Jump to content

Recommended Posts

  • Publishers
Posted
24ar-00100-047-i-am-artemis3-t.jpg?w=204
Mike Lauer manages production of the RS-25 main engines for NASA’s heavy-lift SLS (Space Launch System), which will launch U.S. astronauts back to the Moon as part of the agency’s Artemis campaign.
L3 Harris Technologies

Mike Lauer, an engineer who works for the Aerojet Rocketdyne segment of L3Harris Technologies, found his career inspiration in science fiction, but for the perspective it takes to execute complex space programs, he draws on real-world experience.

Growing up, Lauer spent many cold winter nights in the basement of his Sioux Falls, South Dakota, home, creating pictures of iconic space hardware from Hollywood space movies. “That really is what got me into it,” he says.

Fast forward to today, and he’s managing production of the RS-25 main engines for NASA’s heavy-lift SLS (Space Launch System), which will launch U.S. astronauts back to the Moon as part of the agency’s Artemis campaign. When the scale and complexity of the undertaking appear daunting, Lauer thinks back to early in his career, when he designed hardware for the International Space Station, now in its third decade on orbit.

“It just seemed to me that there’s no way this was going to work, but we just kept building and solving problems and the next thing you know, we’re launching space station parts,” Lauer says. “Having that experience of seeing a program that seemed too big, too complex, and it worked, gives me great hope and confidence that we can do it again with Artemis.”

Lauer has family ties to space. His father, Don Lauer, ran the U.S. Geological Survey’s Earth Resources Observation and Science Center in Sioux Falls, a repository for data collected by NASA’s long-running Landsat series of land imaging satellites. Lauer’ father even spent time at NASA’s Johnson Space Center in Houston, home to the Agency’s human spaceflight program, exploring the role of astronauts in Earth observation from space.

But it was an artist’s fascination with fictional hardware –– that ultimately led Mike Lauer to earn his bachelor and master’s degrees in Aeronautical & Astronautical engineering from Stanford University in Palo Alto, California. “With engineering in general, there’s a connection with art,” Lauer says. “We create these things that have an artistic aesthetic to them, which is really cool.”

Cool is a word Lauer, a licensed pilot, deploys frequently in describing his career journey, understandably so. For example, he once participated in a space station assembly rehearsal with veteran astronaut Jerry Ross at Johnson’s Neutral Buoyancy Facility, a giant pool used to help train astronauts for spacewalks. “I’m in this spacesuit and Jerry Ross is in this spacesuit and we’re plugging in elements of the space station,” Lauer says, almost in disbelief. “Oh my gosh!”

While serving as Aerojet Rocketdyne’s lead engineer on the Multi Mission Radioisotope Thermo-electric Generator program, Lauer visited the U.S. Department of Energy’s Idaho National Laboratory to observe the loading of Plutonium 238 nuclear fuel into the device, which continues to power NASA’s car-sized Curiosity rover on the Martian surface. “Super cool,” he says.

For his next move, Lauer figured that, being at Aerojet Rocketdyne (now L3Harris), builder of the engines on NASA’s legendary Saturn V Moon rocket, he should get into the propulsion side of the business. He began on the J-2X, a modified version of the Saturn V’s second stage engine that NASA had planned at one point to use on the SLS. Working from 1960s era drawings, Lauer and his team created a modern, easier-to-produce design with more power that had a successful series of hot-fire tests before being replaced in favor of a different upper stage design.

Now, as RS-25 program director, Lauer works on another engine, this one originally designed for NASA’s now-retired Space Shuttle, updating and redesigning key components to meet new requirements and reduce production costs. The SLS flew its first mission without a crew, but upcoming flights will have astronauts aboard, which gives Lauer a huge sense of pride and responsibility.

“I’m awed and inspired by what we’re doing,” he says. “Really cool.”

Also really cool: Lauer serves as a volunteer pilot for the Civil Air Patrol, supporting the U.S. Air Force on search and rescue, disaster relief, and fire damage assessment missions. That keeps him busy on many weekends when he’s not refereeing youth soccer.

Aside from that, Lauer most looks forward to the day four NASA astronauts are safely aboard their recovery ship at the successful conclusion of the first human moon landing in more than five decades.

