Members Can Post Anonymously On This Site
USecAF discusses national defense challenges, inspires cadets at Virginia Tech
-
Similar Topics
-
By NASA
To put boots on the Moon—and keep them there—will require bold thinkers ready to tackle the challenges of tomorrow.
That’s why NASA’s Office of STEM Engagement at Johnson Space Center in Houston is on a mission to empower the next generation of explorers in science, technology, engineering, and mathematics (STEM).
Through the High School Aerospace Scholars (HAS) program, Texas juniors have the opportunity to immerse themselves in space exploration through interactive learning experiences.
“HAS is such an important program because we introduce students to the multitude of careers and experiences that contribute to space exploration,” said NASA HAS Activity Manager Jakarda Varnado. “We go beyond asking students who they want to be when they grow up and ask what problems they want to solve.”
Meet Former HAS Student Madeline King
Madeline King always knew she wanted a career in STEM, with a dream of working at NASA influencing her decision to pursue a degree in Engineering.
Before joining HAS, King thought scientists mainly worked in labs and engineers focused on design. But the HAS program revealed a different reality—scientists and engineers often collaborated on interdisciplinary projects, sometimes even sharing roles.
Official portrait of Madeline King.NASA The program broadened King’s perspective on the diverse paths a STEM degree can lead to. It showed her that careers at NASA offer opportunities across various fields and disciplines.
King said participating in HAS helped to strengthen her problem-solving skills and ability to think creatively. The program required students to tackle complex technical tasks independently, emphasizing self-directed learning. King describes HAS as fun, challenging, and engaging, which helped her excel in technical roles.
“Learning to digest and internalize this information is a skill I continue to use when getting up to speed in new groups or taking on projects outside my current skill set,” said King.
Though King joined HAS during COVID-19, which limited in-person interactions, the experience still made an impact. Her mentors also offered insights into graduate school options, helping her weigh the benefits of advanced degrees against gaining hands-on experience at NASA.
The program opened doors to internships at Johnson in the Engineering Robotics and the Avionics Systems Integration Division. Now, she is studying mechanical engineering at the University of Houston, bringing passion and experience in electronics, robotics, education, project management, and aviation.
“Early on in my internship journey, HAS shined on my resume,” she said. “It demonstrated that I already had experience with NASA’s culture, values, and mission.”
Looking forward, King envisions herself as a flight controller, contributing to both the International Space Station Program and the Artemis campaign. Driven by her passion for NASA’s mission, King is just beginning her journey and is eager to be part of the future of space exploration.
“My internships since HAS have allowed me to make small contributions to both of these missions, and I’m excited to specialize as a full-time engineer,” said King.
Meet Caroline Vergara
As a first-generation student, Caroline Vergara lacked the resources to fully explore her interests in aerospace engineering, let alone envision what that career might look like. That all changed when she was accepted into NASA’s HAS program.
“The exposure to real-world innovation ignited my desire to be part of something bigger, something that pushes the boundaries of human knowledge and capability,” she said.
Caroline Vergara announces the launch of the model rocket she built during her time in the HAS program. NASA/David DeHoyos Touring NASA facilities and watching engineers work on projects opened her eyes to the possibilities in STEM. Today, Vergara is a propulsion design engineering intern at United Launch Alliance, contributing to the Vulcan rocket as a Brooke Owens Fellow.
Vergara initially thought working in STEM was mostly about writing equations or running simulations but HAS showed her it is so much more. “A STEM career is about curiosity, collaboration, and the power to change the world,” she said.
During the program, Vergara joined a team of students to tackle a mission simulation project. They called themselves “Charlie and the Rocket Factory” and designed a prototype rocket together. Working with peers from all over the country showed her the power of diverse perspectives. She experienced firsthand what it was like to be part of a team with a shared vision, working toward something bigger than themselves.
Vergara also discovered her love for 3D printing and computer-aided design through HAS. She spent hours fine-tuning designs, fascinated by the process of turning digital models into physical reality.
