Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Aaron Yazzie’s dream of being part of humanity’s exploration of space took him on a journey from his childhood home on the Navajo Nation to working at NASA’s Jet Propulsion Laboratory (JPL) in Southern California. His journey reflects not only his personal ambition, but also a commitment to elevating Indigenous representation in science, technology, engineering, and mathematics (STEM) fields.
      “Getting an internship at NASA was the culmination of a lot of work done by myself, and many of the Indigenous trailblazers that came before me, to make a path and a space for Indigenous peoples at places where there might not have been any Indigenous Peoples in any rooms,” said Yazzie.
      Born in Tuba City, Arizona, Yazzie is of the Salt Clan and born for the Bitter Water Clan, which reflect his maternal and paternal lineage, respectively. The Navajo clan system communicates family heritage and where their families come from.
      Yazzie’s path to NASA began with a passion for engineering, which he pursued at Stanford University in Stanford, California, where he earned a bachelor’s degree in mechanical engineering in 2008. NASA is a dream job for many, from artists to engineers, and Yazzie was no exception. Securing an internship at NASA’s Jet Propulsion Laboratory in 2008 marked a significant milestone for him, particularly as an Indigenous person in STEM where Indigenous people are underrepresented. Throughout his academic and professional journey, he frequently found himself as the only Indigenous voice in the room with Indigenous people representing less than 0.6% of the American STEM workforce.
      Yazzie’s work at NASA is deeply intertwined with his cultural identity. In the Navajo culture, traditional stories tell how the Diné (the people) came to exist in Dinétah (Navajo homelands).
      Yazzie’s contributions to missions exploring Mars, including testing the Curiosity Rover’s sample acquisition system and developing drill bits for the Perseverance Rover, resonate with the Navajo creation story, which emphasizes nurturing life on a developing Earth—paralleling his efforts to support the possibility of life on Mars.  He approaches his role with a sense of purpose, reflecting on the importance of understanding origins–both of the Earth and of life itself.
      “By studying Mars, we learn about how rocky, terrestrial planets, like Mars and Earth, formed over billions of years,” said Yazzie, “And by searching for ancient microbial life on Mars, we might learn how life on Earth originated. I am proud to be doing what my ancestors have been doing before me.”
      Emphasizing a commitment to lifelong learning, Yazzie advises future interns to “embrace the opportunities of growth and learning that come with working at NASA.” His advice: learn how to be a good learner. Yazzie’s diverse responsibilities, from test engineer to systems engineer, keep him engaged and continuously evolving.
      “I think I am most proud of the outreach work I have been able to do, especially to Indigenous communities,” said Yazzie, “I want to help Indigenous students understand that they can exist and thrive at places like NASA.”
      Yazzie’s work has been recognized with awards from NASA JPL, Stanford University, and his own tribe, reinforcing his role as a trailblazer for generations. As he continues to contribute to humanity’s understanding of Mars and its potential for past life, he honors his ancestors by paving the way for a more inclusive future in space exploration. Through his work, Yazzie inspires a new generation of Diné scientists and engineers, proving their voices have an essential place in the story of the cosmos.
      Like Yazzie, NASA is devoted to mentoring the next generation of Indigenous doers, thinkers, and innovators. Anyone interested in following his footsteps may consider applying for a NASA Internship. Outside of internships NASA offers numerous routes to help Indigenous students get involved with STEM. Additionally, through NASA’s Minority University Research and Education Project (MUREP), the agency provides financial assistance via competitive awards to Minority Serving Institutions. The MUREP American Indian and Alaska Native STEM Engagement (MAIANSE) program offers funding dedicated to supporting Indigenous students launch their careers at NASA.
      Want to learn more about interns at NASA? Read More View the full article
    • By NASA
      The Thanksgiving holiday typically brings families and friends together in a celebration of common gratitude for all the good things that have happened during the previous year. People celebrate the holiday in various ways, with parades, football marathons, and attending services, but food remains the over-arching theme. For astronauts embarked on long-duration space missions, separation from family and friends is inevitable and they rely on fellow crew members to share in the tradition and enjoy the culinary traditions as much as possible. 

      Over the past decades, astronauts have celebrated the holiday during their time in space in a variety of unique ways. Enjoy the stories and photographs from orbital Thanksgiving celebrations over the years. 
      Skylab 4 astronauts Edward G. Gibson, left, William R. Pogue, and Gerald P. Carr demonstrate eating aboard Skylab during Thanksgiving in 1973. NASA Skylab 4 astronauts Gerald P. Carr, Edward G. Gibson, and William R. Pogue hold the distinction as the first crew to celebrate Thanksgiving in space on Nov. 22, 1973. On that day, their seventh of an 84-day mission, Gibson and Pogue completed a 6-hour and 33-minute spacewalk, while Carr remained in the Multiple Docking Adapter, with no access to food. All three made up for missing lunch by consuming two meals at dinner time, although neither included special items for Thanksgiving.