Read other I am Artemis features.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Credit: NASA With Finland’s signing of the Artemis Accords on Tuesday, NASA celebrates the 53rd nation committing to the safe and responsible exploration of space that benefits humanity. The signing ceremony took place on the margins of the Aalto University’s Winter Satellite Workshop 2025 in Espoo, Finland.
      “Today, Finland is joining a community of nations that want to share scientific data freely, operate safely, and preserve the space environment for the Artemis Generation,” said NASA Associate Administrator Jim Free, who provided pre-recorded virtual remarks for the ceremony. “By signing the Artemis Accords, Finland builds on its rich history in space, excelling in science, navigation, and Earth observation. Forging strong partnerships between our nations and among the international community is critical for advancing our shared space exploration goals.”
      Wille Rydman, Finland’s minister of economic affairs, signed the Artemis Accords in front of an audience of Finnish space officials and workshop attendees.
      “Finland has been part of the space exploration community for decades with innovations and technology produced by Finnish companies and research institutions,” said Rydman. “The signing of the Artemis Accords is in line with Finland’s newly updated space strategy that highlights the importance of international cooperation and of strengthening partnerships with the Unites States and other allies. We aim for this cooperation to open great opportunities for the Finnish space sector in the new era of space exploration and in the Artemis program.”
      NASA and Finland have a long history of collaboration, and most recently, Finland is contributing to the upcoming Intuitive Machines-2 delivery to the Moon under NASA’s Artemis campaign and CLPS (Commercial Lunar Payload Services) initiative. Intuitive Machines will deliver a lunar LTE/4G communications system developed by Finnish company, Nokia. Its U.S. subsidiary, Nokia of America, was selected as part of NASA’s Tipping Point opportunity through the agency’s Space Technology Mission Directorate, to advance a lunar surface communications system that could help humans and robots explore more of the Moon than ever before.
      The Finnish Meteorological Institute also provided the pressure and humidity measurement instruments for the Environmental Monitoring Station instrument suite aboard the Curiosity Rover, operating on Mars now.
      In 2020, the United States, led by NASA and the U.S. Department of State, and seven other initial signatory nations established the Artemis Accords, a set of principles promoting the beneficial use of space for humanity.
      The Artemis Accords are grounded in the Outer Space Treaty and other agreements including the Registration Convention, the Rescue and Return Agreement, as well as best practices for responsible behavior that NASA and its partners have supported, including the public release of scientific data. 
      Learn more about the Artemis Accords at:
      https://www.nasa.gov/artemis-accords
      -end-
      Kathryn Hambleton / Elizabeth Shaw
      Headquarters, Washington
      202-358-1600
      kathryn.a.hambleton@nasa.gov / elizabeth.a.shaw@nasa.gov
      Share
      Details
      Last Updated Jan 21, 2025 LocationNASA Headquarters Related Terms
      artemis accords NASA Headquarters Office of International and Interagency Relations (OIIR) View the full article
    • By NASA
      Teams with NASA are gaining momentum as work progresses toward future lunar missions for the benefit of humanity as numerous flight hardware shipments from across the world arrived at the agency’s Kennedy Space Center in Florida for the first crewed Artemis flight test and follow-on lunar missions. The skyline at Kennedy will soon see added structures as teams build up the ground systems needed to support them.
      Crews are well underway with parallel preparations for the Artemis II flight, as well as buildup of NASA’s mobile launcher 2 tower for use during the launch of the SLS (Space Launch System) Block 1B rocket, beginning with the Artemis IV mission. This version of NASA’s rocket will use a more powerful upper stage to launch with crew and more cargo on lunar missions. Technicians have begun upper stage umbilical connections testing that will help supply fuel and other commodities to the rocket while at the launch pad.
      In summer 2024, technicians from NASA and contractor Bechtel National, Inc. completed a milestone called jack and set, where the center’s mega-mover, the crawler transporter, repositioned the initial steel base assembly for mobile launcher 2 from temporary construction shoring to its six permanent pedestals near the Kennedy’s Vehicle Assembly Building.   
      Teams at Bechtel National, Inc. use a crane to lift Module 4 into place atop the mobile launcher 2 tower chair at its park site on Jan. 3, 2025, at Kennedy Space Center in Florida. Module 4 is the first of seven modules that will be stacked vertically to make up the almost 400-foot launch tower that will be used beginning with the Artemis IV mission.Betchel National Inc./Allison Sijgers “The NASA Bechtel mobile launcher 2 team is ahead of schedule and gaining momentum by the day,” stated Darrell Foster, ground systems integration manager, NASA’s Exploration Ground Systems Program at NASA Kennedy. “In parallel to all of the progress at our main build site, the remaining tower modules are assembled and outfitted at a second construction site on center.”
      As construction of the mobile launcher 2’s base continues, the assembly operations shift into integration of the modules that will make up the tower. In mid-October 2024, crews completed installation of the chair, named for its resemblance to a giant seat. The chair serves as the interface between the base deck and the vertical modules which are the components that will make up the tower, and stands at 80-feet-tall.
      In December 2024, teams completed the rig and set Module 4 operation where the first of a total of seven 40-foot-tall modules was stacked on top of the chair. Becthel crews rigged the module to a heavy lift crane, raised the module more than 150-feet, and secured the four corners to the tower chair. Once complete, the entire mobile launcher structure will reach a height of nearly 400 feet – approximately the length of four Olympic-sized swimming pools placed end-to-end.
      On the opposite side of the center, test teams at the Launch Equipment Test Facility are testing the new umbilical interfaces, which will be located on mobile launcher 2, that will be needed to support the new SLS Block 1B Exploration Upper Stage. The umbilicals are connecting lines that provide fuel, oxidizer, pneumatic pressure, instrumentation, and electrical connections from the mobile launcher to the upper stage and other elements of SLS and NASA’s Orion spacecraft.
      “All ambient temperature testing has been successfully completed and the team is now beginning cryogenic testing, where liquid nitrogen and liquid hydrogen will flow through the umbilicals to verify acceptable performance,” stated Kevin Jumper, lab manager, NASA Launch Equipment Test Facility at Kennedy. “The Exploration Upper Stage umbilical team has made significant progress on check-out and verification testing of the mobile launcher 2 umbilicals.”
      https://www.nasa.gov/wp-content/uploads/2025/01/eusu-test-3-5b-run-1.mp4 Exploration Upper Stage Umbilical retract testing is underway at the Launch Equipment Test Facility at Kennedy Space Center in Florida on Oct. 22, 2024. The new umbilical interface will be used beginning with the Artemis IV mission. Credit: LASSO Contract LETF Video Group The testing includes extension and retraction of the Exploration Upper Stage umbilical arms that will be installed on mobile launcher 2. The test team remotely triggers the umbilical arms to retract, ensuring the ground and flight umbilical plates separate as expected, simulating the operation that will be performed at lift off.
      View the full article
    • By NASA
      To put boots on the Moon—and keep them there—will require bold thinkers ready to tackle the challenges of tomorrow. 

