Jump to content

Art Meets Exploration: Cosmic Connections in Galveston


Recommended Posts

  • Publishers
Posted

The Texas Art Education Association hosted its annual conference from Nov. 14–16 at Moody Gardens Hotel & Convention Center in Galveston, Texas, drawing nearly 3,000 educators, administrators, and artists.  

This year’s theme, “Cosmic Connections: SPACE, the Last Frontier and the Element of Art,” celebrated the fusion of creativity and space exploration, with NASA’s Johnson Space Center participating for the first time to inspire the Artemis Generation art educators.  

20241114-135248.jpg?w=2048
Johnson Space Center volunteers Raul Tijerina (left), building graphics lead for the International Space Station Program; Gary Johnson (middle), technical manager in NASA’s International Space Station Mission Integration and Operations Office; and Christian Getteau, Imagery Integration and Multimedia producer with the Human Space Flight Technical Integration Contract, participate in the NASA booth at the Texas Art Education Association annual conference held Nov. 14–16 at Moody Gardens Hotel & Convention Center in Galveston, Texas.
NASA

From astronauts crafting in orbit to collaborative art projects on Earth, NASA continues to showcase how creativity can capture the wonder of the cosmos. This event allowed educators to connect with NASA, explore teaching resources, and discover innovative ways to merge the arts with science and space exploration in their classrooms. 

A group photo at a NASA booth features six individuals standing alongside an astronaut suit display.
Johnson volunteers pose with an astronaut spacesuit at the Texas Art Education Association conference.
NASA/Sumer Loggins

“We have seen our astronauts bring the art of painting, music, photography, and more to orbit aboard the space shuttle and the International Space Station,” said Gary Johnson, NASA’s International Space Station Mission Integration and Operations Office technical manager. “Our mission is to inspire the next generation of artists and explorers to capture the beauty of space through any medium they choose.” 

“Everyone has a place at NASA,” added Raul Tijerina, International Space Station Program building graphics lead. “This collaboration celebrates the diversity of talents needed to explore the universe, including those who bring ideas to life through art.” 

Two individuals stand on either side of an inflatable NASA astronaut suit. The setting is an indoor venue with high ceilings and modern architecture.
NASA’s inflatable mascot, Cosmo, greets attendees and poses for photos during the art car show at the conference.
NASA

Guests immersed themselves in a variety of stellar experiences, including interacting with NASA’s inflatable mascot, Cosmo, taking selfies at the NASA booth, and viewing artwork that shares the past and celebrates the future of space exploration.  

The nonprofit SciArt Exchange provided teachers with details about its space art competitions, aimed at sparking curiosity across all ages. These competitions include the Project Mars Competition, where adults compete to have their artwork featured at Johnson, and the Moon Youth Art Competition, which highlights lunar-themed creations from students around the world. 

Attendees also explored infographics and had the chance to download NASA’s Spot the Station app to track the orbiting laboratory in real-time.  

A group photo of attendees in a conference room with warm lighting. At the center, two individuals in professional attire, including one wearing a NASA flight jacket.
NASA astronaut Michael Foreman (middle left) and Gordon Andrews, a strategic communications specialist for the International Space Station Program, pose with attendees following a space-themed presentation.
NASA

Gordon Andrews, a strategic communications specialist for the International Space Station Program, and NASA astronaut Michael Foreman introduced the Spacesuit Art Project to conference attendees. They shared the documentary “Space for Art,” which chronicles the project’s mission to inspire hope, courage, and healing through art.  

Andrews and Foreman discussed their experiences working on the project with retired NASA astronaut Nicole Stott, the first person to watercolor in space, and the Space for Art Foundation. Foreman shared stories from his time in space and posed for photos with guests. Andrews also presented to the Visual Art Administrators of Texas, a group of over 200 Texas education leaders.  

