Jump to content

NASA Rocket Engine Fireplace - 8 Hours in 4K


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      From left, Ramon Pedoto, Nathan Walkenhorst, and Tyrell Jemison review information at NASA’s Marshall Space Flight Center in Huntsville, Alabama. The three team members developed new automation tools at Marshall for flight controllers working with the International Space Station (Credit: NASA/Tyrell Jemison Two new automation tools developed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, are geared toward improving operations for flight controllers working with the International Space Station from the Huntsville Operations Support Center.
      The tools, called AutoDump and Permanently Missing Intervals Checker, will free the flight control team to focus on situational awareness, anomaly response, and real-time coordination.
      The space station experiences routine loss-of-signal periods based on communication coverage as the space station orbits the Earth. When signal is lost, an onboard buffer records data that could not be downlinked during that period. Following acquisition of signal, flight controllers previously had to send a command to downlink, or “dump,” the stored data.
      The AutoDump tool streamlines a repetitive data downlinking command from flight controllers by detecting a routine loss-of-signal, and then autonomously sending the command to downlink data stored in the onboard buffer when the signal is acquired again. Once the data has been downlinked, the tool will automatically make an entry in the console log to confirm the downlink took place.
      “Reliably and quickly sending these dump commands is important to ensure that space station payload developers can operate from the most current data,” said Michael Zekoff, manager of Space Systems Operations at Marshall.
      As a direct result of this tool, we have eliminated the need to manually perform routine data dump commands by as much as 40% for normal operations.
      Michael Zekoff
      Space Systems Operations Manager
      AutoDump was successfully deployed on Feb. 4 in support of the orbiting laboratory.
      The other tool, known as the Permanently Missing Intervals Checker, is another automated process coming online that will improve team efficiency.
      Permanently missing intervals are gaps in the data stream where data can be lost due to a variety of reasons, including network fluctuations. The missing intervals are generally short but are documented so the scientific community and other users have confirmation that the missing data is unable to be recovered.
      “The process of checking for and documenting permanently missing intervals is challenging and incredibly time-consuming to make sure we capture all the payload impacts,” said Nathan Walkenhorst, a NASA contractor with Bailey Collaborative Solutions who serves as a flight controller specialist.
      The checker will allow NASA to quickly gather and assess payload impacts, reduce disruptions to operations, and allow researchers to get better returns on their science investigations. It is expected to be deployed later this year.
      In addition to Walkenhorst, Zekoff also credited Ramon Pedoto, a software architect, and Tyrell Jemison, a NASA contractor and data management coordinator with Teledyne Brown Engineering Inc, for their work in developing the automation tools. The development of the tools also requires coordination between flight control and software teams at Marshall, followed by extensive testing in both simulated and flight environments, including spacecraft operations, communications coverage, onboard anomalies, and other unexpected conditions.
      “The team solicited broad review to ensure that the tool would integrate correctly with other station systems,” Zekoff said. “Automated tools are evaluated carefully to prevent unintended commanding or other consequences. Analysis of the tools included thorough characterization of the impacts, risk mitigation strategies, and approval by stakeholders across the International Space Station program.”
      The Huntsville Operations Support Center provides payload, engineering, and mission operations support to the space station, the Commercial Crew Program, and Artemis missions, as well as science and technology demonstration missions. The Payload Operations Integration Center within the Huntsville Operations Support Center operates, plans, and coordinates the science experiments onboard the space station 365 days a year, 24 hours a day.
      For more information on the International Space Station, visit:
      www.nasa.gov/international-space-station/
      Share
      Details
      Last Updated Apr 11, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center Explore More
      3 min read NASA’s IMAP Arrives at NASA Marshall For Testing in XRCF  
      Article 4 hours ago 7 min read NASA’s First Flight With Crew Important Step on Long-term Return to the Moon, Missions to Mars
      Article 3 days ago 3 min read NASA Selects Finalist Teams for Student Human Lander Challenge
      Article 1 week ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 Min Read NASA’s IMAP Arrives at NASA Marshall For Testing in XRCF  
      On March 18, NASA’s IMAP (Interstellar Mapping and Acceleration Probe) arrived at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for thermal vacuum testing at the X-ray and Cryogenic Facility, which simulates the harsh conditions of space.