      Twelve years passed before the next orbital Thanksgiving celebration. On Nov. 28, 1985, the seven-member crew of STS-61B, NASA astronauts Brewster H. Shaw, Bryan D. O’Connor, Jerry L. Ross, Mary L. Cleave, and Sherwood C. “Woody” Spring, and payload specialists Charles D. Walker from the United States and Rodolfo Neri Vela from Mexico, feasted on shrimp cocktail, irradiated turkey, and cranberry sauce aboard the space shuttle Atlantis.
      STS-80 astronauts Tamara E. Jernigan, left, Kent V. Rominger, and Thomas D. Jones enjoy Thanksgiving dinner in Columbia’s middeck in 1996.NASA Neri Vela introduced tortillas to space menus, and they have remained favorites among astronauts ever since. Unlike regular bread, tortillas do not create crumbs, a potential hazard in weightlessness, and have multiple uses for any meal of the day. The crew of STS-33, NASA astronauts Frederick D. Gregory, John E. Blaha, Manley L. “Sonny” Carter, F. Story Musgrave, and Kathryn C. Thornton, celebrated Thanksgiving aboard space shuttle Discovery in 1989. Gregory and Musgrave celebrated their second Thanksgiving in space two years later, joined by fellow STS-44 NASA astronauts Terrence T. “Tom” Henricks, James S. Voss, Mario Runco, and Thomas J. Hennen aboard space shuttle Atlantis.

      In 1996, Blaha celebrated his second Thanksgiving in space with Russian cosmonauts Valeri G. Korzun and Aleksandr Y. Kaleri aboard the space station Mir. Blaha watched the beautiful Earth through the Mir windows rather than his usual viewing fare of football. The STS-80 crew of NASA astronauts Kenneth D. Cockrell, Kent V. Rominger, Tamara E. Jernigan, Thomas D. Jones, and Musgrave, now on his third turkey day holiday in orbit, celebrated Thanksgiving aboard space shuttle Columbia. Although the eight crew members worked in different spacecraft in different orbits, they exchanged holiday greetings via space-to-space radio. This marked the largest number of people in space on Thanksgiving Day up to that time.

      One year later, NASA astronaut David A. Wolf celebrated Thanksgiving with his Russian crewmates Anatoli Y. Solovev, who translated the holiday into Russian as den blagodarenia, and Pavel V. Vinogradov aboard Mir. They enjoyed smoked turkey, freeze-dried mashed potatoes, peas, and milk. Also in orbit at the time was the crew of STS-87, NASA astronauts Kevin R. Kregel, Steven W. Lindsey, Kalpana Chawla, and Winston E. Scott, Takao Doi of the Japan Aerospace Exploration Agency, and Leonid K. Kadenyuk of Ukraine, aboard Columbia. The nine crew members aboard the two spacecraft broke the one-year-old record for the largest number of people in space at one time for Thanksgiving, also setting the record for the most nations represented, four.
      NASA astronaut Frank L. Culbertson, left, and Vladimir N. Dezhurov of Roscosmos enjoy Thanksgiving dinner aboard the International Space Station in 2001.NASA The Expedition 1 crew of NASA astronaut William M. Shepherd, and Yuri P. Gidzenko and Sergei K. Krikalev of Roscosmos celebrated the first Thanksgiving aboard the International Space Station on Nov. 23, 2000, three weeks after their arrival aboard the facility. The crew took time out of their busy schedule to enjoy ham and smoked turkey and send words of thanks to people on the ground who provided excellent support to their flight. Crews have celebrated Thanksgiving in space every November since then.

      In 2001, Expedition 3 crew members NASA astronaut Frank L. Culbertson, and Vladimir N. Dezhurov and Mikhail V. Tyurin of Roscosmos enjoyed the first real Thanksgiving aboard the space station, complete with a cardboard turkey as decoration. The following year’s orbital Thanksgiving celebration included the largest number of people to that time, the combined 10 crewmembers of Expedition 5, STS-113, and Expedition 6. After a busy day that included the first Thanksgiving Day spacewalk from the space station, the crews settled down to a dinner of smoked turkey, mashed potatoes, and green beans with mushrooms. Blueberry-cherry cobbler rounded out the meal.
      The crews of Expeditions 18 and STS-126 share a Thanksgiving meal in the space shuttle middeck in 2008. NASA Expedition 18 crew members NASA astronauts E. Michael Fincke and Gregory E. Chamitoff and Yuri V. Lonchakov representing Roscosmos, welcomed the STS-126 crew of NASA astronauts Christopher J. Ferguson, Eric A. Boe, Heidemarie M. Stefanyshyn-Piper, Donald R. Pettit, Stephen G. Bowen, R. Shane Kimbrough, and Sandra H. Magnus during Thanksgiving in 2008. They dined in the space shuttle Endeavour’s middeck on smoked turkey, candied yams, green beans and mushrooms, cornbread dressing and a cranapple dessert. 