The film played at NASA’s booth, showcasing how the initiative brings hope to children undergoing pediatric cancer treatment by inviting them to create colorful spacesuit artwork. Each suit—Hope, Courage, Unity, Victory, Dreamer, Exploration, Beyond, and Infinity—embodies the resilience and imagination of its creators. Four of these spacesuits have journeyed to and from the microgravity laboratory, inspiring children to dream big as they view their artwork in orbit. 

By raising awareness about pediatric cancer and promoting art therapy worldwide, the project demonstrates the powerful connection between space exploration and the human spirit. 

A NASA booth display features a table with a yellow skirt, showcasing informational materials. Behind the table, colorful artwork-themed astronaut suits and a life-size cutout of a smiling individual wearing a vibrant patchwork suit add visual interest. A TV screen displays an image of the sunrise from space.
The NASA booth featured the Spacesuit Art Project, showcasing a Flat Stanley of NASA astronaut Nicole Stott, the first person to watercolor in space, alongside spacesuits painted by pediatric patients.
NASA

Texas’ first Space Force Junior Reserve Officers’ Training Corps cadets—the only program of its kind in Texas and one of just 10 in the nation—participated in the event, as well. As a NASA rendition of the National Anthem played in the background, the cadets from Klein High School inspired the next generation of dreamers and doers to reach for the stars.  

img-0342.jpg?w=1858
Texas’ first Space Force Junior Reserve Officers’ Training Corps cadets from Klein High School participate in the ceremony as a NASA rendition of the National Anthem plays in the background.
NASA

The conference also featured three murals that will be added to the art collection in Johnson’s building 4 south. 

The art installation project began in 2022 when Johnson and Tijerina collaborated with Texas high school art programs to create space-themed murals for display at the center. With the help of their teachers, students brainstormed ideas and painted the murals together before visiting Johnson to install them and experience a guided walk-through of NASA’s facilities.  

Led by their shared passion for artistic expression and space exploration, the students bring color, wonder, and creativity to the walls at Johnson. The initiative is part of a long-term effort to engage with students locally and globally to ignite the imagination of all and enhance the visual work environment for Johnson employees. 

A stylized digital artwork featuring two individuals in profile within an astronaut helmet. The helmet’s design incorporates circuitry patterns. In the background, Mars looms with orange and red hues, surrounded by abstract geometric lines and digital elements.
“Absolute Equality: Breaking Boundaries” by Reginald C. Adams, symbolizes unity and humanity’s collective future in space exploration.

The artwork titled “Absolute Equality: Breaking Boundaries,” by artist Reginald C. Adams, will be one of the latest installations in building 4 south. The piece envisions humanity’s shared future, symbolizing unity and the possibilities of interplanetary exploration. 

Adams was a keynote speaker for the conference, and when he learned about the mural project, he wanted to contribute to the initiative. 

The two figures are enclosed within a shared helmet, representing a collective vision for the future of space exploration. The patterns surrounding them signify technology’s role in connecting humanity across cultural and societal divides.  

A mural depicts children gazing at the night sky. One child looks through a telescope, while others hold models of rockets and spacecraft. The International Space Station orbits above Earth.
La Marque High School students, art teacher Joan Finn, and artist Cheryl Evans painted a mural highlighting the interconnected roles in space exploration.

A collaborative piece by La Marque High School art students, art teacher Joan Finn, and artist Cheryl Evans depicted the interconnected roles of visionaries, engineers, artists, and astronauts in space exploration. 

Just as the space station was assembled piece by piece over more than 40 missions, the mural was created using 10 separate stretched canvases bolted together. The International Space Station patch at the bottom highlights the collaboration of the 17 countries involved. 

A mural showcases two spacesuit cutouts on a lunar surface, allowing visitors to pose as astronauts. The backdrop features a depiction of space, with colorful galaxies, the Hubble Space Telescope, and a satellite orbiting a distant planet.
“The Moon Now,” created by La Marque High School students, depicts two astronauts on the lunar surface in Axiom spacesuits with mirrored visors.

