Members Can Post Anonymously On This Site
Mysterious blue light spotted during avalanche on Mount Xiannairi, China
-
Similar Topics
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s LRO (Lunar Reconnaissance Orbiter) imaged Firefly Aerospace’s Blue Ghost Mission 1 lunar lander on the Moon’s surface the afternoon of March 2, not quite 10 hours after the spacecraft landed.
Firefly Aerospace’s Blue Ghost Mission 1 lunar lander, which appears in this image from NASA’s Lunar Reconnaissance Orbiter as a bright pixel casting a shadow in the middle of the white box, reached the surface of the Moon on March 2 at 3:34 a.m. EST.NASA/Goddard/Arizona State University The delivery is part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign. This is the first CLPS delivery for Firefly, and their first Moon landing.
LRO is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for the Science Mission Directorate at NASA Headquarters in Washington. Launched on June 18, 2009, LRO has collected a treasure trove of data with its seven powerful instruments, making an invaluable contribution to our knowledge about the Moon. NASA is returning to the Moon with commercial and international partners to expand human presence in space and bring back new knowledge and opportunities.
More on this story from Arizona State University’s LRO Camera website
Media Contact:
Nancy N. Jones
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Mar 25, 2025 Related Terms
Lunar Reconnaissance Orbiter (LRO) View the full article
-
By USH
On the night of February 23, 2025, residents of Tucumán, Argentina witnessed an astonishing sight during a violent thunderstorm. As a powerful lightning bolt tore through the sky, it briefly illuminated a massive, cigar-shaped object hovering in the storm’s center.
Eyewitnesses described the object as dark, elongated, and solid, standing in stark contrast to the swirling storm clouds around it. Unlike a natural weather phenomenon, the shape appeared structured and deliberate, leading many to speculate that it was a UFO of intelligent design, possibly of extraterrestrial origin.
It is not clear whether the object was struck by the lightning but there have been reports of UFOs being hit by lightning yet remaining unaffected, suggesting they may either harness or withstand immense energy levels.
Some researchers believe that certain UFOs absorb energy from lightning as a means of propulsion or power generation. In past cases, similar sightings have been reported in the presence of electrical storms, further fueling theories that such crafts may recharge their systems using natural energy sources.
It is known that theoretical physics explores the concept of extracting energy from electrical phenomena, such as Tesla’s ideas about wireless energy transmission. If an advanced civilization mastered this, lightning could be a viable energy source.
View the full article
-
By NASA
This compressed, resolution-limited gif shows the view of lunar sunset from one of the six Stereo Cameras for Lunar-Plume Surface Studies (SCALPSS) 1.1 cameras on Firefly’s Blue Ghost lander, which operated on the Moon’s surface for a little more than 14 days and stopped, as anticipated, a few hours into lunar night. The bright, swirly light moving across the surface on the top right of the image is sunlight reflecting off the lander. Images taken by SCALPSS 1.1 during Blue Ghost’s descent and landing, as well as images from the surface during the long lunar day, will help researchers better understand the effects of a lander’s engine plumes on the lunar soil, or regolith. The instrument collected almost 9000 images and returned 10 GB of data. This data is important as trips to the Moon increase and the number of payloads touching down in proximity to one another grows. The SCALPSS 1.1 project is funded by the Space Technology Mission Directorate’s Game Changing Development program. SCALPSS was developed at NASA’s Langley Research Center in Hampton, Virginia, with support from Marshall Space Flight Center in Huntsville, Alabama.NASA/Olivia TyrrellView the full article
-
By NASA
This picture, captured from the surface of the Moon, shows Firefly’s Blue Ghost lunar lander, which performed operations on the Moon from March 2, to March 16, 2025, in the foreground, and Earth in the sky above it. Credit: Firefly Aerospace NASA and Firefly Aerospace will host a news conference at 2 p.m. EDT Tuesday, March 18, from NASA’s Johnson Space Center in Houston to discuss the company’s successful Blue Ghost Mission 1 on the Moon’s surface.
Watch the news conference on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
U.S. media interested in participating in person or remotely must request accreditation by 5 p.m., Monday, March 17, by contacting the NASA Johnson newsroom at 281-483-5111 or jsccommu@mail.nasa.gov. A copy of NASA’s media accreditation policy is online. To ask questions via phone, media must dial into the news conference no later than 15 minutes prior to the start of the call.
Firefly’s Blue Ghost lunar lander touched down March 2, on the Moon’s Mare Crisium basin. The lander’s NASA payloads were activated, collected science data, and performed operations as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign to establish a long-term lunar presence. The mission is not designed to survive through the lunar night; however, Blue Ghost continued operations for five hours after lunar sunset on March 16.