Her experience with HAS also sparked a desire to give back. She returned to her hometown to share her story and encourage other students to pursue STEM. Partnering with Johnson Community Engagement Lead Jessica Cordero, she organized video conferences with NASA engineers on International Women in Engineering Day to inspire a new wave of students to be part of space exploration.
“The aerospace industry is entering a new space age, and we have the unique opportunity to put humans back on the Moon and explore beyond,” she said.
Her advice to the Artemis Generation is: “Go for it! You could be part of the generation that changes humanity’s destiny.”
Caroline Vergara, University of Houston Class of 2025. As a mechanical engineering honors student at the University of Houston and chief engineer of Space City Rocketry, Vergara envisions contributing to the Artemis campaign and advancing NASA’s mission to explore the cosmos.
“My dream is to contribute to space exploration efforts that put humans back on the Moon and beyond, and to one day work in Mission Control Center, where I can help guide those historic missions into the future.”
Meet Iker Aguirre
For Iker Aguirre, the spark that ignited his journey toward a career in aerospace was lit by a passing conversation during his freshman year of high school. A senior classmate described the HAS program as a once-in-a-lifetime experience that cemented his passion for aerospace. That moment stayed with Aguirre, and when the opportunity arose, he did not hesitate to apply.
Iker Aguirre inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. “HAS showed me that in order to accomplish something as complex as Artemis, you need a well-rounded set of teams and individuals,” he said. “You don’t need to study aerospace to be in the aerospace industry!”
In 2020, Aguirre participated during the remote-only version of HAS, but he recalls that the program still gave him a much deeper understanding of the spaceflight industry.
Despite already being interested in aerospace, Aguirre says HAS broadened his horizons, showing him the diverse pathways into the field. Through collaborative projects with peers across Texas, he discovered that solving the challenges of space exploration requires more than just aerospace engineers.
The program’s emphasis on teamwork left a lasting impression. During his time with HAS, Aguirre found himself working alongside students from different backgrounds, each bringing unique perspectives to problem-solving. It introduced him to dedicated and passionate people with various personalities and cultures who all shared similar dreams and aspirations as him.
Aguirre credits HAS with not only refining his technical skills but also shaping his approach to innovation and teamwork. That experience paid off as he moved through his academic and professional journey, including Pathways program internships with NASA’s Johnson Space Center in Houston and Marshall Space Flight Center in Huntsville, Alabama.
“Getting connections at NASA through HAS helped me open many doors so far,” said Aguirre. “I met many good friends through HAS and my internship at Johnson, which I value to this day.”
Now pursuing a degree in rocket propulsion, with a focus on turbomachinery design, Aguirre remains committed to advancing space exploration. He hopes to contribute to humanity’s mobility in space, tackling challenges in rocket engine feed systems.
Iker Aguirre at NASA’s Johnson Space Center during his HAS internship. Through HAS, Aguirre found not just an educational program, but a community and a purpose. “My journey will forever be interlinked with NASA’s core values of benefiting humanity on and off the Earth,” he said. “I hope to inspire others just as much as the people who inspired me through my journey!”
View the full article
-
By USH
Despite the MSM at the moment keeps a low profile in informing the public about the unidentified drones, the 'drone mystery' is still going on with hundreds of drones spotted across the US, especially the eastern United States.
Check out the size of this high-tech drone, estimated to be around 25-30 feet in length, possibly even larger. It was recently filmed flying low over New Jersey. (Watch the video of the craft at the bottom of the article.)
The mystery surrounding unidentified drones continues to capture attention, particularly across the eastern United States. While mainstream media (MSM) maintains a low profile in reporting on these occurrences, sightings persist, with hundreds of drones reported in various regions.
Officials have repeatedly assured the public that these drones pose no threat to national security. However, skepticism remains high, as the government has yet to provide a comprehensive explanation, leaving many feeling left in the dark.