      That’s why NASA’s Office of STEM Engagement at Johnson Space Center in Houston is on a mission to empower the next generation of explorers in science, technology, engineering, and mathematics (STEM). 

      Through the High School Aerospace Scholars (HAS) program, Texas juniors have the opportunity to immerse themselves in space exploration through interactive learning experiences. 

      “HAS is such an important program because we introduce students to the multitude of careers and experiences that contribute to space exploration,” said NASA HAS Activity Manager Jakarda Varnado. “We go beyond asking students who they want to be when they grow up and ask what problems they want to solve.” 

      Meet Former HAS Student Madeline King

      Madeline King always knew she wanted a career in STEM, with a dream of working at NASA influencing her decision to pursue a degree in Engineering.  

      Before joining HAS, King thought scientists mainly worked in labs and engineers focused on design. But the HAS program revealed a different reality—scientists and engineers often collaborated on interdisciplinary projects, sometimes even sharing roles.   
      Official portrait of Madeline King.NASA The program broadened King’s perspective on the diverse paths a STEM degree can lead to. It showed her that careers at NASA offer opportunities across various fields and disciplines. 

      King said participating in HAS helped to strengthen her problem-solving skills and ability to think creatively. The program required students to tackle complex technical tasks independently, emphasizing self-directed learning. King describes HAS as fun, challenging, and engaging, which helped her excel in technical roles.  

      “Learning to digest and internalize this information is a skill I continue to use when getting up to speed in new groups or taking on projects outside my current skill set,” said King.  

      Though King joined HAS during COVID-19, which limited in-person interactions, the experience still made an impact. Her mentors also offered insights into graduate school options, helping her weigh the benefits of advanced degrees against gaining hands-on experience at NASA.  

      The program opened doors to internships at Johnson in the Engineering Robotics and the Avionics Systems Integration Division. Now, she is studying mechanical engineering at the University of Houston, bringing passion and experience in electronics, robotics, education, project management, and aviation. 