A student-created vision titled “The Moon Now” showcased two astronauts on the lunar surface wearing Axiom spacesuits, with helmet visors designed as mirrors, signifying the next generation to envision themselves contributing to the next giant leap in space exploration.  

The students created individual pieces depicting the Milky Way and other astronomical objects, which were collaged onto the surface of the artwork. 

Through partnerships like this, NASA continues to embrace STEAM—science, technology, engineering, art, and math—to empower the Artemis Generation to dare, unite, and explore.  

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      This NASA/ESA Hubble Space Telescope reveals clouds of gas and dust near the Tarantula Nebula, located in the Large Magellanic Cloud about 160,000 light-years away.ESA/Hubble & NASA, C. Murray The universe is a dusty place, as this NASA/ESA Hubble Space Telescope image featuring swirling clouds of gas and dust near the Tarantula Nebula reveals. Located in the Large Magellanic Cloud about 160,000 light-years away in the constellations Dorado and Mensa, the Tarantula Nebula is the most productive star-forming region in the nearby universe, home to the most massive stars known.
      The nebula’s colorful gas clouds hold wispy tendrils and dark clumps of dust. This dust is different from ordinary household dust, which may include bits of soil, skin cells, hair, and even plastic. Cosmic dust is often comprised of carbon or of molecules called silicates, which contain silicon and oxygen. The data in this image was part of an observing program that aims to characterize the properties of cosmic dust in the Large Magellanic Cloud and other nearby galaxies.
      Dust plays several important roles in the universe. Even though individual dust grains are incredibly tiny, far smaller than the width of a single human hair, dust grains in disks around young stars clump together to form larger grains and eventually planets. Dust also helps cool clouds of gas so that they can condense into new stars. Dust even plays a role in making new molecules in interstellar space, providing a venue for individual atoms to find each other and bond together in the vastness of space.
      View the full article
    • By NASA
      Jorge Chong is helping shape the future of human spaceflight, one calculation at a time. As a project manager for TRON (Tracking and Ranging via Optical Navigation) and a guidance, navigation, and control (GNC) test engineer in the Aeroscience and Flight Mechanics Division, he is leading efforts to ensure the Orion spacecraft can navigate deep space autonomously. 
      Jorge Chong in front of the Mission Control Center at NASA’s Johnson Space Center in Houston when he helped with optical navigation operations during Artemis I.Image courtesy of Jorge Chong “GNC is like the brain of a spacecraft. It involves a suite of sensors that keep track of where the vehicle is in orbit so it can return home safely,” he said. “Getting to test the components of a GNC system makes you very familiar with how it all works together, and then to see it fly and help it operate successfully is immensely rewarding.” 

      His work is critical to the Artemis campaign, which aims to return humans to the Moon and pave the way for Mars. From developing optical navigation technology that allows Orion to determine its position using images of Earth and the Moon to testing docking cameras and Light Detection and Ranging systems that enable autonomous spacecraft rendezvous, Chong is pushing the limits of exploration. He also runs high-fidelity flight simulations at Lockheed Martin’s Orion Test Hardware facility in Houston, ensuring Orion’s software is ready for the demands of spaceflight. 

      Chong’s NASA career spans seven years as a full-time engineer, plus three years as a co-op student at NASA’s Johnson Space Center in Houston. In 2024, he began leading Project TRON, an optical navigation initiative funded by a $2 million Early Career Initiative award. The project aims to advance autonomous space navigation—an essential capability for missions beyond Earth’s orbit. 
      Jorge Chong and his colleagues with the Artemis II docking camera in the Electro-Optics Lab at Johnson. From left to right: Paul McKee, Jorge Chong, and Kevin Kobylka. Bottom right: Steve Lockhart and Ronney Lovelace. Thanks to Chong’s work, the Artemis Generation is one step closer to exploring the Moon, Mars, and beyond. He supported optical navigation operations during Artemis I, is writing software that will fly on Artemis II, and leads optical testing for Orion’s docking cameras. But his path to NASA wasn’t always written in the stars. 

