Jump to content

Sols 4382-4383: Team Work, Dream Work


Recommended Posts

  • Publishers
Posted

3 min read

Sols 4382-4383: Team Work, Dream Work

A grayscale photograph of the Martian landscape shows a flat field covered in jagged rocks extending from the foreground at the bottom of the frame, to a line about one-sixth of the way up the frame, where it reaches a rock feature rising from the ground. That feature, a butte composed of rock layers, resembles a stack of rugs, angled with the lowest layers on the right and subsequent layers shifting to the left as it grows higher.
NASA’s Mars rover Curiosity acquired this image using its Right Navigation Camera on sol 4373 — Martian day 4,373 of the Mars Science Laboratory mission — on Nov. 24, 2024, at 08:32:59 UTC.
NASA/JPL-Caltech

Earth planning date: Monday, Dec. 2, 2024

Today, after a weeklong holiday break, the team was eager to take a look at Curiosity’s new workspace. After driving 51 meters (about 167 feet) alongside Texoli butte (pictured) we had a whole host of new rocks to examine, and it was one of those curiously perfect planning days where everything falls into place. Our team of geologists here on Earth was busy studying the images our Martian geologist had downlinked to Earth prior to planning, and we scheduled 1.5 hours of science activities on the first sol of this plan. An interesting and varied workspace today saw lots of instruments working together to study the rocks in-depth — teamwork really does make the dream work.

To begin, we are targeting a vertical rock face called “Coronet Lake” near the rover. Coronet Lake has a cluster of nodules on show and we are getting information on the composition of these nodules with APXS and a ChemCam LIBS, as well as a close-up image with our MAHLI instrument. We also have a second MAHLI activity scheduled on a flat rock called “Excelsior Mountain.” Our observant team spotted an interesting-looking rock named “Admiration Point.” This rock may have fallen from the nearby Texoli butte, or could be a meteorite. To test these hypotheses further, we are targeting Admiration Point with a Mastcam mosaic and a ChemCam passive. ChemCam and Mastcam work together again on a target named “Olancha,” an area of rocks that could contain evidence of deformation from when the rocks first formed. Olancha will be targeted with a ChemCam long-distance RMI and a Mastcam mosaic.

Mastcam is finishing off the geological observations here with mosaics of “Angels Camp,” a rock containing veins where water may have once flowed, “Bare Island Lake,” a gray rock containing interesting polygonal ridges, and a trough feature close to Coronet Lake. ChemCam is taking another look back at Gediz Vallis channel to see a transition between light- and dark-toned rocks with a long-distance RMI, and we are rounding off this plan with our standard environmental observations.

As the Geology and Mineralogy theme group Keeper of the Plan for today’s planning, I made sure that this sol was packed full of science activities that the team wanted to schedule. After this busy first sol, Curiosity will be driving about 50 meters (about 164 feet), continuing to make our way out of Gediz Vallis, and we are all very excited to see what the rest of the sulfate-bearing unit has to offer us.

