Jump to content

Space Station Research Tests Performance of Self-Healing Quantum Technology 


Recommended Posts

  • Publishers
Posted

1 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

The Canadarm2 removes materials science samples from the Kibo laboratory module's airlock.
NASA

The Materials ISS Experiment Flight Facility mounted on the outside of the International Space Station allows researchers to test the performance and durability of materials and devices. This is done by exposing items of interest to everything that makes the space environment harsh, including radiation, highly reactive atomic oxygen, microgravity, and extreme temperatures.  

Currently, one suite on the platform holds MISSE-20-Commercial, an investigation conducting 12 experiments from different research teams. Among MISSE-20-Commercial is the Space Entanglement and Annealing Quantum Experiment (SEAQUE) which tests two technologies that could advance the field of quantum communications. The first technology is a novel method to transmit quantum data. This method could make way for a scalable quantum information network and provide the foundation of quantum cloud computing, a technology that holds the promise of operating millions of times faster than conventional computers. SEAQUE will also validate technology to “self-heal” its sensitive detectors against radiation damage using laser annealing, prolonging the life of these quantum tools in a space environment. 

Diana Garcia  
International Space Station Research Communications Team 
Johnson Space Center 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      From left, Ramon Pedoto, Nathan Walkenhorst, and Tyrell Jemison review information at NASA’s Marshall Space Flight Center in Huntsville, Alabama. The three team members developed new automation tools at Marshall for flight controllers working with the International Space Station (Credit: NASA/Tyrell Jemison Two new automation tools developed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, are geared toward improving operations for flight controllers working with the International Space Station from the Huntsville Operations Support Center.
      The tools, called AutoDump and Permanently Missing Intervals Checker, will free the flight control team to focus on situational awareness, anomaly response, and real-time coordination.
      The space station experiences routine loss-of-signal periods based on communication coverage as the space station orbits the Earth. When signal is lost, an onboard buffer records data that could not be downlinked during that period. Following acquisition of signal, flight controllers previously had to send a command to downlink, or “dump,” the stored data.
      The AutoDump tool streamlines a repetitive data downlinking command from flight controllers by detecting a routine loss-of-signal, and then autonomously sending the command to downlink data stored in the onboard buffer when the signal is acquired again. Once the data has been downlinked, the tool will automatically make an entry in the console log to confirm the downlink took place.
      “Reliably and quickly sending these dump commands is important to ensure that space station payload developers can operate from the most current data,” said Michael Zekoff, manager of Space Systems Operations at Marshall.
      As a direct result of this tool, we have eliminated the need to manually perform routine data dump commands by as much as 40% for normal operations.
      Michael Zekoff
      Space Systems Operations Manager
      AutoDump was successfully deployed on Feb. 4 in support of the orbiting laboratory.
      The other tool, known as the Permanently Missing Intervals Checker, is another automated process coming online that will improve team efficiency.
      Permanently missing intervals are gaps in the data stream where data can be lost due to a variety of reasons, including network fluctuations. The missing intervals are generally short but are documented so the scientific community and other users have confirmation that the missing data is unable to be recovered.
      “The process of checking for and documenting permanently missing intervals is challenging and incredibly time-consuming to make sure we capture all the payload impacts,” said Nathan Walkenhorst, a NASA contractor with Bailey Collaborative Solutions who serves as a flight controller specialist.
      The checker will allow NASA to quickly gather and assess payload impacts, reduce disruptions to operations, and allow researchers to get better returns on their science investigations. It is expected to be deployed later this year.
      In addition to Walkenhorst, Zekoff also credited Ramon Pedoto, a software architect, and Tyrell Jemison, a NASA contractor and data management coordinator with Teledyne Brown Engineering Inc, for their work in developing the automation tools. The development of the tools also requires coordination between flight control and software teams at Marshall, followed by extensive testing in both simulated and flight environments, including spacecraft operations, communications coverage, onboard anomalies, and other unexpected conditions.