      The IMAP mission is a modern-day celestial cartographer that will map the solar system by studying the heliosphere, a giant bubble created by the Sun’s solar wind that surrounds our solar system and protects it from harmful interstellar radiation. 
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      NASA’s IMAP mission being loaded into the thermal vacuum chamber of NASA Marshall Space Flight Center’s X-Ray and Cryogenic Facility (XRCF) in Huntsville, Alabama. IMAP arrived at Marshall March 18 and was loaded into the chamber March 19.Credit: NASA/Johns Hopkins APL/Princeton/Ed Whitman Testing performed in the X-ray and Cryogenic Facility will help to assess the spacecraft before its journey toward the Sun. The IMAP mission will orbit the Sun at a location called Lagrange Point 1 (L1), which is about one million miles from Earth towards the Sun. From this location, IMAP can measure the local solar wind and scan the distant heliosphere without background from planets and their magnetic fields. The mission will use its suite of ten instruments to map the boundary of the heliosphere, analyze the composition of interstellar particles that make it through, and investigate how particles change as they move through the solar system. 
      Furthermore, IMAP will maintain a continuous broadcast of near real-time space weather data from five instruments aboard IMAP that will be used to test new space weather prediction models and improve our understanding of effects impacting our human exploration of space. 
      Team members from Marshall Space Flight Center in Huntsville, Alabama, install IMAP into the XRCF’s chamber dome before the start of the thermal vacuum test. NASA/Johns Hopkins APL/Princeton/Ed Whitman While inside the Marshall facility, the spacecraft will undergo dramatic temperature changes to simulate the environment during launch, on the journey toward the Sun, and at its final orbiting point. The testing facility has multiple capabilities including a large thermal vacuum chamber which simulates the harsh conditions of space such as extreme temperatures and the near-total absence of an atmosphere. Simulating these conditions before launch allow scientists and engineers to identify successes and potential failures in the design of the spacecraft. 
      Team members from Marshall Space Flight Center in Huntsville, Alabama work to close the chamber door of the XRCF for IMAP testing. The chamber is 20 feet in diameter and 60 feet long making it one of the largest across NASA. NASA/Johns Hopkins APL/Princeton/Ed Whitman “The X-ray and Cryogenic Facility was an ideal testing location for IMAP given the chamber’s size, availability, and ability to meet or exceed the required test parameters including strict contamination control, shroud temperature, and vacuum level,” said Jeff Kegley, chief of Marshall’s Science Test Branch. 
      The facility’s main chamber is 20 feet in diameter and 60 feet long, making it the 5th largest thermal vacuum chamber at NASA. It’s the only chamber that is adjoined to an ISO 6 cleanroom — a controlled environment that limits the number and size of airborne particles to minimize contamination. 
      The IMAP mission will launch on a SpaceX Falcon 9 rocket from NASA’s Kennedy Space Center in Florida, no earlier than September. 
      NASA’s IMAP mission was loaded into NASA Marshall’s XRCF thermal vacuum chamber where the spacecraft will undergo testing such as dramatic temperature changes to simulate the harsh environment of space. NASA/Johns Hopkins APL/Princeton/Ed Whitman Learn More about IMAP Media Contact:
      Lane Figueroa
      Marshall Space Flight Center
      Huntsville, Alabama
      256.544.0034
      lane.e.figueroa@nasa.gov
      Share
      Details
      Last Updated Apr 11, 2025 Related Terms
      Marshall Space Flight Center Goddard Space Flight Center Heliophysics Marshall Heliophysics & Planetary Science Marshall Science Research & Projects Marshall X-Ray & Cryogenic Facility The Sun The Sun & Solar Physics Explore More
      2 min read Hubble Captures a Star’s Swan Song
      The swirling, paint-like clouds in the darkness of space in this stunning image seem surreal,…
      Article 4 hours ago 6 min read NASA Webb’s Autopsy of Planet Swallowed by Star Yields Surprise
      Observations from NASA’s James Webb Space Telescope have provided a surprising twist in the narrative…
      Article 1 day ago 3 min read Hubble Helps Determine Uranus’ Rotation Rate with Unprecedented Precision
      An international team of astronomers using the NASA/ESA Hubble Space Telescope has made new measurements…
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      This summer, NASA’s Glenn Research Center in Cleveland is offering a free summer STEM program for high school students in their junior and senior years.Credit: NASA NASA’s Glenn Research Center in Cleveland is launching the NASA Glenn High School Engineering Institute this summer. The free, work-based learning experience is designed to help high school students prepare for a future in the aerospace workforce.
