Members Can Post Anonymously On This Site
Creating artificial eclipses to study the Sun | Proba-3 explained
-
Similar Topics
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Astronaut Jeanette Epps extracts DNA samples from bacteria colonies for genomic analysis aboard the International Space Station’s Harmony module.NASA In an effort to learn more about astronaut health and the effects of space on the human body, NASA is conducting a new experiment aboard the International Space Station to speed up the detection of antibiotic-resistant bacteria, thus improving the health safety not only of astronauts but patients back on Earth.
Infections caused by antibiotic-resistant bacteria can be difficult or impossible to treat, making antibiotic resistance a leading cause of death worldwide and a global health concern.
Future astronauts visiting the Moon or Mars will need to rely on a pre-determined supply of antibiotics in case of illness. Ensuring those antibiotics remain effective is an important safety measure for future missions.
The Genomic Enumeration of Antibiotic Resistance in Space (GEARS) experiment, which is managed by NASA’s Ames Research Center in California’s Silicon Valley, involves astronauts swabbing interior surfaces across the space station and testing those samples for evidence of antibiotic-resistant bacteria, and in particular Enterococcus faecalis, a type of bacteria commonly found in the human body. The experiment is the first step in a series of work that seeks to better understand how organisms grow in a space environment, and how those similarities and differences might help improve research back on Earth.
“Enterococcus is a type of organism that’s been with us since our ancestors crawled out of the ocean, and is a core member of the human gut,” said Christopher Carr, assistant professor at the Georgia Institute of Technology and co-principal investigator of GEARS. “It’s able to survive inside and outside of its host, which has allowed it to become the second highest leading cause of hospital-acquired infections. We want to understand how this type of organism is adapting to the space environment.”
The GEARS experiment seeks to improve the detection and identification of these bacteria, building on existing efforts to understand what organisms grow on the station’s surfaces.
“We’ve been monitoring the surfaces of the space station since 2000, but this experiment will give us insight beyond the identities of present organisms, which is currently all that is used for risk assessment,” said Sarah Wallace, a microbiologist at NASA’s Johnson Space Center in Houston and co-principal investigator of GEARS. “With the station orbiting close to Earth, it’s a low-risk space to evaluate and learn more about the frequency of this bacteria and how it responds to the space environment so we can apply this understanding to missions to the Moon and Mars, where resupplies are more complex.”
Over the next year, astronauts will swab parts of the station and analyze samples by adding an antibiotic to the medium in which the samples will grow. The results will reveal where this and other resistant bacteria are growing and whether they can persist or spread across the station.
I hope we can shine a light on rapidly analyzing bacteria: if we can do this in space, we can do it on Earth, too.
Sarah WAllace
NASA Microbiologist
The experiment was originally launched to the ISS on the 30th SpaceX commercial resupply services (CRS) mission in March 2024, and the first round of GEARS testing turned up surprising results: very few resistant bacteria colonies, none of which were E. faecalis. This bodes well for the threat of antibiotic resistance in space.
“There was some cleaning done before swabbing the station, which may have removed some bacteria,” said Carr. To better understand how and where risky bacteria may live, the astronauts paused some cleaning before the second round of swabbing.
“We want the astronauts to have a clean environment, but we also want to test those high-touch areas, so they intentionally and briefly avoided cleaning some areas so we can understand how bacteria may grow or spread on the station.”
This experiment is the first study to perform metagenomic sequencing in space, a method that analyzes all the genetic material in a sample to identify and characterize all organisms that are present, an important research and medical diagnostic capability for future deep space missions.
The GEARS team hopes to create a rapid workflow to analyze bacteria samples, reducing the time between swabbing and test results from days to hours. That workflow could be applied in hospitals and make a huge impact when treating hospital-acquired infections from antibiotic-resistant microbes.
The result could save lives – more than 35,000 people die each year as a result of antibiotic-resistant infections. The issue is personal to Wallace, who lost a family member to a hospital-acquired infection.
“It’s not that uncommon: so many people have experienced this kind of loss,” said Wallace. “A method to give an answer in a matter of hours is huge and profound. It’s my job to keep the crew healthy, but we’re also passionate about bringing that work back down to Earth. I hope we can shine a light on rapidly analyzing bacteria: if we can do this in space, we can do it on Earth, too.”
Genomic Enumeration of Antibiotic Resistance in Space (GEARS) was funded by the Biological and Physical Sciences Space Biology Program, with pioneering funding and support from the Mars Campaign office.