      “I found math difficult as a kid,” Chong admits. “I didn’t enjoy it at first, but my parents encouraged me patiently, and eventually it started to click and then became a strength and something I enjoyed. Now, it’s a core part of my career.” He emphasizes that perseverance is key, especially for students who may feel discouraged by challenging subjects. 

      Most of what Chong has learned, he says, came from working collaboratively on the job. “No matter how difficult something may seem, anything can be learned,” he said. “I could not have envisioned being involved in projects like these or working alongside such great teams before coming to Johnson.” 
      Jorge Chong (left) and his siblings Ashley and Bronsen at a Texas A&M University game. Image courtesy of Jorge Chong His career has also reinforced the importance of teamwork, especially when working with contractors, vendors, universities, and other NASA centers. “Coordinating across these dynamic teams and keeping the deliverables on track can be challenging, but it has helped to be able to lean on teammates for assistance and keep communication flowing,” said Chong.

      And soon, those systems will help Artemis astronauts explore places no human has gone before. Whether guiding Orion to the Moon or beyond, Chong’s work is helping NASA write the next chapter of space exploration. 

      “I thank God for the doors He has opened for me and the incredible mentors and coworkers who have helped me along the way,” he said. 
      View the full article
    • By NASA
      NASA’s SPHEREx is situated on a work stand ahead of prelaunch operations at the Astrotech Processing Facility at Vandenberg Space Force Base in California. The SPHEREx space telescope will share its ride to space on a SpaceX Falcon 9 rocket with NASA’s PUNCH mission.
      Credit: USSF 30th Space Wing/Christopher
      NASA will provide live coverage of prelaunch and launch activities for SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer), the agency’s newest space telescope. This will lift off with another NASA mission, Polarimeter to Unify the Corona and Heliosphere, or PUNCH, which will study the Sun’s solar wind.
      The launch window opens at 10:09 p.m. EST (7:09 p.m. PST) Thursday, Feb. 27, for the SpaceX Falcon 9 rocket that will lift off from Space Launch Complex 4 East at Vandenberg Space Force Base in California. Watch coverage on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
      The SPHEREx mission will improve our understanding of how the universe evolved and search for key ingredients for life in our galaxy.
      The four small spacecraft that comprise PUNCH will observe the Sun’s corona as it transitions into solar wind.
      The deadline for media accreditation for in-person coverage of this launch has passed. NASA’s media credentialing policy is available online. For questions about media accreditation, please email: ksc-media-accreditat@mail.nasa.gov.
      NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations):
      Tuesday, Feb. 25
      2 p.m. – SPHEREx and PUNCH Science Overview News Conference
      Shawn Domagal-Goldman, acting director, Astrophysics Division, NASA Headquarters Joe Westlake, director, Heliophysics Division, NASA Headquarters Nicholeen Viall, PUNCH Mission Scientist, NASA’s Goddard Space Flight Center Rachel Akeson, SPHEREx science data center lead, Caltech/IPAC Phil Korngut, SPHEREx instrument scientist, Caltech The news conference will stream on NASA+. Media may ask questions in person or via phone. Limited auditorium space will be available for in-person participation. For the dial-in number and passcode, media should contact the NASA Kennedy newsroom no later than one hour before the start of the event at ksc-newsroom@mail.nasa.gov.
      Wednesday, Feb. 26
      3:30 p.m. – SPHEREx and PUNCH Prelaunch News Conference
      Mark Clampin, acting deputy associate administrator, Science Mission Directorate, NASA Headquarters David Cheney, PUNCH program executive, NASA Headquarters James Fanson, SPHEREx project manager, NASA’s Jet Propulsion Laboratory Denton Gibson, launch director, NASA’s Launch Services Program Julianna Scheiman, director, NASA Science Missions, SpaceX U.S. Air Force 1st Lt. Ina Park, 30th Operations Support Squadron launch weather officer Coverage of the prelaunch news conference will stream live on NASA+.