      Rising high school juniors and seniors in Northeast Ohio can submit applications for this new, in-person summer program from Friday, April 11, through Friday, May 9.
      The NASA Glenn High School Engineering Institute will immerse students in NASA’s work while providing essential career readiness tools to help them in future science, technology, engineering, and mathematics-focused academic and professional pursuits.
      Throughout the five-day institute, students will use authentic NASA mission content and work alongside Glenn’s technical experts to gain a deeper understanding of the engineering design process, develop practical engineering solutions to real-world challenges, and test prototypes to answer questions in key mission areas:
      Acoustic dampening – How can we reduce noise pollution from jet engines? Power management and distribution – How can we develop a smart power system for future space stations? Simulated lunar operations – Can we invent tires that don’t use air? Program Dates
      Selected students will participate in one of the following week-long sessions.
      Session 1: July 7 – 11, 2025 Session 2: July 14 – 18, 2025 Session 3: July 21 – 25, 2025 Eligibility and Application Requirements
      To be eligible for this program, students must:
      Be entering 11th or 12th grade for the 2025-2026 academic year Have a minimum 3.2 GPA, verified by their school counselor Submit a letter of recommendation from a teacher Additional application requirements are outlined in the Supplemental Application.
      How to Apply:
      To be considered for this opportunity, complete and submit the NASA Gateway application and the Supplemental Application by Friday May 9.
      Questions pertaining to the NASA Glenn High School Engineering Institute should be directed to Gerald Voltz at GRC-Ed-Opportunities@mail.nasa.gov.
      For information about NASA Glenn, visit:
      https://www.nasa.gov/glenn
      -end-
      Debbie Welch
      Glenn Research Center, Cleveland
      216-433-8655
      debbie.welch@nasa.gov
      Explore More
      3 min read NASA Science Supports Data Literacy for K-12 Students
      Data – and our ability to understand and use it – shapes nearly every aspect…
      Article 19 hours ago 3 min read University High Triumphs at JPL-Hosted Ocean Sciences Bowl
      Article 1 week ago 2 min read Students Explore Technical Careers at NASA
      Article 3 weeks ago View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Students from Universidad Católica Boliviana “San Pablo” compete during NASA’s 2024 Human Exploration Rover Challenge. The 2025 competition takes place Friday and Saturday, April 11-12, 2025, at the U.S. Space & Rocket Center’s Aviation Challenge course in Huntsville, Alabama. NASA NASA’s annual Human Exploration Rover Challenge returns Friday, April 11, and Saturday, April 12, with student teams competing at the U.S. Space & Rocket Center’s Aviation Challenge course near the agency’s Marshall Space Flight Center in Huntsville, Alabama.
      Media are invited to watch as hundreds of students from around the world attempt to navigate a complex obstacle course by piloting a vehicle of their own design and production. Media interested in attending or setting up interviews should contact Taylor Goodwin in the Marshall Office of Communications at 938-210-2891 no later than 2 p.m. Thursday, April 10. 
      In addition to the traditional human-powered rover division, this year’s competition expands the challenge to include a remote-control division. The 2025 HERC Handbook includes guidelines for the new remote-control division and updates for the human-powered division.
      Participating teams represent 35 colleges and universities, 38 high schools, and two middle schools from 20 states, Puerto Rico, and 16 other nations.
      The event is free and open to the public, with rover excursions from 7:30 a.m. to 3 p.m. CDT each day, or until the last rover completes the obstacle course. 
      Following the competition, NASA will host an in-person awards ceremony Saturday, April 12, at 5:30 p.m. inside the Space Camp Operations Center at the U.S. Space & Rocket Center. NASA and industry sponsors will present multiple awards highlighting team successes throughout the past eight-months-long engineering design project, including awards for best rover design, best pit crew, best social media presence, and many other accomplishments. 

      About the Challenge 
      Recognized as NASA’s leading international student challenge, the Human Exploration Rover Challenge aims to put competitors in the mindset of NASA’s Artemis campaign.  Teams pitch an engineering design for a lunar rover which simulates astronauts exploring the lunar surface while overcoming various obstacles. Eligible teams compete to be among the top three finishers in their divisions, and to win multiple awards, including best vehicle design, best rookie team, and more.  