      “Early on in my internship journey, HAS shined on my resume,” she said. “It demonstrated that I already had experience with NASA’s culture, values, and mission.” 
      Looking forward, King envisions herself as a flight controller, contributing to both the International Space Station Program and the Artemis campaign. Driven by her passion for NASA’s mission, King is just beginning her journey and is eager to be part of the future of space exploration. 

      “My internships since HAS have allowed me to make small contributions to both of these missions, and I’m excited to specialize as a full-time engineer,” said King.  

      Meet Caroline Vergara

      As a first-generation student, Caroline Vergara lacked the resources to fully explore her interests in aerospace engineering, let alone envision what that career might look like. That all changed when she was accepted into NASA’s HAS program. 

      “The exposure to real-world innovation ignited my desire to be part of something bigger, something that pushes the boundaries of human knowledge and capability,” she said.  
      Caroline Vergara announces the launch of the model rocket she built during her time in the HAS program. NASA/David DeHoyos Touring NASA facilities and watching engineers work on projects opened her eyes to the possibilities in STEM. Today, Vergara is a propulsion design engineering intern at United Launch Alliance, contributing to the Vulcan rocket as a Brooke Owens Fellow. 

      Vergara initially thought working in STEM was mostly about writing equations or running simulations but HAS showed her it is so much more. “A STEM career is about curiosity, collaboration, and the power to change the world,” she said. 

      During the program, Vergara joined a team of students to tackle a mission simulation project. They called themselves “Charlie and the Rocket Factory” and designed a prototype rocket together. Working with peers from all over the country showed her the power of diverse perspectives. She experienced firsthand what it was like to be part of a team with a shared vision, working toward something bigger than themselves. 

      Vergara also discovered her love for 3D printing and computer-aided design through HAS. She spent hours fine-tuning designs, fascinated by the process of turning digital models into physical reality. 

      Her experience with HAS also sparked a desire to give back. She returned to her hometown to share her story and encourage other students to pursue STEM. Partnering with Johnson Community Engagement Lead Jessica Cordero, she organized video conferences with NASA engineers on International Women in Engineering Day to inspire a new wave of students to be part of space exploration. 

      “The aerospace industry is entering a new space age, and we have the unique opportunity to put humans back on the Moon and explore beyond,” she said. 

      Her advice to the Artemis Generation is: “Go for it! You could be part of the generation that changes humanity’s destiny.” 
      Caroline Vergara, University of Houston Class of 2025. As a mechanical engineering honors student at the University of Houston and chief engineer of Space City Rocketry, Vergara envisions contributing to the Artemis campaign and advancing NASA’s mission to explore the cosmos. 

      “My dream is to contribute to space exploration efforts that put humans back on the Moon and beyond, and to one day work in Mission Control Center, where I can help guide those historic missions into the future.” 

      Meet Iker Aguirre

      For Iker Aguirre, the spark that ignited his journey toward a career in aerospace was lit by a passing conversation during his freshman year of high school. A senior classmate described the HAS program as a once-in-a-lifetime experience that cemented his passion for aerospace. That moment stayed with Aguirre, and when the opportunity arose, he did not hesitate to apply. 
      Iker Aguirre inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. “HAS showed me that in order to accomplish something as complex as Artemis, you need a well-rounded set of teams and individuals,” he said. “You don’t need to study aerospace to be in the aerospace industry!” 

      In 2020, Aguirre participated during the remote-only version of HAS, but he recalls that the program still gave him a much deeper understanding of the spaceflight industry. 

      Despite already being interested in aerospace, Aguirre says HAS broadened his horizons, showing him the diverse pathways into the field. Through collaborative projects with peers across Texas, he discovered that solving the challenges of space exploration requires more than just aerospace engineers.  

      The program’s emphasis on teamwork left a lasting impression. During his time with HAS, Aguirre found himself working alongside students from different backgrounds, each bringing unique perspectives to problem-solving. It introduced him to dedicated and passionate people with various personalities and cultures who all shared similar dreams and aspirations as him.  

      Aguirre credits HAS with not only refining his technical skills but also shaping his approach to innovation and teamwork. That experience paid off as he moved through his academic and professional journey, including Pathways program internships with NASA’s Johnson Space Center in Houston and Marshall Space Flight Center in Huntsville, Alabama.  

      “Getting connections at NASA through HAS helped me open many doors so far,” said Aguirre. “I met many good friends through HAS and my internship at Johnson, which I value to this day.” 

