronsen at a Texas A&M University game. Image courtesy of Jorge Chong His career has also reinforced the importance of teamwork, especially when working with contractors, vendors, universities, and other NASA centers. “Coordinating across these dynamic teams and keeping the deliverables on track can be challenging, but it has helped to be able to lean on teammates for assistance and keep communication flowing,” said Chong.

      And soon, those systems will help Artemis astronauts explore places no human has gone before. Whether guiding Orion to the Moon or beyond, Chong’s work is helping NASA write the next chapter of space exploration. 

      “I thank God for the doors He has opened for me and the incredible mentors and coworkers who have helped me along the way,” he said. 
      View the full article
    • By NASA
      NASA/Kim Shiflett Engineers at NASA’s Kennedy Space Center in Florida completed stacking the twin SLS (Space Launch System) solid rocket boosters – seen in this Feb. 19, 2025, photo – inside the Vehicle Assembly Building for the agency’s Artemis II crewed test flight around the Moon.
      During stacking operations, which began Nov. 20, 2024, technicians used a massive overhead crane to lift each booster segment into place on mobile launcher 1, the 380-foot-tall structure used to process, assemble, and launch the SLS rocket and Orion spacecraft.
      Learn more about the process of stacking from Exploration Ground Systems.
      Image credit: NASA/Kim Shiflett
      View the full article
  • Check out these Videos

×
×
  • Create New...