Written by Emma Harris, graduate student at Natural History Museum, London

Share

Details

Last Updated
Dec 03, 2024

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Jeff Renshaw is the lead attorney for procurement law in the Office of the General Counsel for NASA’s Stennis Space Center and the NASA Shared Services Center. NASA/Danny Nowlin NASA attorney Jeff Renshaw’s work has primarily revolved around two things: serving others and solving problems.
      The New Orleans native retired as an U.S. Air Force judge advocate following more than two decades of service. Renshaw now has worked for more than eight years as an attorney advisor at NASA’s Stennis Space Center near Bay St. Louis, Mississippi.
      As the nation’s largest multiuser propulsion test site, NASA Stennis supports and helps power both national and commercial space efforts and missions. Any activity at NASA Stennis is authorized by some form of written agreement. The Office of General Counsel, which Renshaw is a part of, works to ensure that work is conducted appropriately.
      “I’m dedicated to being the best public civil servant I can be,” Renshaw said. “In this position, you are representing your client, which is NASA, the federal government, and the taxpayers, so it is important for me to stay updated with the latest legal developments to be the best advocate and advisor I can be.” 
      As lead attorney for procurement law, the Metairie, Louisiana, resident works alongside the Office of Procurement serving both NASA Stennis and the NASA Shared Services Center.
      Some of Renshaw’s work includes reviewing Space Act contract agreements for commercial companies that use NASA Stennis facilities, along with activities for some of the more than 50 federal, state, academic, public, and private aerospace, technology, and research organizations that are part of the NASA Stennis federal city.
      Renshaw is motivated to be an expert in his line of work – whether deployed as a U.S. Air Force procurement law attorney to Baghdad, the Horn of Africa, and Afghanistan, or working at NASA to help the nation return to the Moon. He spends a lot of time with NASA engineers to understand the in-and-outs of ongoing projects since any activity happening onsite involves the Office of General Counsel.
      In addition to the U.S. Air Force, Renshaw has served in other legal profession roles, including as a law clerk for a Louisiana district court judge and a position in the Louisiana State Attorney General’s Office. He said working for NASA gives him the opportunity to focus on his area of expertise, while being involved in the agency’s great mission of exploration and discovery.
      “I love NASA, and it is good to feel part of the team and to know that you are contributing to the mission,” he said.
      Learn more about the people who work at NASA Stennis View the full article
    • By NASA
      Scientists find that cometary dust affects interpretation of spacecraft measurements, reopening the case for comets like 67P as potential sources of water for early Earth. 
      Researchers have found that water on Comet 67P/Churyumov–Gerasimenko has a similar molecular signature to the water in Earth’s oceans. Contradicting some recent results, this finding reopens the case that Jupiter-family comets like 67P could have helped deliver water to Earth.  
      Water was essential for life to form and flourish on Earth and it remains central for Earth life today. While some water likely existed in the gas and dust from which our planet materialized around 4.6 billion years ago, much of the water would have vaporized because Earth formed close to the Sun’s intense heat. How Earth ultimately became rich in liquid water has remained a source of debate for scientists.
      Research has shown that some of Earth’s water originated through vapor vented from volcanoes; that vapor condensed and rained down on the oceans. But scientists have found evidence that a substantial portion of our oceans came from the ice and minerals on asteroids, and possibly comets, that crashed into Earth. A wave of comet and asteroid collisions with the solar system’s inner planets 4 billion years ago would have made this possible.   
      This image, taken by ESA’s Rosetta navigation camera, was taken from a about 53 miles from the center of Comet 67P/Churyumov-Gerasimenko on March 14, 2015. The image resolution is 24 feet per pixel and is cropped and processed to bring out the details of the comet’s activity. ESA/Rosetta/NAVCAM While the case connecting asteroid water to Earth’s is strong, the role of comets has puzzled scientists. Several measurements of Jupiter-family comets — which contain primitive material from the early solar system and are thought to have formed beyond the orbit of Saturn — showed a strong link between their water and Earth’s. This link was based on a key molecular signature scientists use to trace the origin of water across the solar system.
      This signature is the ratio of deuterium (D) to regular hydrogen (H) in the water of any object, and it gives scientists clues about where that object formed. Deuterium is a rare, heavier type — or isotope — of hydrogen. When compared to Earth’s water, this hydrogen ratio in comets and asteroids can reveal whether there’s a connection.  
      Because water with deuterium is more likely to form in cold environments, there’s a higher concentration of the isotope on objects that formed far from the Sun, such as comets, than in objects that formed closer to the Sun, like asteroids. 
      Measurements within the last couple of decades of deuterium in the water vapor of several other Jupiter-family comets showed similar levels to Earth’s water. 
      “It was really starting to look like these comets played a major role in delivering water to Earth,” said Kathleen Mandt, planetary scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Mandt led the research, published in Science Advances on Nov. 13, that revises the abundance of deuterium in 67P. 