      Media may ask questions in person and via phone. Limited auditorium space will be available for in-person participation. For the dial-in number and passcode, media should contact the Kennedy newsroom no later than one hour before the start of the event at ksc-newsroom@mail.nasa.gov.
      Thursday, Feb. 27
      12 p.m. – SPHEREx and PUNCH Launch Preview will stream live on NASA+.
      9:15 p.m. – Launch coverage begins on NASA+.
      10:09 p.m. – Launch window opens.
      Audio Only Coverage
      Audio only of the launch coverage will be carried on the NASA “V” circuits, which may be accessed by dialing 321-867-1220, or -1240. On launch day, “mission audio,” countdown activities without NASA+ media launch commentary, will be carried on 321-867-7135.
      NASA Website Launch Coverage
      Launch day coverage of the mission will be available on the agency’s website. Coverage will include links to live streaming and blog updates beginning no earlier than 9:15 p.m., Feb. 27, as the countdown milestones occur. On-demand streaming video and photos of the launch will be available shortly after liftoff.
      For questions about countdown coverage, contact the Kennedy newsroom at 321-867-2468. Follow countdown coverage on the SPHEREx blog.
      Attend the Launch Virtually
      Members of the public can register to attend this launch virtually. NASA’s virtual guest program for this mission also includes curated launch resources, notifications about related opportunities or changes, and a stamp for the NASA virtual guest passport following launch.
      Watch, Engage on Social Media
      You can also stay connected by following and tagging these accounts:
      X: @NASA, @NASAJPL, @NASAUnivese, @NASASun, @NASAKennedy, @NASA_LSP
      Facebook: NASA, NASAJPL, NASA Universe, NASASunScience, NASA’s Launch Services Program
      Instagram: @NASA, @NASAKennedy, @NASAJPL, @NASAUnivese
      For more information about these missions, visit:
      https://science.nasa.gov/mission/spherex/
      https://science.nasa.gov/mission/punch/
      -end-
      Alise Fisher – SPHEREx
      Headquarters, Washington
      202-617-4977
      alise.m.fisher@nasa.gov
      Sarah Frazier – PUNCH
      Goddard Space Flight Center, Greenbelt, Md.
      202-853-7191
      sarah.frazier@nasa.gov
      Laura Aguiar
      Kennedy Space Center, Florida
      321-593-6245
      laura.aquiar@nasa.gov
      Share
      Details
      Last Updated Feb 18, 2025 LocationNASA Headquarters Related Terms
      SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) Missions Polarimeter to Unify the Corona and Heliosphere (PUNCH) Science Mission Directorate View the full article
    • By NASA
      Credit: NASA NASA’s Small Spacecraft Systems Virtual Institute (S3VI) is pleased to announce the official release of the highly anticipated 2024 State-of-the-Art Small Spacecraft Technology report. This significant accomplishment was made possible by the contributions of numerous dedicated people across NASA who graciously supported the preparation of the document as authors and reviewers. We also want to extend our gratitude to all the companies, universities, and organizations that provided content for this report.
      The 2024 report can be found online at https://www.nasa.gov/smallsat-institute/sst-soa. The report is also available in PDF format as a single document containing all report content as well as individual chapters available on their respective chapter webpages. This 2024 edition reflects updates in several chapters to include: the Formation Flying and Rendezvous and Proximity Operations section within the “Guidance, Navigation, and Control” chapter; the Additive Manufacturing section within the “Structures, Materials, and Mechanisms” chapter; the Free Space Optical Communications section within the “Communications” chapter; and the Hosted Orbital Services section within the “Complete Spacecraft Platforms” chapter.