      The annual challenge draws hundreds of students from around the world and reflects the goals of NASA’s Artemis campaign, which will establish the first long-term presence on the Moon and pave the way for eventual missions to Mars. 
      The event was launched in 1994 as the NASA Great Moonbuggy Race – a collegiate competition to commemorate the 25th anniversary of the Apollo 11 lunar landing. It expanded in 1996 to include high school teams, evolving again in 2014 into the NASA Human Exploration Rover Challenge. Since its inception, more than 15,000 students have participated – with many former students now working in the aerospace industry, including with NASA.   
      The Human Exploration Rover Challenge is managed by NASA Marshall’s Southeast Regional Office of STEM Engagement and is one of eight Artemis Student Challenges. NASA’s Office of STEM Engagement uses challenges and competitions to further the agency’s goal of encouraging students to pursue degrees and careers in science, technology, engineering, and mathematics.  
      To learn more about the challenge, visit: 
      https://www.nasa.gov/roverchallenge/
      Taylor Goodwin 
      256-544-0034
      Marshall Space Flight Center, Huntsville, Alabama
      taylor.goodwin@nasa.gov
      Facebook logo @RoverChallenge@NASAMarshallCenter @RoverChallenge@NASA_Marshall Instagram logo @NASA_Marshall Share
      Details
      Last Updated Apr 04, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
      General Explore More
      3 min read Caroline Cawthon: Supporting America’s Future in Low Earth Orbit 
      Article 17 hours ago 6 min read Back to Earth, Forward to the Future: NASA’s SpaceX Crew-9 Returns  
      Article 23 hours ago 3 min read NASA Selects Finalist Teams for Student Human Lander Challenge
      Article 4 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      After months of groundbreaking research, exploration, and teamwork aboard the International Space Station, NASA’s SpaceX Crew-9 has returned to Earth.  
      NASA astronauts Nick Hague, Suni Williams, and Butch Wilmore, as well as Roscosmos cosmonaut Aleksandr Gorbunov, splashed down safely on March 18, 2025, as a pod of dolphins circled the Dragon spacecraft near Tallahassee, Florida. 
      NASA astronauts Nick Hague, Suni Williams, Butch Wilmore, and Roscosmos cosmonaut Aleksandr Gorbunov aboard the SpaceX Dragon spacecraft in the water off the coast of Tallahassee, Florida, March 18, 2025.NASA/Keegan Barber Williams and Wilmore made history as the first humans to fly aboard Boeing’s Starliner spacecraft during NASA’s Boeing Crew Flight Test (CFT). Launched June 5, 2024, aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Space Force Station, the CFT mission was Boeing’s first crewed flight.  
      Hague and Gorbunov launched to the space station on Sept. 28, 2024, aboard a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. 
      NASA’s SpaceX Crew-9 members pose together for a portrait inside the International Space Station’s Unity module. From left, are NASA astronaut Suni Williams, Roscosmos cosmonaut Aleksandr Gorbunov, and NASA astronauts Nick Hague and Butch Wilmore.NASA During their long-duration mission, the American crew members conducted more than 150 unique experiments and logged over 900 hours of research aboard the orbiting laboratory.  
      Their work included studying plant growth and development, testing stem cell technology for patient care on Earth, and examining how spaceflight affects materials—insights vital for future deep space missions.  
      The crew kicked off 2025 with two spacewalks that included removing an antenna assembly from the station’s truss, collecting microbial samples from the orbital outpost’s exterior for analysis by Johnson’s Astromaterials Research and Exploration Science division, installing patches to cover damaged areas of light filters on an X-ray telescope, and more. 
      Williams now holds the record for the most cumulative spacewalking time by a woman — 62 hours and 6 minutes — placing her fourth among the most experienced spacewalkers in history. 
      While in orbit, the crew also engaged the next generation through 30 ham radio events with students around the world and supported a student-led genetic experiment. 
      As part of the CFT, Williams and Wilmore commanded Starliner during in-flight testing and were the first to see the spacecraft integrated in simulations and operate it hands-on in space, evaluating systems like maneuvering, docking, and emergency protocols. 
      “We’ve learned a lot about systems integrated testing that will pay benefits going forward and lay the groundwork for future missions,” said Wilmore.  