Participants will include:
Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters in Washington Jason Kim, CEO, Firefly Aerospace Ray Allensworth, spacecraft program director, Firefly Adam Schlesinger, CLPS project manager, NASA Johnson The Blue Ghost Mission 1 mission launched at 1:11 a.m., Jan. 15, on a SpaceX Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The lander delivered 10 NASA science investigations and technology demonstrations including testing and demonstrating lunar drilling technology, regolith (lunar rocks and soil) sample collection capabilities, global navigation satellite system abilities, radiation tolerant computing, and lunar dust mitigation. The data captured will benefit humans on Earth in many ways, providing insights into how space weather and other cosmic forces impact our home planet.
NASA continues to work with multiple American companies to deliver science and technology to the lunar surface through the agency’s CLPS initiative. This pool of companies may bid on NASA contracts for end-to-end lunar surface delivery services, including all payload integration and operations, launching from Earth and landing on the surface of the Moon.
Through the Artemis campaign, commercial robotic deliveries will perform science experiments, test technologies, and demonstrate capabilities on and around the Moon to help NASA explore in advance of Artemis Generation astronaut missions to the lunar surface, and ultimately crewed missions to Mars.
For more information about the agency’s Commercial Lunar Payload Services initiative:
https://www.nasa.gov/clps
-end-
Karen Fox / Alise Fisher
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / alise.m.fisher@nasa.gov
Natalia Riusech / Nilufar Ramji
Johnson Space Center, Houston
281-483-5111
natalia.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
Share
Details
Last Updated Mar 17, 2025 LocationNASA Headquarters Related Terms
Missions Artemis Commercial Lunar Payload Services (CLPS) View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
In-person participants (L-R) – Back row: Jason Lytle, Stuart Lee, Eric Bershad, Ashot Sargsyan, Aaron Everson, Philip Wells, Sergi Vaquer Araujo, Steven Grover, John A. Heit, Mehdi Shishehbor, Laura Bostick; Middle row: Sarah Childress Taoufik, Stephan Moll, Brandon Macias, Kristin Coffey, Ann-Kathrin Vlacil, Dave Francisco; Front row: James Pavela, Doug Ebert, Kathleen McMonigal, Esther Kim, Emma Hwang; Not pictured: Tyson Brunstetter, J. D. Polk
Online participants: Stephen Alamo, Mark Crowther, Steven Nissen, Mark Rosenberg, Jeffrey Weitz, R. Eugene Zierler, Serena Aunon, Tina Bayuse, Laura Beachy, Becky Brocato, Daniel Buckland, Jackie Charvat, Diana Cruz Topete, Quinn Dufurrena, Robert Haddon, Joanne Kaouk, Kim Lowe, Steve Laurie, Karina Marshall-Goebel, Sara Mason, Shannan Moynihan, James Pattarini, Devan Petersen, Ruth Reitzel, Donna Roberts, Lucia Roccaro, Mike Stenger, Terry Taddeo, Gavin Travers, Mary Van Baalen, Liz WarrenNASA In October 2024, NASA’s Office of the Chief Health and Medical Officer (OCHMO) initiated a working group to review the status and progress of research and clinical activities intended to mitigate the risk of venous thromboembolism (VTE) during spaceflight. The working group took place over two days at NASA’s Johnson Space Center; a second meeting on the topic was held in December 2024 at the European Space Agency (ESA) facility in Cologne, Germany.
Read More about the Risk of VTE The working group was assembled from internal NASA subject matter experts (SMEs), the NASA OCHMO Standards Team, NASA and ESA stakeholders, and external SMEs, including physicians and medical professionals from leading universities and medical centers in the United States and Canada.
Background
Spaceflight Venous Thrombosis (SVT)
Spaceflight Venous Thrombosis (SVT) refers to a phenomenon experienced during spaceflight in which a thrombus (blood clot) forms in the internal jugular vein (and/or associated vasculature) that may be symptomatic (thrombus accompanied by, but not limited to, visible internal jugular vein swelling, facial edema beyond “nominal” spaceflight adaptation, eyelid edema, and/or headache) or asymptomatic. Obstructive thrombi have been identified in a very small number of crewmembers, as shown in the figure below.
Note that the figure below is for illustrative purposes only; locations are approximate, and size is not to scale.
Approximate location of identified thrombi in crewmembers.Source: Modified from Cerebral Sinus Venous Thrombosis – University of Colorado Denver With treatment, crewmembers were able to complete their mission, and anticoagulants were discontinued several days prior to landing to minimize the risk of bleeding in the event of a traumatic injury. Some thromboses completely resolved post landing, and some required additional treatment.