      Now pursuing a degree in rocket propulsion, with a focus on turbomachinery design, Aguirre remains committed to advancing space exploration. He hopes to contribute to humanity’s mobility in space, tackling challenges in rocket engine feed systems.  
      Iker Aguirre at NASA’s Johnson Space Center during his HAS internship. Through HAS, Aguirre found not just an educational program, but a community and a purpose. “My journey will forever be interlinked with NASA’s core values of benefiting humanity on and off the Earth,” he said. “I hope to inspire others just as much as the people who inspired me through my journey!” 
      View the full article
    • By NASA
      NASA/Kim Shiflett From left, CSA (Canadian Space Agency) astronaut Jenni Gibbons, NASA astronaut Andre Douglas, CSA astronaut Jeremy Hansen, and NASA astronauts Christina Koch, Victor Glover, and Reid Wiseman participate in a media day event on Monday, Dec. 16, 2024, inside the Vehicle Assembly Building at the agency’s Kennedy Space Center in Florida. Gibbons and Douglas are Artemis II backup crew members.
      The Artemis II test flight will be NASA’s first mission with crew under the Artemis campaign, sending astronauts on a 10-day journey around the Moon and back.
      Image Credit: NASA/Kim Shiflett
      View the full article
    • By NASA
      From left to right, Ambassador of the Principality of Liechtenstein to the United States of America Georg Sparber, Director of the Office for Communications of the Principality of Liechtenstein Dr. Rainer Schnepfleitner, NASA Deputy Administrator Pam Melroy, and Ambassador Extraordinary and Plenipotentiary to the Swiss Confederation and to the Principality of Liechtenstein Scott Miller, pose for a group photo during an Artemis Accords signing ceremony, Friday, Dec. 20, 2024, at the Mary W. Jackson NASA Headquarters building in Washington. The Principality of Liechtenstein is the 52nd country to sign the Artemis Accords, which establish a practical set of principles to guide space exploration cooperation among nations participating in NASA’s Artemis program. Credit: NASA/Keegan Barber Liechtenstein signed the Artemis Accords Friday during a ceremony hosted by NASA Deputy Administrator Pam Melroy at the agency’s headquarters in Washington, becoming the 52nd nation to commit to the responsible exploration of space for all humanity.
      “Today, as Liechtenstein signs the Artemis Accords, we take another step forward together, united by the promise of international cooperation and discovery,” said Melroy. “Liechtenstein’s commitment strengthens our vision, where space is explored with peace, transparency, and sustainability as guiding principles. With each new signatory, the Artemis Accords community adds fresh energy and capabilities to ensure the benefits of space reach the entire world.”
      Director of Liechtenstein’s Office for Communications Rainer Schnepfleitner signed the Artemis Accords on behalf of Liechtenstein. The Ambassador of the Principality of Liechtenstein to the United States Georg Sparber and U.S. Ambassador to the Swiss Confederation and the Principality of Liechtenstein Scott Miller also participated in the event.   
      “With its participation in the Artemis Accords, Liechtenstein looks forward to advancing space exploration among a strong group of like-minded countries committed to the peaceful use of space for the benefit of all humanity,” Sparber said.
      The United States, led by NASA and the U.S. Department of State, and seven other initial signatory nations established the Artemis Accords in 2020, identifying a set of principles promoting the beneficial use of space for humanity. Since then, signatories have expanded to represent a quarter of the world’s countries, with 19 countries signing in 2024.
      In addition to an increase in numbers, the Artemis Accords signatories, representing every region of the world, continued to build consensus this year and make significant progress in implementing the accords principles.
      NASA co-chaired the Artemis Accords Principals’ Meeting in October, which brought together 42 nations and furthered discussions on the safe and responsible use of space. They agreed on recommendations for non-interference, interoperability, release of scientific data, long-term sustainability guidelines, and registration of space objects to advance implementation.
      The Artemis Accords are grounded in the Outer Space Treaty and other agreements including the Registration Convention, the Rescue and Return Agreement, as well as best practices for responsible behavior that NASA and its partners have supported, including the public release of scientific data. 
      Learn more about the Artemis Accords at:
      https://www.nasa.gov/artemis-accords
      -end-
      Amber Jacobson / Elizabeth Shaw
      Headquarters, Washington
      202-358-1600
      amber.c.jacobson@nasa.gov / elizabeth.a.shaw@nasa.gov
      Share
      Details
      Last Updated Dec 20, 2024 LocationNASA Headquarters Related Terms
      Office of International and Interagency Relations (OIIR) View the full article
  • Check out these Videos

×
×
  • Create New...