      About Kathleen Mandt

      But in 2014, ESA’s (European Space Agency) Rosetta mission to 67P challenged the idea that Jupiter-family comets helped fill Earth’s water reservoir. Scientists who analyzed Rosetta’s water measurements found the highest concentration of deuterium of any comet, and about three times more deuterium than there is in Earth’s oceans, which have about 1 deuterium atom for every 6,420 hydrogen atoms.  
      “It was a big surprise and it made us rethink everything,” Mandt said.  
      Mandt’s team decided to use an advanced statistical-computation technique to automate the laborious process of isolating deuterium-rich  water in more than 16,000 Rosetta measurements. Rosetta made these measurements in the “coma” of gas and dust surrounding 67P. Mandt’s team, which included Rosetta scientists, was the first to analyze all of the European mission’s water measurements spanning the entire mission. 
      The researchers wanted to understand what physical processes caused the variability in the hydrogen isotope ratios measured at comets. Lab studies and comet observations showed that cometary dust could affect the readings of the hydrogen ratio that scientists detect in comet vapor, which could change our understanding of where comet water comes from and how it compares to Earth’s water. 
      What are comets made of? It’s one of the questions ESA’s Rosetta mission to comet 67P/Churyumov-Gerasimenko wanted to answer. “So I was just curious if we could find evidence for that happening at 67P,” Mandt said. “And this is just one of those very rare cases where you propose a hypothesis and actually find it happening.” 
      Indeed, Mandt’s team found a clear connection between deuterium measurements in the coma of 67P and the amount of dust around the Rosetta spacecraft, showing that the measurements taken near the spacecraft in some parts of the coma may not be representative of the composition of a comet’s body.  
      As a comet moves in its orbit closer to the Sun, its surface warms up, causing gas to release from the surface, including dust with bits of water ice on it. Water with deuterium sticks to dust grains more readily than regular water does, research suggests. When the ice on these dust grains is released into the coma, this effect could make the comet appear to have more deuterium than it has.  
      Mandt and her team reported that by the time dust gets to the outer part of the coma, at least 75 miles from the comet body, it is dried out. With the deuterium-rich water gone, a spacecraft can accurately measure the amount of deuterium coming from the comet body.
      This finding, the paper authors say, has big implications not only for understanding comets’ role in delivering Earth’s water, but also for understanding comet observations that provide insight into the formation of the early solar system.  
      “This means there is a great opportunity to revisit our past observations and prepare for future ones so we can better account for the dust effects,” Mandt said. 
      By Lonnie Shekhtman
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Explore More
      9 min read Towards Autonomous Surface Missions on Ocean Worlds


      Article


      31 mins ago
      1 min read Coming Spring 2025: Planetary Defenders Documentary
      ow would humanity respond if we discovered an asteroid headed for Earth? NASA’s Planetary Defenders…


