Jump to content

NASA to Test Technology for X-59’s Unique Shock Wave Measurements


Recommended Posts

  • Publishers
Posted

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

NASA will soon test advancements made on a key tool for measuring the unique “sonic thumps” that its quiet supersonic X-59 research aircraft will make while flying.

A shock-sensing probe is a cone-shaped air data probe developed with specific features to capture the unique shock waves the X-59 will produce. Researchers at NASA’s Armstrong Flight Research Center in Edwards, California developed two versions of the probe to collect precise pressure data during supersonic flight. One probe is optimized for near-field measurements, capturing shock waves that occur very close to where the X-59 will generate them. The second shock-sensing probe will measure the mid-field, collecting data at altitudes between 5,000 to 20,000 feet below the aircraft.

When an aircraft flies supersonic, it generates shockwaves that travel through the surrounding air, producing loud sonic booms. The X-59 is designed to divert those shock waves, reducing the loud sonic booms to quieter sonic thumps. During test flights, an F-15B aircraft with a shock-sensing probe attached to its nose will fly with the X-59. The roughly 6-foot probe will continuously collect thousands of pressure samples per second, capturing air pressure changes as it flies through shock waves. Data from the sensors will be vital for validating computer models that predict the strength of the shock waves produced by the X-59, the centerpiece of NASA’s Quesst mission.

“A shock-sensing probe acts as the truth source, comparing the predicted data with the real-world measurements,” said Mike Frederick, NASA principal investigator for the probe.

For the near-field probe, the F-15B will fly close behind the X-59 at its cruising altitude of approximately 55,000 feet, utilizing a “follow-the-leader” setup allowing researchers to analyze shock waves in real time. The mid-field probe, intended for separate missions, will collect more useful data as the shock waves travel closer to the ground.

The probes’ ability to capture small pressure changes is especially important for the X-59, as its shock waves are expected to be much weaker than those of most supersonic aircraft. By comparing the probes’ data to predictions from advanced computer models, researchers can better evaluate their accuracy.

“The probes have five pressure ports, one at the tip and four around the cone,” said Frederick. “These ports measure static pressure changes as the aircraft flies through shock waves, helping us understand the shock characteristics of a particular aircraft.” The ports combine their measurements to calculate the local pressure, speed, and direction of airflow.

Researchers will soon evaluate upgrades to the near-field shock-sensing probe through test flights, where the probe, mounted on one F-15B, will collect data by chasing a second F-15 during supersonic flight. The upgrades include having the probe’s pressure transducers – devices that measure the air pressure on the cone – just 5 inches from its ports. Previous designs placed those transducers nearly 12 feet away, delaying recording time and distorting measurements.

Temperature sensitivity on previous designs also presented a challenge, causing fluctuations in accuracy with changing conditions. To solve this, the team designed a heating system to maintain the pressure transducers at a consistent temperature during flight.

“The probe will meet the resolution and accuracy requirements from the Quesst mission,” Frederick said. “This project shows how NASA can take existing technology and adapt it to solve new challenges.”