      The following year saw the largest and an internationally diverse group celebrating Thanksgiving in space. The six Expedition 21 crew members, NASA astronauts Jeffrey N. Williams and Nicole P. Stott, Roman Y. Romanenko and Maksim V. Suraev of Roscosmos, Frank L. DeWinne of the European Space Agency, and Robert B. Thirsk of the Canadian Space Agency hosted the six members of the STS-129 crew, NASA astronauts Charles O. Hobaugh, Barry E. Wilmore, Michael J. Foreman, Robert L. Satcher, Randolph J. Bresnik, and Leland D. Melvin. The twelve assembled crew members represented the United States, Russia, Belgium, and Canada. The celebration took place two days early, since the shuttle undocked from the space station on Thanksgiving Day.

      We hope you enjoyed these stories and photographs from Thanksgivings celebrated in space. We would like to wish everyone here on the ground and the seven-member crew of Expedition 72 aboard the space station a very Happy Thanksgiving! For NASA astronauts Barry “Butch” E. Wilmore and Donald R. Pettit, this will mark the third time they celebrate the holiday in space.
      Expedition 42 crew members enjoy Thanksgiving dinner aboard the space station in 2014.NASA Expedition 45 crew members gather at the Thanksgiving dinner table aboard the orbital outpost in 2015. NASA Expedition 50 crew members at the Thanksgiving dinner table aboard the orbiting laboratory in 2016. NASA The Expedition 53 crew awaits the start of Thanksgiving dinner aboard the space station in 2017.NASA Expedition 66 crew members enjoy a Thanksgiving feast in 2021.NASA Expedition 70 crew members Andreas E. Mogensen, of the European Space Agency, front left, NASA astronauts Loral A. O’Hara and Jasmin Moghbeli, and Satoshi Furukawa of the Japan Aerospace Exploration Agency beam down their Thanksgiving message to everyone on the ground in 2023. The astronauts presented their favorite Thanksgiving space food items.NASA View the full article
    • By NASA
      NASA, on behalf of the National Oceanic and Atmospheric Administration (NOAA), has selected Johns Hopkins University’s Applied Physics Laboratory of Laurel, Maryland, to build the Suprathermal Ion Sensors for the Lagrange 1 Series project, part of NOAA’s Space Weather Next Program.
      This cost-plus-fixed-fee contract is valued at approximately $20.5 million and includes the development of two Suprathermal Ion Sensor instruments. The anticipated period of performance for this contract will run through Jan. 31, 2034. The work will take place at the awardee’s facility in Maryland, NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and Kennedy Space Center in Florida.
      The contract scope includes design, analysis, development, fabrication, integration, test, verification, and evaluation of the Suprathermal Ion Sensor instruments, launch support, supply and maintenance of ground support equipment, and support of post-launch mission operations at the NOAA Satellite Operations Facility.
      The Suprathermal Ion Sensors will provide critical data to NOAA’s Space Weather Prediction Center, which issues forecasts, warnings and alerts that help mitigate space weather impacts, including electric power outages and interruption to communications and navigation systems.
      The instruments will measure suprathermal ions and electrons across a broad range of energies, and will provide real-time, continuous observations to ensure early warning of various space weather impacts. They also will monitor ions to characterize solar ejections including coronal mass ejections, co-rotating interaction regions, and interplanetary shocks. Analysis of these spectra aids in estimating the arrival time and strength of solar wind shocks.
      NASA and NOAA oversee the development, launch, testing, and operation of all the satellites in the L1 Series project. NOAA is the program owner that provides funds and manages the program, operations, and data products and dissemination to users. NASA and commercial partners develop, build, and launch the instruments and spacecraft on behalf of NOAA.
      For information about NASA and agency programs, please visit:
      https://www.nasa.gov
      -end-
      Jeremy Eggers
      Goddard Space Flight Center, Greenbelt, Md.
      757-824-2958
      jeremy.l.eggers@nasa.gov
      Share
      Details
      Last Updated Nov 26, 2024 EditorRob GarnerContactJeremy EggersLocationGoddard Space Flight Center Related Terms
      NOAA (National Oceanic and Atmospheric Administration) Goddard Space Flight Center Heliophysics Heliophysics Division View the full article
    • By NASA
      Space Station Astronauts Deliver a Thanksgiving Message for 2024
    • By NASA
      4 min read
      NASA AI, Open Science Advance Natural Disaster Research and Recovery
      Hurricane Ida is pictured as a category 2 storm from the International Space Station as it orbited 264 miles above the Gulf of Mexico. In the foreground is the Canadarm2 robotic arm with Dextre, the fine-tuned robotic hand, attached. NASA By Lauren Perkins
