Members Can Post Anonymously On This Site
NASA Invites Media to Firefly Blue Ghost Mission 1 Launch to Moon
-
Similar Topics
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The Milky Way pictured from the International Space Station in a long-duration photographCredits: NASA NASA and its commercial partners continue to drive innovation in space exploration, achieving milestones that will ultimately benefit human spaceflight and commercial low Earth orbit efforts. These recent achievements from NASA’s industry partners include completed safety milestones, successful flight tests, and major technological advancements.
“Our commercial partners’ growing capabilities in low Earth orbit underscore NASA’s commitment to advance scientific discovery, pioneering space technology, and support future deep space exploration,” said Angela Hart, manager of the Commercial Low Earth Orbit Development Program at NASA’s Johnson Space Center in Houston.
As NASA expands opportunities in low Earth orbit, the agency is working with seven U.S. companies to meet future commercial and government needs through the second Collaborations for Commercial Space Capabilities initiative.
The first and second stages of Blue Origin’s New Glenn test vehicle pictured at the company’s orbital launch vehicle factory in Cape Canaveral, FloridaCredits: Blue Origin Blue Origin
Blue Origin continues to make progress in the development of an integrated commercial space transportation capability that ensures safe, affordable, and high-frequency U.S. access to orbit for crew and other missions.
Northrop Grumman’s Cygnus spacecraft pictured approaching the International Space StationCredits: NASA Northrop Grumman
Northrop Grumman is evolving the company’s Cygnus spacecraft as a foundational logistics and research platform to support NASA’s next generation of low Earth orbit ventures. The company recently completed a project management review with NASA, presenting the roadmap and enhancements to commercialize the spacecraft. Northrop Grumman also continues to make progress toward the implementation of docking capability through a partnership with Starlab Space.
Sierra Space’s LIFE (Large Integrated Flexible Environment) habitat following a full-scale ultimate burst pressure test at NASA’s Marshall Space Flight Center in Huntsville, Alabama.Credits: Sierra Space Sierra Space
Sierra Space recently completed two full-scale ultimate burst pressure tests of its LIFE (Large Integrated Flexible Environment) habitat structure, an element of a NASA-funded commercial space station for new destinations in low Earth orbit. The company also has selected and tested materials for the habitat’s air barrier, focusing on permeability and flammability testing to meet the recommended safety standards. The inflatable habitat is designed to expand in orbit, creating a versatile living and working area for astronauts with a flexible, durable structure that allows for compact launch and significant expansion upon deployment.
Sierra Space also has advanced in high velocity impact testing and micro-meteoroid and orbital debris configuration and material selection, crucial for ensuring the safety and durability of the company’s space structures, along with advancing radiator designs to optimize thermal management for long-duration missions.
The SpaceX Starship spacecraft, a fully reusable transportation, ahead of a test flight at the company’s Starbase facilities in Boca Chica, Texas.Credits: SpaceX SpaceX
SpaceX continues developing the company’s Starship spacecraft, a fully reusable transportation system designed for missions to low Earth orbit, the Moon, Mars, and beyond. SpaceX completed multiple flight tests, launching the spacecraft on the Super Heavy, the launch system’s booster, from the company’s Starbase facility in Boca Chica, Texas. During the tests, SpaceX demonstrated key capabilities needed for the system’s reusability, including landing burns and reentry from hypersonic velocities.
SpaceX is preparing to launch newer generations of the Starship system, powered by upgraded versions of its reusable methane-oxygen staged-combustion Raptor engines, as it works to operationalize the system ahead of the first crewed lunar landing missions under the agency’s Artemis campaign.
An engineer for Special Aerospace Services tests the company’s Autonomous Maneuvering UnitCredits: Special Aerospace Services Special Aerospace Services
Special Aerospace Services is developing an Autonomous Maneuvering Unit that incorporates in-space servicing, propulsion, and robotic technologies. The company is evaluating customer needs and establishing the details and features for the initial flight unit. Special Aerospace Services also is working on a prototype unit at its Special Projects Research Facility in Arvada, Colorado, and has started construction of a new campus and final assembly facility in Huntsville, Alabama. The application of these technologies is intended for the safer assembly of commercial destinations, servicing, retrieval, and inspection of in-space systems.
Two twin containers hosting the welding experiment developed by ThinkOrbital, validated by NASA and ESA (European Space Agency),Credits: ThinkOrbital ThinkOrbital
ThinkOrbital recently demonstrated autonomous welding in space, validated by NASA and ESA (European Space Agency). The company will further test in-space welding, cutting, and X-ray inspection technologies on another mission later this year. ThinkOrbital’s third mission, scheduled for late 2025, will focus on developing commercially viable products, including a robotic arm with advanced end-effector solutions and standalone X-ray inspection capabilities. In-space welding technologies could enable building larger structures for future commercial space stations.