Share
Details
Last Updated Feb 19, 2025 Related Terms
International Space Station (ISS) Ames Research Center Biological & Physical Sciences Explore More
2 min read 2024 Annual Highlights of Results from the International Space Station Science
Article 1 day ago 2 min read Station Science Top News: Feb. 14, 2025
Article 1 day ago 5 min read NASA Tests Drones to Provide Micrometeorology, Aid in Fire Response
Article 6 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Explore This Section Science Science Activation Eclipses to Auroras: Eclipse… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 3 min read
Eclipses to Auroras: Eclipse Ambassadors Experience Winter Field School in Alaska
In 2023 and 2024, two eclipses crossed the United States, and the NASA Science Activation program’s Eclipse Ambassadors Off the Path project invited undergraduate students and amateur astronomers to join them as “NASA Partner Eclipse Ambassadors”. This opportunity to partner with NASA, provide solar viewing glasses, and share eclipse knowledge with underserved communities off the central paths involved:
Partnering with an undergraduate/amateur astronomer Taking a 3-week cooperative course (~12 hours coursework) Engaging their communities with eclipse resources by reaching 200+ people These Eclipse Ambassador partnerships allowed participants to grow together as they learned new tools and techniques for explaining eclipses and engaging with the public, and Eclipse Ambassadors are recognized for their commitment to public engagement.
In January 2025, the Eclipse Ambassadors Off the Path project held a week-long Heliophysics Winter Field School (WFS), a culminating Heliophysics Big Year experience for nine undergraduate and graduate Eclipse Ambassadors. The WFS exposed participants to career opportunities and field experience in heliophysics, citizen science, and space physics. The program included expert lectures on space physics, aurora, citizen science, and instrumentation, as well as hands-on learning opportunities with Poker Flat Rocket Range, the Museum of the North, aurora chases, and more. Students not only learned about heliophysics, they also actively participated in citizen science data collection using a variety of instruments, as well as the Aurorasaurus citizen science project app. Interactive panels on career paths helped prepare them to pursue relevant careers.
One participant, Sophia, said, “This experience has only deepened my passion for heliophysics, science communication, and community engagement.” Another participant, Feras, reflected, “Nine brilliant students from across the country joined a week-long program at the University of Alaska Fairbanks’ (UAF) Geophysical Institute, where we attended multiple panels on solar and space physics, spoke to Athabaskan elders on their connection to the auroras, and visited the Poker Flat Research Range to observe the stunning northern lights.”
This undertaking would not have been possible without the coordination, planning, leadership of many. Principal Investigators included Vivian White (Eclipse Ambassadors, Astronomical Society of the Pacific, ASP) and Dr. Elizabeth McDonald (Aurorasaurus, NASA GSFC). Other partners included Lynda McGilvary (Geophysical Institute at UAF), Jen Arseneau (UAF), Shanil Virani (ASP), Andréa Hughes (NASA), and Lindsay Glesener (University of Minnesota), as well as knowledge holders, students, and scientists.
The Eclipse Ambassadors Off the Path project is supported by NASA under cooperative agreement award number 80NSS22M0007 and is part of NASA’s Science Activation Portfolio. To learn more, visit: www.eclipseambassadors.org.
Winter Field School Participants standing under the aurora. Andy Witteman Share
Details
Last Updated Feb 18, 2025 Editor NASA Science Editorial Team Related Terms
Science Activation 2023 Solar Eclipse 2024 Solar Eclipse Auroras Opportunities For Students to Get Involved Explore More
2 min read An Afternoon of Family Science and Rocket Exploration in Alaska
Article
4 days ago
3 min read Tribal Library Co-Design STEM Space Workshop
Article
5 days ago
5 min read NASA Rockets to Fly Through Flickering, Vanishing Auroras
Article
4 weeks ago
Keep Exploring Discover More Topics From NASA
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Perseverance Rover
This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Juno
NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…
View the full article
-
By NASA
NASA’s SPHEREx is situated on a work stand ahead of prelaunch operations at the Astrotech Processing Facility at Vandenberg Space Force Base in California. The SPHEREx space telescope will share its ride to space on a SpaceX Falcon 9 rocket with NASA’s PUNCH mission.
Credit: USSF 30th Space Wing/Christopher
NASA will provide live coverage of prelaunch and launch activities for SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer), the agency’s newest space telescope. This will lift off with another NASA mission, Polarimeter to Unify the Corona and Heliosphere, or PUNCH, which will study the Sun’s solar wind.
The launch window opens at 10:09 p.m. EST (7:09 p.m. PST) Thursday, Feb. 27, for the SpaceX Falcon 9 rocket that will lift off from Space Launch Complex 4 East at Vandenberg Space Force Base in California. Watch coverage on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
The SPHEREx mission will improve our understanding of how the universe evolved and search for key ingredients for life in our galaxy.
The four small spacecraft that comprise PUNCH will observe the Sun’s corona as it transitions into solar wind.
The deadline for media accreditation for in-person coverage of this launch has passed. NASA’s media credentialing policy is available online. For questions about media accreditation, please email: ksc-media-accreditat@mail.nasa.gov.
NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations):
Tuesday, Feb. 25
2 p.m. – SPHEREx and PUNCH Science Overview News Conference
Shawn Domagal-Goldman, acting director, Astrophysics Division, NASA Headquarters Joe Westlake, director, Heliophysics Division, NASA Headquarters Nicholeen Viall, PUNCH Mission Scientist, NASA’s Goddard Space Flight Center Rachel Akeson, SPHEREx science data center lead, Caltech/IPAC Phil Korngut, SPHEREx instrument scientist, Caltech The news conference will stream on NASA+. Media may ask questions in person or via phone. Limited auditorium space will be available for in-person participation. For the dial-in number and passcode, media should contact the NASA Kennedy newsroom no later than one hour before the start of the event at ksc-newsroom@mail.nasa.gov.
Wednesday, Feb. 26
3:30 p.m. – SPHEREx and PUNCH Prelaunch News Conference
Mark Clampin, acting deputy associate administrator, Science Mission Directorate, NASA Headquarters David Cheney, PUNCH program executive, NASA Headquarters James Fanson, SPHEREx project manager, NASA’s Jet Propulsion Laboratory Denton Gibson, launch director, NASA’s Launch Services Program Julianna Scheiman, director, NASA Science Missions, SpaceX U.S. Air Force 1st Lt. Ina Park, 30th Operations Support Squadron launch weather officer Coverage of the prelaunch news conference will stream live on NASA+.
Media may ask questions in person and via phone. Limited auditorium space will be available for in-person participation. For the dial-in number and passcode, media should contact the Kennedy newsroom no later than one hour before the start of the event at ksc-newsroom@mail.nasa.gov.
Thursday, Feb. 27
12 p.m. – SPHEREx and PUNCH Launch Preview will stream live on NASA+.
9:15 p.m. – Launch coverage begins on NASA+.
10:09 p.m. – Launch window opens.
Audio Only Coverage
Audio only of the launch coverage will be carried on the NASA “V” circuits, which may be accessed by dialing 321-867-1220, or -1240. On launch day, “mission audio,” countdown activities without NASA+ media launch commentary, will be carried on 321-867-7135.
NASA Website Launch Coverage
Launch day coverage of the mission will be available on the agency’s website. Coverage will include links to live streaming and blog updates beginning no earlier than 9:15 p.m., Feb. 27, as the countdown milestones occur. On-demand streaming video and photos of the launch will be available shortly after liftoff.
For questions about countdown coverage, contact the Kennedy newsroom at 321-867-2468. Follow countdown coverage on the SPHEREx blog.
Attend the Launch Virtually
Members of the public can register to attend this launch virtually. NASA’s virtual guest program for this mission also includes curated launch resources, notifications about related opportunities or changes, and a stamp for the NASA virtual guest passport following launch.
Watch, Engage on Social Media
You can also stay connected by following and tagging these accounts:
X: @NASA, @NASAJPL, @NASAUnivese, @NASASun, @NASAKennedy, @NASA_LSP
Facebook: NASA, NASAJPL, NASA Universe, NASASunScience, NASA’s Launch Services Program
Instagram: @NASA, @NASAKennedy, @NASAJPL, @NASAUnivese
For more information about these missions, visit:
https://science.nasa.gov/mission/spherex/
https://science.nasa.gov/mission/punch/
-end-
Alise Fisher – SPHEREx
Headquarters, Washington
202-617-4977
alise.m.fisher@nasa.gov
Sarah Frazier – PUNCH
Goddard Space Flight Center, Greenbelt, Md.
202-853-7191
sarah.frazier@nasa.gov
Laura Aguiar
Kennedy Space Center, Florida
321-593-6245
laura.aquiar@nasa.gov
Share
Details
Last Updated Feb 18, 2025 LocationNASA Headquarters Related Terms
SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) Missions Polarimeter to Unify the Corona and Heliosphere (PUNCH) Science Mission Directorate View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Cliffs slope into the ocean in San Simeon, California. All along the state’s dynamic coastline, land is inching down and up due to natural and human-caused factors. A bet-ter understanding of this motion can help communities prepare for rising seas.NASA/JPL-Caltech The elevation changes may seem small — amounting to fractions of inches per year — but they can increase or decrease local flood risk, wave exposure, and saltwater intrusion.
Tracking and predicting sea level rise involves more than measuring the height of our oceans: Land along coastlines also inches up and down in elevation. Using California as a case study, a NASA-led team has shown how seemingly modest vertical land motion could significantly impact local sea levels in coming decades.
By 2050, sea levels in California are expected to increase between 6 and 14.5 feet (15 and 37 centimeters) higher than year 2000 levels. Melting glaciers and ice sheets, as well as warming ocean water, are primarily driving the rise. As coastal communities develop adaptation strategies, they can also benefit from a better understanding of the land’s role, the team said. The findings are being used in updated guidance for the state.