Dr. Steven Greer recently made a prediction during an interview with Newsmax's Rob Finnerty. He claimed that the drone crisis is likely to escalate "within the next 30 days." According to Greer, the notion of a supposed "alien invasion" is a deliberate distraction designed to obscure the true nature of extraterrestrial encounters, which he asserts have been ongoing for decades. This statement has sparked further speculation among those following developments in the UFO community.
Adding to the anticipation, investigative journalist Ross Coulthart has forecasted that 2025 will mark a turning point in public awareness about extraterrestrial matters. Describing the current period as “the calm before the storm,” Coulthart envisions transformative revelations in the coming year.
Michael Salla, Ph.D., another figure in the disclosure movement, has reported information from a retired U.S. Army serviceman, identified as JP. According to JP, factions within the U.S. military, referred to as "White Hats," along with an international coalition known as the “Earth Alliance,” are preparing to disclose advanced alien technology to the public. This advanced technology, allegedly hidden for decades by shadowy "deep state" organizations and defense contractors, includes three medium-sized cigar-shaped spacecraft and numerous unidentified aerial phenomena (UAPs) stored in an underground facility in Tampa, Florida. These alleged alien-tech craft are said to possess advanced stealth capabilities, allowing them to blend seamlessly with their surroundings.
As part of a broader disclosure strategy, the unveiling of these craft is intended to prepare the public for even larger extraterrestrial revelations in the months ahead.
It seems as two opposing forces are at play:
The Deep State: Allegedly leveraging drones and orbs sightings as part of a staged operation to manipulate public perception to fabricate the illusion of an alien invasion in an attempt to hide the real truth about extraterrestrial encounters and maintain the secrecy around covert programs and maintain control over advanced technologies acquired over the past 70 years.
The Earth Alliance: Seeking to reveal genuine alien technology obtained from real UFO crashes, confirming the existence of extraterrestrial life and promoting transparency.
Whether these predictions will materialize remains to be seen, but they have undeniably heightened public interest in what lies ahead. View the full article
-
By Space Force
U.S. Air Force Lt. Gen. John DeGoes discusses transformative leadership and how it is rooted in purposeful communication, adaptability, and a commitment to the Air Force core values.
View the full article
-
By NASA
A rendering of Firefly’s Blue Ghost lunar lander and a rover developed for the company’s third mission to the Moon as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative.Credit: Firefly Aerospace NASA continues to advance its campaign to explore more of the Moon than ever before, awarding Firefly Aerospace $179 million to deliver six experiments to the lunar surface. This fourth task order for Firefly will target landing in the Gruithuisen Domes on the near side of the Moon in 2028.
As part of the agency’s broader Artemis campaign, Firefly will deliver a group of science experiments and technology demonstrations under NASA’s CLPS initiative, or Commercial Lunar Payload Services, to these lunar domes, an area of ancient lava flows, to better understand planetary processes and evolution. Through CLPS, NASA is furthering our understanding of the Moon’s environment and helping prepare for future human missions to the lunar surface, as part of the agency’s Moon to Mars exploration approach.
“The CLPS initiative carries out U.S. scientific and technical studies on the surface of the Moon by robot explorers. As NASA prepares for future human exploration of the Moon, the CLPS initiative continues to support a growing lunar economy with American companies,” said Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters in Washington. “Understanding the formation of the Gruithuisen Domes, as well as the ancient lava flows surrounding the landing site, will help the U.S. answer important questions about the lunar surface.”
Firefly’s first lunar delivery is scheduled to launch no earlier than mid-January 2025 and will land near a volcanic feature called Mons Latreille within Mare Crisium, on the northeast quadrant of the Moon’s near side. Firefly’s second lunar mission includes two task orders: a lunar orbit drop-off of a satellite combined with a delivery to the lunar surface on the far side and a delivery of a lunar orbital calibration source, scheduled in 2026.