      As in previous editions, the report contains a general overview of current state-of-the-art SmallSat technologies and their development status as discussed in open literature. The report is not intended to be an exhaustive representation of all technologies currently available to the small spacecraft community, nor does the inclusion of technologies in the report serve as an endorsement by NASA. Sources of publicly available date commonly used as sources in the development of the report include manufacturer datasheets, press releases, conference papers, journal papers, public filings with government agencies, and news articles. Readers are highly encouraged to reach out to companies for further information regarding the performance and maturity of described technologies of interest. During the report’s development, companies were encouraged to release test information and flight data when possible so it may be appropriately captured. It should be noted that technology maturity designations may vary with change to payload, mission requirements, reliability considerations, and the associated test/flight environment in which performance was demonstrated.
      Suggestions or corrections to the 2024 report toward a subsequent edition, should be submitted to the NASA Small Spacecraft Systems Virtual Institute Agency-SmallSat-Institute@mail.nasa.gov for consideration prior to the publication of the future edition. When submitting suggestions or corrections, please cite appropriate publicly accessible references. Private correspondence is not considered an adequate reference. Efforts are underway for the 2025 report and organizations are invited to submit technologies for consideration for inclusion by August 1, 2025.
      NASA’s Small Spacecraft Technology program within the Space Technology Mission Directorate funds the Small Spacecraft Systems Virtual Institute. 
      View the full article
    • By NASA
      Explore This Section Science Science Activation An Afternoon of Family Science… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   2 min read
      An Afternoon of Family Science and Rocket Exploration in Alaska
      On Tuesday, January 28th, Fairbanks BEST Homeschool joined the Geophysical Institute for an afternoon of rocket exploration, hands-on activities, and stargazing inside a planetarium. This event was free and open to the public. Despite their frigid winter weather, 200 attendees were curious about the scientific endeavors of Alaska-based researchers alongside cutting-edge investigations conducted by NASA rocket scientists.
      Families and friends in attendance learned about two NASA rocket missions that would study the flickering and vanishing auroras: Ground Imaging to Rocket investigation of Auroral Fast Features (GIRAFF) and Black and Diffuse Aurora Science Surveyor (BaDASS). Visitors had an opportunity to sign up for text notifications related to the launch window. The planetarium presentations touch on Heliophysics Big Ideas that align with the three questions that drive NASA’s heliophysics research:
      What are the impacts of the changing sun on humanity? How do Earth, the solar system, and the heliosphere respond to changes on the sun? What causes the sun to vary? The event also offered sun-related hands-on activities provided by the University of Alaska Museum of the North.
      This event was offered to the community in association with the Science For Alaska Lecture Series and the 2025 NASA Sounding Rocket campaign. Every attendee left with something inspiring to think about. Parents and educators interested in learning more about auroras and do participatory science may check out NASA’s Aurorasaurus citizen science project.
      The Geophysical Institute at the University of Alaska Fairbanks is a Co-Investigating team for the NASA Heliophysics Education Activation Team (NASA HEAT), which is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      Aurora Educational Resource List by Aurorasaurus
      Families constructed and decorated their paper rockets. Katelin Avery It was so much fun! We are receiving rave reviews from our families and the surrounding community. THANK YOU AGAIN FOR COLLABORATING WITH US!

      Fairbanks BEST Homeschool
      Share








      Details
      Last Updated Feb 14, 2025 Editor Earth Science Division Editorial Team Related Terms
      Science Activation Citizen Science Heliophysics Explore More
      3 min read Tribal Library Co-Design STEM Space Workshop


      Article


      1 day ago
      2 min read Newly Minted Ph.D. Studies Phytoplankton with NASA’s FjordPhyto Project


      Article


      4 days ago
      5 min read NASA CubeSat Finds New Radiation Belts After May 2024 Solar Storm


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
  • Check out these Videos

×
×
  • Create New...