      When you think of NASA, disasters such as hurricanes may not be the first thing to come to mind, but several NASA programs are building tools and advancing science to help communities make more informed decisions for disaster planning. 
      Empowered by NASA’s commitment to open science, the NASA Disasters Program supports disaster risk reduction, response, and recovery. A core element of the Disasters Program is providing trusted, timely, and actionable data to aid organizations actively responding to disasters.  
      Hurricane Ida made landfall in Louisiana Aug. 21, 2021, as a category 4 hurricane, one of the deadliest and most destructive hurricanes in the continental United States on record. The effects of the storm were widespread, causing devastating damage and affecting the lives of millions of people. 
      During Hurricane Ida, while first responders and other organizations addressed the storm’s impacts from the ground, the NASA Disasters program was able to provide a multitude of remotely sensed products. Some of the products and models included information on changes in soil moisture, changes in vegetation, precipitation accumulations, flood detection, and nighttime lights to help identify areas of power outages.
      Image Before/After The NASA team shared the data with its partners on the NASA Disasters Mapping Portal and began participating in cross-agency coordination calls to determine how to further aid response efforts. To further connect and collaborate using open science efforts, NASA Disasters overlaid publicly uploaded photos on their Damage Proxy Maps to provide situational awareness of on-the-ground conditions before, during, and after the storm.  
      Immediate post-storm response is critical to saving lives; just as making informed, long- term response decisions are critical to providing equitable recovery solutions for all. One example of how this data can be used is blue tarp detection in the aftermath of Hurricane Ida.
      Using artificial intelligence (AI) with NASA satellite images, the Interagency Implementation and Advanced Concepts Team (IMPACT), based at NASA’s Marshall Space Flight Center in Huntsville, Alabama, conducted a study to detect the number of blue tarps on rooftops in the aftermath of hurricanes, such as Ida, as a way of characterizing the severity of damage in local communities.
      An aerial photograph shows damaged roofs from Hurricane Maria in 2017 in Barrio Obrero, Puerto Rico. In the wake of the hurricane, the Federal Emergency Management Agency (FEMA) and United States Army Corps of Engineers distributed 126,000 blue tarps and nearly 60,000 temporary blue roofs to people awaiting repairs on damaged homes. NASA While disasters cannot be avoided altogether, timely and accessible information helps communities worldwide reduce risk, improve response, hasten recovery, and build disaster resilience.  
      Through an initiative led by NASA’s Office of the Chief Science Data Officer, NASA and IBM are developing five open-source artificial intelligence foundation models trained on NASA’s expansive satellite repositories. This effort will help make NASA’s vast, ever-growing amounts of data more accessible and usable. Leveraging NASA’s AI expertise allows users to make faster, more informed decisions. User applications of the Prithvi Earth Foundation Models could range from identifying flood risks and predicting crop yields to forecasting long range atmospheric weather patterns.
      “NASA is dedicated to ensuring that our scientific data are accessible and beneficial to all. Our AI foundation models are scientifically validated and adaptable to new data, designed to maximize efficiency and lower technical barriers. This ensures that even in the face of challenging disasters, response teams can be swift and effective,” said Kevin Murphy, NASA’s chief science data officer. “Through these efforts, we’re not only advancing scientific frontiers, but also delivering tangible societal benefits, providing data that can safeguard lives and improve resilience against future threats.” 
      Hear directly from some of the data scientists building these AI models, the NASA disaster response team, as well as hurricane hunters that fly directly into these devastating storms on NASA’s Curious Universe podcast. 
      Learn more about NASA’s AI for Science models at https://science.nasa.gov/artificial-intelligence-science/.
      Share








      Details
      Last Updated Nov 26, 2024 Related Terms
      Earth Natural Disasters Open Science Explore More
      5 min read NASA Data Reveals Role of Green Spaces in Cooling Cities


      Article


      3 hours ago
      5 min read 5 Surprising NASA Heliophysics Discoveries Not Related to the Sun


      Article


      6 days ago
      14 min read NASA’s Brad Doorn Brings Farm Belt Wisdom to Space-Age Agriculture
      From his South Dakota roots to leading NASA’s agricultural program, Brad Doorn’s mission has remained…


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
  • Check out these Videos

×
×
  • Create New...