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      On April 8, 2025, Bangladesh became the 54th nation to sign the accords. The commitments of the Artemis Accords and efforts by the signatories to advance implementation of these principles support the safe and sustainable exploration of space.NASA Following a signing ceremony Tuesday in Bangladesh’s capital city of Dhaka, NASA congratulates Bangladesh as the 54th nation to commit to the safe and responsible exploration of space that benefits humanity.
      “We are thrilled by Bangladesh’s signature of the Accords,” said NASA acting Administrator Janet Petro. “Bangladesh affirms its role in shaping the future of space exploration. This is about ensuring that our journey to the Moon – and beyond – is peaceful, sustainable, and transparent. We look forward to working together, to learning from one another, and to seeing how Bangladesh’s incredible talent and vision contribute to humanity’s next great chapter in space.”
      Ashraf Uddin, the secretary of defense for Bangladesh,signed the Artemis Accords on behalf of the country. Charge d’Affaires Tracey Jacobson for the U.S. Embassy in Dhaka, Bangladesh, participated in the event, and Petro contributed remarks in a pre-recorded video message.
      “Bangladesh’s commitment to the Artemis Accords will enhance the country’s engagement with NASA and the international community,” said Bangladesh’s Chief Advisor Muhammad Yunus. “By signing the accords, Bangladesh builds upon an important foundation for the open, responsible and peaceful exploration of space.”
      In 2020, the United States, led by NASA and the U.S. Department of State, and seven other initial signatory nations established the Artemis Accords, a first-ever set of practical guidelines for nations to increase safety of operations and reduce risk and uncertainty in their civil exploration activities. That group of signatories has grown to more than 50 countries today.
      The Artemis Accords are grounded in the Outer Space Treaty and other agreements, including the Registration Convention and the Rescue and Return Agreement, as well as best practices for responsible behavior that NASA and its partners have supported, including the public release of scientific data. 
      Learn more about the Artemis Accords at:
      https://www.nasa.gov/artemis-accords
      -end-
      Amber Jacobson / Jennifer Dooren
      Headquarters, Washington
      202-358-1600
      amber.c.jacobson@nasa.gov / jennifer.m.dooren@nasa.gov
      Share
      Details
      Last Updated Apr 08, 2025 EditorJennifer M. DoorenLocationNASA Headquarters Related Terms
      Office of International and Interagency Relations (OIIR) Artemis Accords View the full article
    • By NASA
      A Soyuz rocket launches to the International Space Station with Expedition 73 crew members: NASA astronaut Jonny Kim, and Roscosmos cosmonauts Sergey Ryzhikov and Alexey Zubritskiy, onboard, Tuesday, April 8, 2025, at the Baikonur Cosmodrome in Kazakhstan. Photo Credit: (NASA/Joel Kowsky) NASA astronaut Jonny Kim, accompanied by Roscosmos cosmonauts Sergey Ryzhikov and Alexey Zubritsky, arrived at the International Space Station on Tuesday, bringing the number of residents to 10 for the next two weeks.
      The Soyuz MS-27 spacecraft carrying Kim, Ryzhikov, and Zubritsky docked to the Prichal module at 4:57 a.m. EDT, following a three-hour, two-orbit journey to the space station. They launched at 1:47 a.m. (10:47 a.m. Baikonur time) from the Baikonur Cosmodrome in Kazakhstan.
      When hatches open at approximately 7:20 a.m., the trio will join the Expedition 72 crew, including NASA astronauts Nichole Ayers, Anne McClain, and Don Pettit, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonauts Kirill Peskov, Ivan Vagner, and Alexey Ovchinin.
      NASA’s live coverage of hatch opening will begin at 7 a.m. on NASA+. Learn how to watch NASA content through a variety of platforms.
      Expedition 73 will begin on Saturday, April 19, following the departure of Pettit, Ovchinin, and Vagner, as they conclude a seven-month science mission aboard the orbiting laboratory.
      Watch the ceremonial change of command at 2:40 p.m. on Friday, April 18, as Ovchinin transfers the distinction to Onishi, live on NASA+.
      Throughout his eight-month stay aboard the orbital outpost, Kim will conduct scientific research in technology development, Earth science, biology, human research, and more. This is the first flight for Kim and Zubritsky, and the third for Ryzhikov.
      Learn more about space station activities at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Apr 08, 2025 LocationNASA Headquarters Related Terms
      Humans in Space International Space Station (ISS) View the full article
    • By NASA
      NASA Astronaut Jonny Kim Soyuz MS-27 Hatch Opening
    • By NASA
      NASA Astronaut Jonny Kim Soyuz MS-27 Docking
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA uses radio frequency (RF) for a variety of tasks in space, including communications. The Europa Clipper RF panel — the box with the copper wiring near the top — will send data carried by radio waves through the spacecraft between the electronics and eight antennas. Credit: NASA Even before we’re aware of heart trouble or related health issues, our bodies give off warning signs in the form of vibrations. Technology to detect these signals has ranged from electrodes and patches to watches. Now, an innovative wall-mounted technology is capable of monitoring vital signs. Advanced TeleSensors Inc. developed the Cardi/o Monitor with an exclusive license from NASA’s Jet Propulsion Laboratory in Southern California. 

      Over the course of five years, NASA engineers created a small, inexpensive, contactless device to measure vital signs, a challenging task partly because monitoring heart rate requires picking out motions of about one three-thousandth of an inch, which are easily swamped by other movement in the environment.  

      By the late 1990s, hardware and computing technology could meet the challenge, and the NASA JPL team created a prototype the size of a thick textbook. It would emit a radio beam toward a stationary person, working similarly to a radar, and algorithms differentiated cardiac and respiratory activity from the “noise” of other movements.  

      When Sajol Ghoshal, now CEO of Austin, Texas-based Advanced TeleSensors, participated in a demonstration of the prototype, he saw the potential for in-home monitoring. By then, developing an affordable device was possible due to the miniaturization of sensors and computing technology.  
      The Cardi/o vital sign monitor uses NASA-developed technology to continually monitor vital signs. The data collected can be sent directly to medical care providers, cutting down on the number of home healthcare visits. Credit: Advanced TeleSensors Inc. The Cardi/o Monitor is 3 inches square and mounts to a ceiling or wall. It can detect vital signs from up to 10 feet. Multiple devices can be scattered throughout a house, with a smartphone app controlling settings and displaying all data on a single dashboard. The algorithms NASA developed detect heartbeat and respiration, and the company added heart rate variability detection that indicates stress and sleep apnea.  

      If there’s an anomaly, such as a dramatic heart rate increase, an alert in the app calls attention to the situation. Up to six months of data is stored in a secure cloud, making it accessible to healthcare providers. This limits the need for regular in-person visits, which is particularly important for conditions such as infectious diseases, which can put medical professionals and other patients at risk.  

      Through the commercialization of this life-preserving technology, NASA is at the heart of advancing health solutions.  
      Read More Share
      Details
      Last Updated Apr 07, 2025 Related Terms
      Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
      2 min read NASA Cloud Software Helps Companies Find their Place in Space 
      Article 2 weeks ago 2 min read NASA Expertise Helps Record all the Buzz
      Article 3 weeks ago 2 min read What is a NASA Spinoff? We Asked a NASA Expert: Episode 53
      Article 1 month ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Jet Propulsion Laboratory – News
      Solar System

      View the full article
  • Check out these Videos

×
×
  • Create New...