The qualification primary structure of Vast’s Haven-1 commercial space station during final welding stages at the company’s headquarters in Long Beach, California Credits: Vast Vast
Vast continues development progress on the Haven-1 commercial space station, targeted to launch in 2025. The company recently completed several technical milestones, including fabricating key components such as the primary structure pathfinder, hatch, battery module, and control moment gyroscope.
Vast also completed a solar array deployment test and the station’s preliminary design review with NASA’s support. While collaborating with the agency on developing and testing the commercial station’s dome-shaped window, Vast performed rigorous pressure testing to meet safety requirements.
In addition to these efforts, NASA also is collaborating with two businesses through its Small Business Innovation Research Ignite initiative, which focuses on commercially viable technology ideas aligned with the agency’s mission needs. Both companies are developing technologies for potential use on the International Space Station and future commercial space stations.
A ceramic heat shield, or thermal protection system, being developed by Canopy Aerospace Credits: Canopy Aerospace Canopy Aerospace
Canopy Aerospace is developing a new manufacturing system aimed at improving the production of ceramic heat shields, also known as thermal protection systems. The company recently validated the material properties of a low-density ceramic insulator using an alumina-enhanced thermal barrier formulation.
Canopy Aerospace also continues development of a 3D-printed, low-density ablator designed to provide thermal protection during extreme heating. The company also worked on other 3D-printed materials, such as aluminum nitride and oxide ceramic products, which could be useful in various applications across the energy, space, aerospace, and industrial sectors, including electromagnetic thrusters for satellites. Canopy Aerospace also developed standard layups of fiber-reinforced composites and integrated cork onto composite panels.
The Cargo Ferry, a reusable cargo transportation vehicle, prototype during a recent high-altitude flight test to test its recovery system and range capabilities.Credits: Outpost Technologies Outpost Technologies
Outpost Technologies completed a high-altitude flight test of its Cargo Ferry, a reusable cargo transportation vehicle. The company dropped a full-scale prototype from 82,000 feet via weather balloon to test its recovery system and range capabilities. The key innovation is a robotic paraglider that guides the vehicle to a precise landing. The paraglider deployed at a record-setting altitude of 65,000 feet, marking the highest flight ever for such a system.
During the test, the vehicle autonomously flew 165 miles before it was safely recovered at the landing site, demonstrating the system’s reliability. The company’s low-mass re-entry system can protect payload mass and volume for future space cargo return missions and point-to-point delivery.
NASA’s low Earth orbit microgravity strategy builds on the agency’s extensive human spaceflight experience to advance future scientific and exploration goals. As the International Space Station nears the end of operations, NASA plans to transition to a new low Earth orbit model to continue leveraging microgravity benefits. Through commercial partnerships, NASA aims to maintain its leadership in microgravity research and ensure continued benefits for humanity.
Learn more about NASA’s low Earth orbit microgravity strategy at:
https://www.nasa.gov/leomicrogravitystrategy
News Media Contacts
Claire O’Shea
Headquarters, Washington
202-358-1100
claire.a.o’shea@nasa.gov
Anna Schneider
Johnson Space Center, Houston
281-483-5111
anna.c.schneider@nasa.gov
Keep Exploring Discover More Topics From NASA
Low Earth Orbit Economy
Commercial Destinations in Low Earth Orbit
Commercial Use of the International Space Station
Commercial Space
View the full article
-
By NASA
Caption: Artist’s concept of Dragonfly soaring over the dunes of Saturn’s moon Titan. NASA/Johns Hopkins APL/Steve Gribben NASA has selected SpaceX to provide launch services for the Dragonfly mission, a rotorcraft lander mission under NASA’s New Frontiers Program, designed to explore Saturn’s moon Titan. The mission will sample materials and determine surface composition in different geologic settings, advancing our search for the building blocks of life.
The firm-fixed-price contract has a value of approximately $256.6 million, which includes launch services and other mission related costs. The Dragonfly mission currently has a targeted launch period from July 5, 2028, to July 25, 2028, on a SpaceX Falcon Heavy rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
Dragonfly centers on novel approach to planetary exploration, employing a rotorcraft-lander to travel between and sample diverse sites on Saturn’s largest moon. With contributions from partners around the globe, Dragonfly’s scientific payload will characterize the habitability of Titan’s environment, investigate the progression of prebiotic chemistry on Titan, where carbon-rich material and liquid water may have mixed for an extended period, and search for chemical indications of whether water-based or hydrocarbon-based life once existed on Saturn’s moon.