      Article


      52 mins ago
      5 min read What’s Up: December 2024 Skywatching Tips from NASA


      Article


      1 day ago
      Share








      Details
      Last Updated Dec 03, 2024 Editor Lonnie Shekhtman Contact Lonnie Shekhtman lonnie.shekhtman@nasa.gov Location Goddard Space Flight Center Related Terms
      Comets Goddard Space Flight Center Planetary Science Planetary Science Division Rosetta Science Mission Directorate The Solar System View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
      Sols 4732-4735: I’ll Zap You, My Pretty, and Your Pebble Too
      NASA’s Mars rover Curiosity used its Mast Camera (Mastcam) to capture this image, with a horizon of platy, dark-toned bedrock at the forefront, on Nov. 20, 2024 at 05:54:55 UTC. Curiosity acquired the image on sol 4369 — Martian day 4,369 of the Mars Science Laboratory mission. NASA/JPL-Caltech/MSSS Earth planning date: Friday, Nov. 22, 2024
      For more than a year, NASA’s Curiosity rover has been climbing through layers of sulfate-rich rock in Gale Crater, where alternating thick light- and dark-toned bands are visible by satellite. After a successful 24.55-meter drive (about 81 feet), Curiosity traversed across a light-toned band into a dark-toned one, entering a workspace that contains the characteristic features of these dark-toned bands: platy, dark-toned material interbedded with lighter-toned bedrock. The origin of this dark-toned, platy material remains a mystery. To help solve it, the Geology and Mineralogy Theme Group focused the weekend’s science plan on continuing our documentation of the sedimentary textures, structures, and chemistry of this bedrock, aiming to uncover clues about the processes that formed the dark-toned, platy material. My role as Keeper of the Geology Plan meant keeping track of all the geology-related requests, which made for a busy day!
      To investigate further, we plan to brush away surface dust from a section of light-toned bedrock and capture detailed images using the Mars Hand Lens Imager (MAHLI). This close-up view will be paired with chemical and mineralogical analysis using the Alpha Particle X-Ray Spectrometer (APXS). Meanwhile, Mastcam will focus on two nearby outcrops nicknamed “Hanging Valley Ridge” 1 and 2, where the dark-toned platy material is visibly layered within the light-toned bedrock. ChemCam will add to the data by zapping both the brushed light-toned area and the dark-toned material to work out their compositions and compare the two.
      In addition to studying the sulfate layers, we’re continuing our long-term investigation of Gediz Vallis Ridge, believed to be a remnant of an ancient debris channel that we’ve been investigating for some time. To build on our previous observations, we’ve planned a Mastcam mosaic and a long-distance Remote Micro-Imager (RMI) observation to further document its morphology and sedimentary structures. Interestingly, we’ve also identified a dark-toned pebble in our workspace that could have been transported from Gediz Vallis Ridge. To test this idea, we’ll use ChemCam to zap the pebble to work out its composition and compare it to the dark-toned material in the outcrop.
      While Curiosity focuses on the Martian surface, we’re also monitoring the planet’s atmosphere. The Environmental Theme Group is using the rover’s downtime to conduct a series of dust- and cloud-monitoring activities. One highlight of the weekend plan is an approximately 30-minute ChemCam passive sky observation, which will help us study atmospheric conditions in Gale Crater.
      As Americans prepare for Thanksgiving here on Earth, the Curiosity team is gearing up for a special holiday “mega plan.” This seven-sol schedule will keep the rover hard at work, ensuring that science and exploration continue while the team enjoys their celebrations. Stay tuned to see what this plan has in store next week!
      Written by Amelie Roberts, Ph.D. candidate at Imperial College London
      Share








      Details
      Last Updated Dec 02, 2024 Related Terms
      Blogs Explore More
      2 min read You Are Now Arriving at ‘Pico Turquino’


      Article


      5 hours ago
      2 min read Sol 4370-4371: All About the Polygons


      Article


      1 week ago
      3 min read Sols 4368-4369: The Colors of Fall – and Mars


      Article


      2 weeks ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Many team members at NASA’s Johnson Space Center in Houston may recognize Alicia Baker as the talented flutist in the Hispanic Employee Resource Group’s Mariachi Celestial band. Or, they may have worked with Baker in her role as a spacesuit project manager, testing NASA’s prototype spacesuits and preparing Johnson’s test chambers to evaluate vendor spacesuits.

      Alicia Baker in a spacesuit test chamber at Johnson Space Center.NASA/David DeHoyos They might be surprised to learn that Baker juggled these responsibilities and more while also caring for her late husband, Chris, as he fought a terminal illness for 16 years.

      “It was hard taking care of a loved one with cancer and working full-time,” Baker said. “My husband was also disabled from a brain tumor surgery, so I had to help him with reading, writing, walking, and remembering, while managing the household.”

      Baker worked closely with her manager to coordinate schedules and get approval to telework so that she could work around her husband’s medical appointments and procedures. She also took medical leave when her husband entered hospice care in 2020. Baker said her manager’s flexibility “saved her job” and allowed her to continue providing for her family. She was even able to advance from project engineer to test director to project manager during this time period.

      Alicia Baker and her husband Chris on their wedding day. Image courtesy of Alicia Baker Baker is one of the many Johnson employees who are or have been a caregiver for a loved one. These caregivers provide help to a person in need who often has a medical condition or injury that affects their daily functioning. Their needs may be temporary or long-term, and they could be physical, medical, financial, or domestic in nature.

      Recognizing the challenging and critical role caregivers play in their families, the Johnson community provides a variety of resources to support team members through the Employee Assistance Program. Additionally, Johnson’s No Boundaries Employee Resource Group (NoBo) supports caregivers through its programs and initiatives.