      Suni Williams and Butch Wilmore participate in an emergency operations simulation in the Boeing Starliner simulator at Johnson Space Center in Houston.NASA/Robert Markowitz  Following the test flight, NASA and Boeing are continuing work toward crew certification of the company’s CST-100 Starliner system. Joint teams are addressing in-flight anomalies and preparing for propulsion system testing ahead of the next mission. 
      Despite the unexpected challenges, including technical issues with the Starliner spacecraft that extended their mission, both Wilmore and Williams said they would do it all over again. Wilmore emphasized his gratitude in being part of testing Starliner’s capabilities, stating, “I’d get on it in a heartbeat.”  
      After returning to Earth, the crew received a warm welcome from family, colleagues, and fellow astronauts at Johnson Space Center’s Ellington Field. They were greeted by Johnson Acting Director Steve Koerner, who applauded their dedication and resilience. 
      Suni Williams is greeted by Johnson Acting Director Steve Koerner at Ellington Field in Houston after completing a long-duration science mission aboard the International Space Station.NASA/Robert Markowitz Williams shared a heartfelt embrace with astronaut Zena Cardman, thanking her for “taking one for the team.” Cardman had originally been assigned to Crew-9, but in August, NASA announced the uncrewed return of Starliner to Earth and integrated Wilmore and Williams into Expedition 71/72 for a return on Crew-9. This adjustment meant Cardman and astronaut Stephanie Wilson would no longer fly the mission—a decision that underscored the flexibility and teamwork essential to human spaceflight. 
      Cardman is now assigned as commander of NASA’s SpaceX Crew-11 mission, set to launch in the coming months to the International Space Station for a long-duration science expedition. 
      Butch Wilmore receives a warm welcome from NASA astronauts Reid Wiseman and Woody Hoburg at Ellington Field.NASA/Robert Markowitz Williams and Wilmore each brought decades of experience to the mission. Wilmore, a retired U.S. Navy captain and veteran fighter pilot, has logged 464 days in space over three flights. Outside of NASA, he serves as a pastor, leads Bible studies, and participates in mission trips across Central and South America. A skilled craftsman, he also builds furniture and other pieces for his local church. 
      Growing up in Tennessee, Wilmore says his faith continues to guide him, especially when navigating the uncertainties of flight. 
      Expedition 72 Flight Engineer Butch Wilmore works inside the International Space Station’s Columbus laboratory module to install the European Enhanced Exploration Exercise Device.NASA Wilmore encourages the next generation with a call to action: “Strap on your work hat and let’s go at it!” He emphasizes that tenacity and perseverance are essential for achieving anything of value. Motivated by a sense of patriotic duty and a desire to help those in need, Wilmore sees his astronaut role as a commitment to both his country and humanity at large.  
      Wilmore believes he’s challenged every day at NASA. “Doing the right things for the right reasons is what motivates me,” he said.  
      Expedition 72 Commander Suni Williams monitors an Astrobee robotic free-flyer outfitted with tentacle-like arms containing gecko-like adhesive pads preparing to grapple a “capture cube.”NASA A retired U.S. Navy captain and veteran of three spaceflights, Williams is a helicopter pilot, basic diving officer, and the first person to run the Boston Marathon in space—once in 2007, and again aboard the station in 2025. Originally from Needham, Massachusetts, she brings a lifelong spirit of adventure and service to everything she does. 
      “There are no limits,” said Williams. “Your imagination can make something happen, but it’s not always easy. There are so many cool things we can invent to solve problems—and that’s one of the joys of working in the space program. It makes you ask questions.” 
      Hague, a Kansas native, has logged a total of 374 days in space across three missions. A U.S. Space Force colonel and test pilot, he’s served in roles across the country and abroad, including a deployment to Iraq. 
      “When we’re up there operating in space, it’s focused strictly on mission,” said Hague. “We are part of an international team that spans the globe and works with half a dozen mission control centers that are talking in multiple languages — and we figure out how to make it happen. That’s the magic of human spaceflight: it brings people together.” 
      Expedition 72 Pilot Nick Hague inside the cupola with space botany hardware that supports the Rhodium Plant LIFE investigation.NASA For Williams, Wilmore, Hague, Gorbunov, and the team supporting them, Crew-9 marks the beginning of a new era of space exploration — one driven by innovation, perseverance, and the unyielding dream of reaching beyond the stars.  
      Watch the full press conference following the crew’s return to Earth here. 
      View the full article
  • Check out these Videos

×
×
  • Create New...