This new delivery in 2028 will send payloads to the Gruithuisen Domes and the nearby Sinus Viscositatus. The Gruithuisen Domes have long been suspected to be formed by a magma rich in silica, similar in composition to granite. Granitic rocks form easily on Earth due to plate tectonics and oceans of water. The Moon lacks these key ingredients, so lunar scientists have been left to wonder how these domes formed and evolved over time. For the first time, as part of this task order, NASA also has contracted to provide “mobility,” or roving, for some of the scientific instruments on the lunar surface after landing. This will enable new types of U.S. scientific investigations from CLPS.
“Firefly will deliver six instruments to understand the landing site and surrounding vicinity,” said Chris Culbert, manager of the CLPS initiative at NASA’s Johnson Space Center in Houston. “These instruments will study geologic processes and lunar regolith, test solar cells, and characterize the neutron radiation environment, supplying invaluable information as NASA works to establish a long-term presence on the Moon.”
The instruments, collectively expected to be about 215 pounds (97 kilograms) in mass, include:
Lunar Vulkan Imaging and Spectroscopy Explorer, which consists of two stationary and three mobile instruments, will study rocks and regoliths on the summit of one of the domes to determine their origin and better understand geologic processes of early planetary bodies. The principal investigator is Dr. Kerri Donaldson Hanna of the University of Central Florida, Orlando. Heimdall is a flexible camera system that will be used to take pictures of the landing site from above the horizon to the ground directly below the lander. The principal investigator is Dr. R. Aileen Yingst of the Planetary Science Institute, Tucson, Arizona. Sample Acquisition, Morphology Filtering, and Probing of Lunar Regolith is a robotic arm that will collect samples of lunar regolith and use a robotic scoop to filter and isolate particles of different sizes. The sampling technology will use a flight spare from the Mars Exploration Rover project. The principal investigator is Sean Dougherty of Maxar Technologies, Westminster, Colorado. Low-frequency Radio Observations from the Near Side Lunar Surface is designed to observe the Moon’s surface environment in radio frequencies, to determine whether natural and human-generated activity near the surface interferes with science. The project is headed up by Natchimuthuk Gopalswamy of NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Photovoltaic Investigation on the Lunar Surface will carry a set of the latest solar cells for a technology demonstration of light-to-electricity power conversion for future missions. The experiment will also collect data on the electrical charging environment of the lunar surface using a small array of solar cells. The principal investigator is Jeremiah McNatt from NASA’s Glenn Research Center in Cleveland. Neutron Measurements at the Lunar Surface is a neutron spectrometer that will characterize the surface neutron radiation environment, monitor hydrogen, and provide constraints on elemental composition. The principal investigator is Dr. Heidi Haviland of NASA’s Marshall Spaceflight Center in Huntsville, Alabama. Through the CLPS initiative, NASA purchases lunar landing and surface operations services from American companies. The agency uses CLPS to send scientific instruments and technology demonstrations to advance capabilities for science, exploration, or commercial development of the Moon. By supporting a robust cadence of lunar deliveries, NASA will continue to enable a growing lunar economy while leveraging the entrepreneurial innovation of the commercial space industry. Two upcoming CLPS flights scheduled to launch in early 2025 will deliver NASA payloads to the Moon’s near side and south polar region, respectively.
Learn more about CLPS and Artemis at:
https://www.nasa.gov/clps
-end-
Alise Fisher
Headquarters, Washington
202-358-2546
alise.m.fisher@nasa.gov
Natalia Riusech / Nilufar Ramji
Johnson Space Center, Houston
281-483-5111
natalia.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
Share
Details
Last Updated Dec 18, 2024 LocationNASA Headquarters Related Terms
Commercial Lunar Payload Services (CLPS) Artemis View the full article
-
By Space Force
The NACE program’s mission is to rapidly iterate and improve space superiority, intelligence surveillance and reconnaissance, and defensive cyber command-and-control processes and procedures.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.