NASA’s Launch Services Program at the agency’s Kennedy Space Center is responsible for managing the launch service. Managed for NASA at Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, the Dragonfly team comprises scientists, engineers, technologists, managers and more who have deep experience on missions that have explored the solar system from the Sun to Pluto and beyond, as well as experts in rotorcraft, autonomous flight, and space systems from around the globe. Dragonfly is the fourth mission in NASA’s New Frontiers Program, managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington.
For more information about NASA programs and missions, visit:
https://www.nasa.gov
-end-
Julian Coltre / Tiernan Doyle
Headquarters, Washington
202-358-1600
julian.n.coltre@nasa.gov / tiernan.p.doyle@nasa.gov
View the full article
-
By NASA
NASA/JPL-Caltech A 16.5-inch-long prototype of a robot designed to explore subsurface oceans of icy moons is reflected in the water’s surface during a test in a competition swimming pool in September 2024. Conducted by NASA’s Jet Propulsion Laboratory, the testing showed the feasibility of a mission concept called SWIM, short for Sensing With Independent Micro-swimmers. The project envisions a swarm of dozens of self-propelled, cellphone-size robots looking for signs of life on ocean worlds. SWIM is funded by NASA’s Innovative Advanced Concepts program under the agency’s Space Technology Mission Directorate.
Learn more about the next generation of robotic concepts that could potentially plunge into the watery depths of Europa and other ocean worlds.
Image credit: NASA/JPL-Caltech
View the full article
-
By NASA
The NASA Ames Science Directorate recognizes the outstanding contributions of (pictured left to right) Forrest Melton, Ariel Deutsch, Dan Sirbu, and Chanel Idos. Their commitment to the NASA mission represents the entrepreneurial spirit, technical expertise, and collaborative disposition needed to explore this world and beyond.
Earth Science Star: Forrest Melton
Forrest Melton serves as Senior Research Scientist with the Atmospheric Science Branch, and leads the OpenET consortium, which develops a unique satellite-driven support system for water resources management using six satellite-driven models and publicly available data from NASA, USGS and NOAA. OpenET currently provides data for 23 states in the western U.S., delivers data at daily, monthly, seasonal and annual timescales, and has become a necessary tool for domestic and international water managers and agricultural producers (feature story).
Space Science & Astrobiology Star: Ariel Deutsch
Ariel Deutsch is an early career planetary scientist in the Planetary Systems Branch for the Bay Area Environmental Research Institute. She is recognized for being invited to join the Artemis II Science Team to support the Artemis II Lunar Science Objectives. Her Lunar Data Analysis Program grant was selected to improve our understanding of the distribution and abundance of volatiles cold-trapped on the Moon, which include Artemis III candidate landing sites.
Space Science & Astrobiology Star: Dan Sirbu
Dan Sirbu is a key member of the Exoplanet Technologies group within the Astrophysics Branch. He currently serves as the principal investigator on the Photonic Integrated Circuit High-Contrast Imaging for Space Astronomy (AstroPIC) early career initiative, serves multiple roles on the Multi-Star Wavefront Control (MSWC) project, and is involved in outreach efforts. In recent months, Dan has been the primary operator performing MSWC testing, setting several new performance records demonstrating high contrast imaging of planets around binary stars. Dan’s work also advances NASA’s and humanity’s capability of imaging exoplanets in multi-star systems, including Alpha Centauri, the nearest star system to the Sun.
Space Biosciences Star: Chanel Idos
Chanel Idos serves as the ARC Resource Analyst for the Human Research Program (HRP) in the Space Biosciences Division. HRP is a multifaceted initiative encompassing six Elements and Offices at JSC and three Divisions across two Directorates at ARC. Her exceptional expertise, coupled with outstanding organizational skills and clear, effective communication, have been instrumental in ensuring the seamless operation of HRP activities at ARC. Chanel’s contributions have been pivotal in achieving excellent cost performance for FY24, positioning ARC to enter FY25 in an optimal state.
View the full article
-
By Space Force
The Air Force Research Laboratory, or AFRL, launched the Space Power InfraRed Regulation and Analysis of Lifetime, or SPIRRAL, experiment, Nov. 4. SPIRRAL, flown by AFRL through the DOD Space Test Program, will characterize the performance of Variable Emissivity Materials, or VEMs, an approach toward solving thermal challenges for space vehicles while on-orbit.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.