Members Can Post Anonymously On This Site
10 ways Sentinel-1 data lets us ‘see’ our world
-
Similar Topics
-
By NASA
NASA Science Live: Asteroid Bennu Originated from World with Ingredients and Conditions for Life
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 4 min read
Sols 4437-4438: Coordinating our Dance Moves
NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on sol 4435 — Martian day 4,435 of the Mars Science Laboratory mission — on Jan. 27, 2025, at 02:23:35 UTC. NASA/JPL-Caltech Earth planning date: Monday, Jan. 27, 2025
I was Geology and Mineralogy (Geo) Science Team lead today, and my day started with a bang and a drum roll — delivered by a rare winter thunderstorm (rare here in England, at least). I did lose power for a few minutes, but thanks to laptop batteries and phone Wi-Fi, I think no one noticed … so, shhh, don’t tell the boss!
Planning was especially interesting as we had a decision to make, whether we want to align ChemCam and APXS observations with each other and focus on one target, or whether we want two different targets. As Geo Science Team lead, it is my role to facilitate this discussion, but that is always fun — and easy. Many colleagues come with well-prepared reasons for why they want to have a certain observation in today’s plan, and I always learn something new about Mars, or geology, or both when those discussions happen. Weighing all arguments carefully, we decided for the coordinated dance of contact and remote science observations on a bedrock target we named “Desert View.” APXS will start the dance, followed by ChemCam active and one RMI image on the same location. Closing out the dance will be MAHLI, by imaging the APXS target that at this point will have the laser pits.
Such a coordinated observation will allow us to see how the rock reacts to the interaction with the laser. We have done this many times, and often learnt interesting things about the mineralogy of the rock. But more than 10 years ago, there was an even more ambitious coordination exercise: On sol 687 the imaging on a target called “Nova” was timed so that Mastcam actually captured the laser spark in the image. While that’s useful for engineering purposes, as a mineralogist I want to see the effect on the rock. Here is the result of that “spark” on target Nova on sol 687.
But back to today’s planning. Apart from the coordinated observations, ChemCam also adds to the Remote Micro Imager coverage of Gould Mesa with a vertical RMI observation that is designed to cover all the nice layers in the mesa, just like a stratigraphic column. Mastcam is looking back at the Rustic Canyon crater to get a new angle. Craters are three-dimensional and looking at it from all sides will help decipher the nature of this small crater, and also make full use of the window into the underground that it offers. Mastcam has two more mosaics, “Condor Peak” and “Boulder Basin,” which are both looking at interesting features in the landscape: Condor Peak at a newly visible butte, and Boulder Basin at bedrock targets in the near-field, to ascertain the structures and textures are still the same as they have been, or document any possible changes. Mars has surprised us before, so we try to look as often as power and other resources allow, even if only to confirm that nothing has changed. You can see the blocks that we are using for this observation in the grayscale Navigation Camera image above; we especially like it when upturned blocks give us a different view, while flat lying blocks in the same image show the “regular” perspective.
After the targeted science is completed, the rover will continue its drive along the planned route, to see what Mars has to offer on the next stop. After the drive, MARDI will take its image, and ChemCam do an autonomous observation, picking its own target. Also after the drive is a set of atmospheric observations to look at dust levels and search for dust devils. Continuous observations throughout include the DAN instrument’s observation of the surface and measurements of wind and temperature.
With that, the plan is again making best use of all the power we have available… and here in England the weather has improved, inside my power is back to normal, and outside it’s all back to the proverbial rain this small island is so famous for.
Written by Susanne Schwenzer, Planetary Geologist at The Open University
Share
Details
Last Updated Jan 29, 2025 Related Terms
Blogs Explore More
2 min read Sols 4434-4436: Last Call for Clouds
Article
2 days ago
3 min read What ‘Perseverance’ Means on Mars and for Our NASA Family
Article
5 days ago
3 min read Sols 4431-4433: On the rim of ‘Rustic Canyon’
Article
6 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
In 2023, NASA Langley’s workforce brought imagination to reality with innovative technological development and a continued commitment to tackling some of the tough challenges that both NASA and the nation face.
NASA At NASA, we aspire to know more, dig deeper, climb higher and along the way we are asking, ‘What if?’,” said NASA Langley Center Director Clayton P. Turner in an introductory message to Langley’s 2023 Annual Report. “Our inquisitive nature propels us on our mission to reach for new heights and reveal the unknown for the benefit of humankind.”
All year, the Langley workforce pondered and planned for a future alongside self-flying drones, aircraft with reduced emissions, air travel that benefits from greater fuel efficiency and space exploration assisted by inflatable heat shields that could give us the ability to carry greater payloads than ever before.
“We invite you to explore all that NASA’s Langley Research Center has to offer — our amazing people, unique capabilities, and legacy of success,” Turner said in his introduction.
Use this link to explore the 2023 Annual Report for NASA’s Langley Research Center.
View the full article
-
By European Space Agency
A study using data from ESA’s Swarm mission suggests that faint magnetic signatures created by Earth’s tides can help us determine magma distribution under the seabed and could even give us insights into long-term trends in global ocean temperatures and salinity.
View the full article
-
By NASA
NASA’s Jet Propulsion Laboratory used radar data taken by ESA’s Sentinel-1A satellite before and after the 2015 eruption of the Calbuco volcano in Chile to create this inter-ferogram showing land deformation. The color bands west of the volcano indicate land sinking. NISAR will produce similar images.ESA/NASA/JPL-Caltech A SAR image — like ones NISAR will produce — shows land cover on Mount Okmok on Alaska’s Umnak Island . Created with data taken in August 2011 by NASA’s UAVSAR instrument, it is an example of polarimetry, which measures return waves’ orientation relative to that of transmitted signals.NASA/JPL-Caltech Data from NASA’s Magellan spacecraft, which launched in 1989, was used to create this image of Crater Isabella, a 108-mile-wide (175-kilometer-wide) impact crater on Venus’ surface. NISAR will use the same basic SAR principles to measure properties and characteristics of Earth’s solid surfaces.NASA/JPL-Caltech Set to launch within a few months, NISAR will use a technique called synthetic aperture radar to produce incredibly detailed maps of surface change on our planet.