“In many parts of the world, like the reclaimed ground beneath San Francisco, the land is moving down faster than the sea itself is going up,” said lead author Marin Govorcin, a remote sensing scientist at NASA’s Jet Propulsion Laboratory in Southern California.
The new study illustrates how vertical land motion can be unpredictable in scale and speed; it results from both human-caused factors such as groundwater pumping and wastewater injection, as well as from natural ones like tectonic activity. The researchers showed how direct satellite observations can improve estimates of vertical land motion and relative sea level rise. Current models, which are based on tide gauge measurements, cannot cover every location and all the dynamic land motion at work within a given region.
Local Changes
Researchers from JPL and the National Oceanic and Atmospheric Administration (NOAA) used satellite radar to track more than a thousand miles of California coast rising and sinking in new detail. They pinpointed hot spots — including cities, beaches, and aquifers — at greater exposure to rising seas now and in coming decades.
To capture localized motion inch by inch from space, the team analyzed radar measurements made by ESA’s (the European Space Agency’s) Sentinel-1 satellites, as well as motion velocity data from ground-based receiving stations in the Global Navigation Satellite System. Researchers compared multiple observations of the same locations made between 2015 to 2023 using a processing technique called interferometric synthetic aperture radar (InSAR).
Scientists mapped land sinking (indicated in blue) in coastal California cities and in parts of the Central Valley due to factors like soil compaction, erosion, and groundwater withdrawal. They also tracked uplift hot spots (shown in red), including in Long Beach, a site of oil and gas production. NASA Earth Observatory Homing in on the San Francisco Bay Area — specifically, San Rafael, Corte Madera, Foster City, and Bay Farm Island — the team found the land subsiding at a steady rate of more than 0.4 inches (10 millimeters) per year due largely to sediment compaction. Accounting for this subsidence in the lowest-lying parts of these areas, local sea levels could rise more than 17 inches (45 centimeters) by 2050. That’s more than double the regional estimate of 7.4 inches (19 centimeters) based solely on tide gauge projections.
Not all coastal locations in California are sinking. The researchers mapped uplift hot spots of several millimeters per year in the Santa Barbara groundwater basin, which has been steadily replenishing since 2018. They also observed uplift in Long Beach, where fluid extraction and injection occur with oil and gas production.
The scientists further calculated how human-induced drivers of local land motion increase uncertainties in the sea level projections by up to 15 inches (40 centimeters) in parts of Los Angeles and San Diego counties. Reliable projections in these areas are challenging because the unpredictable nature of human activities, such as hydrocarbon production and groundwater extraction, necessitating ongoing monitoring of land motion.
Fluctuating Aquifers, Slow-Moving Landslides
In the middle of California, in the fast-sinking parts of the Central Valley (subsiding as much as 8 inches, or 20 centimeters, per year), land motion is influenced by groundwater withdrawal. Periods of drought and precipitation can alternately draw down or inflate underground aquifers. Such fluctuations were also observed over aquifers in Santa Clara in the San Francisco Bay Area, Santa Ana in Orange County, and Chula Vista in San Diego County.
Along rugged coastal terrain like the Big Sur mountains below San Francisco and Palos Verdes Peninsula in Los Angeles, the team pinpointed local zones of downward motion associated with slow-moving landslides. In Northern California they also found sinking trends at marshlands and lagoons around San Francisco and Monterey bays, and in Sonoma County’s Russian River estuary. Erosion in these areas likely played a key factor.
Scientists, decision-makers, and the public can monitor these and other changes occurring via the JPL-led OPERA (Observational Products for End-Users from Remote Sensing Analysis) project. The OPERA project details land surface elevational changes across North America, shedding light on dynamic processes including subsidence, tectonics, and landslides.
The OPERA project will leverage additional state-of-the-art InSAR data from the upcoming NISAR (NASA-Indian Space Research Organization Synthetic Aperture Radar) mission, expected to launch within the coming months.
News Media Contacts
Jane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307 / 626-379-6874
jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
Written by Sally Younger
2025-015
Share
Details
Last Updated Feb 10, 2025 Related Terms
NISAR (NASA-ISRO Synthetic Aperture Radar) Earth Earth Science Jet Propulsion Laboratory Explore More
2 min read Newly Minted Ph.D. Studies Phytoplankton with NASA’s FjordPhyto Project
FjordPhyto is a collective effort where travelers on tour expedition vessels in Antarctica help scientists…
Article 3 hours ago 5 min read Euclid Discovers Einstein Ring in Our Cosmic Backyard
Article 4 hours ago 3 min read NASA Explores Earth Science with New Navigational System
Article 3 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.