      Baker participates in both the support group and NoBo activities and takes comfort in sharing her and her husband’s story with others. “I would do it all over again,” she said of her caregiver role.

      Now she looks forward to future missions to the Moon, when NASA astronauts will conduct spacewalks on the lunar surface while wearing new spacesuits. “Then I can say I helped make that possible!” Throughout all of her experiences, Baker has learned to never give up. “If you have a dream, keep fighting for it,” she said.
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
      Sols 4368-4369: The Colors of Fall – and Mars
      This image shows all the textures — no color in ChemCam remote-imager images, though — that the Martian terrain has to offer. This image was taken by Chemistry & Camera (ChemCam) aboard NASA’s Mars rover Curiosity on Nov. 18, 2024 — sol 4367, or Martian day 4,367 of the Mars Science Laboratory mission — at 02:55:09 UTC. NASA/JPL-Caltech/LANL Earth planning date: Monday, Nov. 18, 2024
      I am in the U.K., where we are approaching the time when trees are just branches and twigs. One tree that still has its full foliage is my little quince tree in my front garden. Its leaves have turned reddish-brown with a hint of orange, fairly dark by now, and when I passed it this afternoon on my way to my Mars operations shift, I thought that these leaves have exactly the colors of Mars! And sure enough, today’s workspace is full of bedrock blocks in the beautiful reddish-brown that we love from Mars. But like that tree, it’s not just one color, but many different versions and patterns, all of many reddish-brown and yellowish-brown colors.
      The tree theme continues into the naming of our targets today, with ChemCam observing the target “Big Oak Flat,” which is a flat piece of bedrock with a slightly more gray hue to it. “Calaveras,” in contrast, looks a lot more like my little tree, as it is more reddish and less gray. It’s also a bedrock target, and APXS and MAHLI are observing this target, too. APXS has another bedrock target, called “Murphys” on one of the many bedrock pieces around. MAHLI is of course documenting Murphys, too. Let’s just hope that this target name doesn’t get any additions to it but instead returns perfect data from Mars!
      ChemCam is taking several long-distance remote micro-imager images — one on the Gediz Vallis Ridge, and one on target “Mono Lake,” which is also looking at the many, many different textures and stones in our surroundings. The more rocks, the more excited a team of geologists gets! So, we are surely using every opportunity to take images here!
      Talking about images… Mastcam is taking documentation images on the Big Oak Flat and Calaveras targets, and a target simply called “trough.” In addition, there are mosaics on “Basket Dome” and “Chilkoot,” amounting to quite a few images of this diverse and interesting terrain! More images will be taken by the navigation cameras for the next drive — and also our Hazcam. We rarely talk about the Hazcams, but they are vital to our mission! They look out from just under the rover belly, forward and backward, and have the important task to keep our rover safe. The forward-looking one is also great for planning purposes, to know where the arm can reach with APXS, MAHLI, and the drill. To me, it’s also one of the most striking perspectives, and shows the grandeur of the landscape so well. If you want to see what I am talking about, have a look at “A Day on Mars” from January of this year.
      Of course, we have atmospheric measurements in the plan, too. The REMS sensor is measuring temperature and wind throughout the plan, and Curiosity will be taking observations to search for dust devils, and look at the opacity of the atmosphere. Add DAN to the plan, and it is once again a busy day for Curiosity on the beautifully red and brown Mars. And — hot off the press — all about another color on Mars: yellowish-white!
      Written by Susanne Schwenzer, Planetary Geologist at The Open University
      Share








      Details
      Last Updated Nov 20, 2024 Related Terms
      Blogs Explore More
      3 min read Sols 4366–4367: One of Those Days on Mars (Sulfate-Bearing Unit to the West of Upper Gediz Vallis)


      Article


      2 days ago
      2 min read Sols 4362-4363: Plates and Polygons


      Article


      1 week ago
      3 min read Peculiar Pale Pebbles
      During its recent exploration of the crater rim, Perseverance diverted to explore a strange, scattered…


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...