      “The team solicited broad review to ensure that the tool would integrate correctly with other station systems,” Zekoff said. “Automated tools are evaluated carefully to prevent unintended commanding or other consequences. Analysis of the tools included thorough characterization of the impacts, risk mitigation strategies, and approval by stakeholders across the International Space Station program.”
      The Huntsville Operations Support Center provides payload, engineering, and mission operations support to the space station, the Commercial Crew Program, and Artemis missions, as well as science and technology demonstration missions. The Payload Operations Integration Center within the Huntsville Operations Support Center operates, plans, and coordinates the science experiments onboard the space station 365 days a year, 24 hours a day.
      For more information on the International Space Station, visit:
      www.nasa.gov/international-space-station/
      Share
      Details
      Last Updated Apr 11, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center Explore More
      3 min read NASA’s IMAP Arrives at NASA Marshall For Testing in XRCF  
      Article 4 hours ago 7 min read NASA’s First Flight With Crew Important Step on Long-term Return to the Moon, Missions to Mars
      Article 3 days ago 3 min read NASA Selects Finalist Teams for Student Human Lander Challenge
      Article 1 week ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By Space Force
      Remarks by CSO Gen. Chance Saltzman at the 40th Space Symposium, April 9, in Colorado Springs, Colo.
      View the full article
    • By European Space Agency
      Video: 00:09:17 Meet Aleš Svoboda— A skilled pilot with over 1500 flight hours, Aleš holds a PhD in aircraft and rocket technology and has commanded Quick Reaction Alerts. From flying high to training underwater, he’s always ready to take on new challenges—now including astronaut reserve training with ESA.
      In this miniseries, we take you on a journey through the ESA Astronaut Reserve, diving into the first part of their Astronaut Reserve Training (ART) at the European Astronaut Centre (EAC) near Cologne, Germany. Our “ARTists” are immersing themselves in everything from ESA and the International Space Station programme to the European space industry and institutions. They’re gaining hands-on experience in technical skills like spacecraft systems and robotics, alongside human behaviour, scientific lessons, scuba diving, and survival training.
      ESA’s Astronaut Reserve Training programme is all about building Europe’s next generation of space explorers—preparing them for the opportunities of future missions in Earth orbit and beyond.
      This interview was recorded in November 2024.
      You can listen to this episode on all major podcast platforms.
      Keep exploring with ESA Explores!
      View the full article
    • By European Space Agency
      Image: This Copernicus Sentinel-2 image shows part of one of the world’s natural wonders – the Great Barrier Reef in the Coral Sea off the east coast of Queensland, Australia.
      Zoom in to explore this image at its full resolution or click on the circles to learn more. 
      The Great Barrier Reef extends for nearly 2300 km and covers an area of more than 344 000 sq km, approximately the size of Italy. It is the largest living organism on Earth and the only living thing the naked eye can see from space.
      Despite its name, the Great Barrier Reef is not a single reef, but an interlinked system of about 3000 reefs and 900 coral islands, divided by narrow passages. An area of biodiversity equal in importance to tropical rainforests, the reef hosts more than 1500 species of tropical fish, 400 types of coral, hundreds of species of bird and seaweed and thousands of marine animals, including sharks, barracuda and turtles.
      In recognition of its significance the reef was made a UNESCO World Heritage Site in 1981.
      The section of reef seen here is the southern part off the coast of the Shire of Livingstone in Central Queensland. Part of the mainland and the islands surrounding the coast are visible in the bottom left corner. The tan-coloured sea along the coasts is due to sediment in the water.
      A chain of small coral islands can be seen scattered across the centre of the image. The blue hues of the coral contrast with the dark waters of the Coral Sea.
      Part of the reef is covered by clouds dominating the upper part of the image. The clouds form a surprisingly straight line, also visible as a distinct shadow cast over the islands below.
      Coral reefs worldwide suffer regular damage due to climate change, pollution, ocean acidification and fishing. Furthermore, they are increasingly under threat from coral bleaching, which occurs when the algae that makes up the coral die, causing it to turn white. This phenomenon is associated with increased water temperatures, low salinity and high sunlight levels.
      While these coral reefs are ecologically important, they are difficult to map from survey vessels or aircraft because of their remote and shallow location. From their vantage point in space, Earth-observing satellites such as Copernicus Sentinel-2, offer the means to monitor the health of reefs across the globe.
      View the full article
    • By Space Force
      Chief of Space Operations Gen. Chance Saltzman gave insights into a new, soon-to-be-released International Partnership Strategy at the 40th Space Symposium.

      View the full article
  • Check out these Videos

×
×
  • Create New...