When NASA and the Indian Space Research Organization’s (ISRO) new Earth satellite NISAR (NASA-ISRO Synthetic Aperture Radar) launches in coming months, it will capture images of Earth’s surface so detailed they will show how much small plots of land and ice are moving, down to fractions of an inch. Imaging nearly all of Earth’s solid surfaces twice every 12 days, it will see the flex of Earth’s crust before and after natural disasters such as earthquakes; it will monitor the motion of glaciers and ice sheets; and it will track ecosystem changes, including forest growth and deforestation.
The mission’s extraordinary capabilities come from the technique noted in its name: synthetic aperture radar, or SAR. Pioneered by NASA for use in space, SAR combines multiple measurements, taken as a radar flies overhead, to sharpen the scene below. It works like conventional radar, which uses microwaves to detect distant surfaces and objects, but steps up the data processing to reveal properties and characteristics at high resolution.
To get such detail without SAR, radar satellites would need antennas too enormous to launch, much less operate. At 39 feet (12 meters) wide when deployed, NISAR’s radar antenna reflector is as wide as a city bus is long. Yet it would have to be 12 miles (19 kilometers) in diameter for the mission’s L-band instrument, using traditional radar techniques, to image pixels of Earth down to 30 feet (10 meters) across.
Synthetic aperture radar “allows us to refine things very accurately,” said Charles Elachi, who led NASA spaceborne SAR missions before serving as director of NASA’s Jet Propulsion Laboratory in Southern California from 2001 to 2016. “The NISAR mission will open a whole new realm to learn about our planet as a dynamic system.”
Data from NASA’s Magellan spacecraft, which launched in 1989, was used to create this image of Crater Isabella, a 108-mile-wide (175-kilometer-wide) impact crater on Venus’ surface. NISAR will use the same basic SAR principles to measure properties and characteristics of Earth’s solid surfaces.NASA/JPL-Caltech How SAR Works
Elachi arrived at JPL in 1971 after graduating from Caltech, joining a group of engineers developing a radar to study Venus’ surface. Then, as now, radar’s allure was simple: It could collect measurements day and night and see through clouds. The team’s work led to the Magellan mission to Venus in 1989 and several NASA space shuttle radar missions.
An orbiting radar operates on the same principles as one tracking planes at an airport. The spaceborne antenna emits microwave pulses toward Earth. When the pulses hit something — a volcanic cone, for example — they scatter. The antenna receives those signals that echo back to the instrument, which measures their strength, change in frequency, how long they took to return, and if they bounced off of multiple surfaces, such as buildings.
This information can help detect the presence of an object or surface, its distance away, and its speed, but the resolution is too low to generate a clear picture. First conceived at Goodyear Aircraft Corp. in 1952, SAR addresses that issue.
“It’s a technique to create high-resolution images from a low-resolution system,” said Paul Rosen, NISAR’s project scientist at JPL.
As the radar travels, its antenna continuously transmits microwaves and receives echoes from the surface. Because the instrument is moving relative to Earth, there are slight changes in frequency in the return signals. Called the Doppler shift, it’s the same effect that causes a siren’s pitch to rise as a fire engine approaches then fall as it departs.
Computer processing of those signals is like a camera lens redirecting and focusing light to produce a sharp photograph. With SAR, the spacecraft’s path forms the “lens,” and the processing adjusts for the Doppler shifts, allowing the echoes to be aggregated into a single, focused image.
Using SAR
One type of SAR-based visualization is an interferogram, a composite of two images taken at separate times that reveals the differences by measuring the change in the delay of echoes. Though they may look like modern art to the untrained eye, the multicolor concentric bands of interferograms show how far land surfaces have moved: The closer the bands, the greater the motion. Seismologists use these visualizations to measure land deformation from earthquakes.
Another type of SAR analysis, called polarimetry, measures the vertical or horizontal orientation of return waves relative to that of transmitted signals. Waves bouncing off linear structures like buildings tend to return in the same orientation, while those bouncing off irregular features, like tree canopies, return in another orientation. By mapping the differences and the strength of the return signals, researchers can identify an area’s land cover, which is useful for studying deforestation and flooding.
Such analyses are examples of ways NISAR will help researchers better understand processes that affect billions of lives.
“This mission packs in a wide range of science toward a common goal of studying our changing planet and the impacts of natural hazards,” said Deepak Putrevu, co-lead of the ISRO science team at the Space Applications Centre in Ahmedabad, India.
Learn more about NISAR at:
https://nisar.jpl.nasa.gov
News Media Contacts
Andrew Wang / Jane J. Lee
Jet Propulsion Laboratory, Pasadena, Calif.
626-379-6874 / 818-354-0307
andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov
2025-006
Share
Details
Last Updated Jan 21, 2025 Related Terms
NISAR (NASA-ISRO Synthetic Aperture Radar) Earth Earth Science Earth Science Division Jet Propulsion Laboratory Explore More
4 min read NASA Scientists, Engineers Receive Presidential Early Career Awards
Article 4 days ago 6 min read NASA International Space Apps Challenge Announces 2024 Global Winners
Article 5 days ago 3 min read NASA Scientists Find New Human-Caused Shifts in Global Water Cycle
Article 5 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.