Pathophysiology of Venous Thromboembolism (VTE)
The proposed pathogenesis of VTE is referred to as Virchow’s triad and suggests that VTE occurs as the result of:
Alterations in blood flow (i.e., stasis), Vascular endothelial injury/changes, and/or, Alterations in the constituents of the blood leading to hypercoagulability (i.e., hereditary predisposition or acquired hypercoagulability). Note: pathophysiology are the changes that occur during a disease process; hypercoagulability is the increased tendency to develop blood to clots.
The Virchow’s triad of risk factors for venous thrombosis.Bouchnita, 2017 Blood stasis, or venous stasis, refers to a condition in which the blood flow in the veins slows down which leads to pooling in the veins. This slowing of the blood may be due to vein valves becoming damaged or weak, immobility, and/or the absence of muscular contractions. Associated symptoms include swelling, skin changes, varicose veins, and slow-healing sores or ulcers. In terrestrial medicine, venous thrombosis is typically caused by damaged or weakened vein valves, which can be due to many factors, including aging, blood clots, varicose veins, obesity, pregnancy, sedentary lifestyle, estrogen use, and hereditary predisposition.
Spaceflight Considerations
Altered Venous Blood Flow and Spaceflight Associated Neuro-ocular Syndrome
In addition to the terrestrial risk factors of VTE, there are physiological changes associated with spaceflight that are hypothesized to potentially play a role in the development of VTE in weightlessness. Specifically, researchers have explored the effects of the microgravity environment and subsequent observed headward fluid shifts that occur, and the potential impact on blood flow. Crewmembers onboard the International Space Station (ISS) experience weightlessness due to the microgravity environment and thus experience a sustained redistribution of bodily fluids from the legs toward the head. The prolonged headward fluid shifts during weightlessness results in facial puffiness, decreased leg volume, increased cardiac stroke volume, and decreased plasma volume.
Crewmembers have also experienced altered blood flow during spaceflight, including retrograde venous blood flow (RVBF) (the backflow of venous blood towards the brain) or stasis (a stoppage or slowdown in the flow of blood). While the causes of the observed stasis and retrograde blood flow in spaceflight participants is not well understood, the potential clinical significance of the role it may have in the development of thrombus formation warrants further investigation.
Doppler imaging of a retrograde flow in the left internal jugular vein.Yan & Seow, 2009 Other physiological concerns affected by fluid shifts are being studied to consider if any relation to VTE exists. Chronic weightlessness can cause bodily fluids such as blood and cerebrospinal fluid to move toward the head, which can lead to optic nerve swelling, folds in the retina, flattening of the back of the eye, and swelling in the brain. This collection of eye and brain changes is called “spaceflight associated neuro-ocular syndrome,” or SANS. Some astronauts only experience mild changes in space, while others have clinically significant outcomes. The long-term health outcome from these changes is unknown but actively being investigated. The risk of developing SANS is higher during longer-duration missions and remains a top research priority for scientists ahead of a Mars mission.
Conclusions and Further Work
Based on expert opinion and the assessment of the risk factors for thrombosis, an algorithm was developed to provide guidance for in-mission assessment and treatment of thrombus formation in weightlessness. The algorithm is based on early in-flight ultrasound testing to determine the flow characteristic of the left internal jugular vein and associated vasculature.
NASA Working Group Recommendations
The working group recommended several areas for further investigation to assess feasibility and potential to mitigate the risk of thrombosis in spaceflight:
Improved detection capabilities to identify when a thrombus has formed in-flight, Pathophysiology/factors leading to thrombi formation during spaceflight, Countermeasures and treatment
For more information on the working group meeting and a complete list of references, please see the Risk of Venous Thromboembolism (VTE) During Spaceflight Summary Report.
Risk of Venous Thromboembolism (VTE) During Spaceflight Summary Report Share
Details
Last Updated Mar 14, 2025 EditorKim Lowe Related Terms
Office of the Chief Health and Medical Officer (OCHMO) Astronauts General Human Health and Performance Humans in Space The Human Body in Space Keep Exploring Discover Related Topics
OCHMO Independent Assessments
Independent assessment plays a crucial role in NASA’s long-term success by addressing essential questions requiring rapid response to support further…
Aerospace Medical Certification Standard
This NASA Technical Standard provides medical requirements and clinical procedures designed to ensure crew health and safety and occupational longevity…
Human Spaceflight Standards
The Human Spaceflight & Aviation Standards Team continually works with programs to provide the best standards and implementation documentation to…
Human Spaceflight and Aviation Standards
The Human Spaceflight and Aviation Standards Team continuously works with subject matter experts and with each space flight program to…
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.