Jump to content

SARP East 2024 Hydroecology Group


Recommended Posts

  • Publishers
Posted

10 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Faculty Advisors:

Dr. Dom Ciruzzi, College of William & Mary

Graduate Mentor:

Marley Majetic, Pennsylvania State University

Marley Majetic, Graduate Mentor

Marley Majetic, graduate mentor for the 2024 SARP Hydroecology group, provides an introduction for each of the group members and shares behind-the scenes moments from the internship.

Jordan DiPrima

How are different land cover types affected by land subsidence on the U.S. Atlantic Coast?

Jordan DiPrima

Land subsidence is a frequently overlooked geologic hazard that is caused by natural processes and, more recently, anthropogenic stressors. The goal of this study is to observe subsidence trends and hotspots among land cover types on Virginia’s Eastern Shore and Long Island, New York. This study utilizes interferometric synthetic aperture radar, or InSAR, satellite data from Sentinel-1 to map vertical land motion from 2017 to 2023. Land cover data were sourced from Landsat 8 satellite imagery. Subsidence was mapped within the following land cover types on the Eastern Shore: urban, wetland, cropland, temperate or sub-polar grassland, temperate or sub-polar shrubland, mixed forest, and temperate or subpolar needleleaf forest. These land cover types have mean vertical velocities ranging from -0.2 mm/yr to -5.2 mm/yr. Results suggest that land subsidence is most severe in cropland areas on the Eastern Shore, with a mean vertical velocity of -5.2 mm/yr. In contrast, wetlands display the most subsidence on Long Island with a mean vertical velocity of -2.1 mm/yr. Long Island lacked distinct trends among land cover types and instead showed evidence of subsidence hotspots. These hotspots exist in the following land cover types: temperate or sub-polar grassland, barren lands, wetland, cropland, and temperate or sub-polar broadleaf deciduous forest. Overall, Eastern Shore croplands and Long Island wetlands were determined to be the most susceptible land cover types. These findings highlight regions at risk of sea level rise, flooding, and coastal erosion as a result of subsidence. With further research, we can map subsiding landscapes on a global scale to improve resource allocation and mitigation techniques.

Isabelle Peterson

Total Thermokarst Lake Changes on the Seward Peninsula, Alaska: 2016 to 2024

Isabelle Peterson

Thermokarst landscapes have and will continue to change as the arctic landscape warms due to climate change. Permafrost underlies much of these arctic landscapes, and as it melts, thermokarst landscapes are left behind. The Seward Peninsula in Alaska has an abundance of these landscapes, and thermokarst lakes are present in the northernmost portion. Several lakes have come and gone, but with increasing climate instability and warming of the area, there is a possibility of more permafrost melting, creating more of these lakes. To capture these changes, Harmonized Landsat Sentinel-2 (HLS) imagery were used to create annual lake maps of the northern portion of the Seward Peninsula from 2016 to 2024. Much of the methodology was informed from Jones et al. (2011); however, their study used eCognition, while the present study used ArcGIS Pro. This caused some differences in results likely due to the differences in software, satellite imagery, and the proposed study area. Lake number changes were observed annually. From this annual change, several 10 to 40 ha lakes disappeared and reappeared within the study period, along with smaller lakes filling in where larger lakes once were. Thermokarst lake drainage is a process described by Jones and Arp (2015) which has devastating geomorphological impacts on the surrounding area, creating large drainage troughs which diminish surrounding permafrost in a quick time frame. To capture these events and overall changes, satellite imagery is essential. This is especially true in remote regions which are hard to reach by foot and require flight missions to be scheduled over the area for aerial photography. However, LVIS and other higher resolution aerial instruments would provide higher accuracy when identifying smaller lakes, as satellite imagery does not accurately capture lakes below 1 ha in the study area. This assertion is made due to conflicting results compared to Jones et al (2011). While the methodologies of this study have been executed manually, Qin, Zhang, and Lu (2023) have proposed the idea of using Sentinel-2 imagery to map thermokarst lakes through automatic methods. While automatization has not yet been perfected, the potential is there and can be used to analyze thermokarst areas effectively. With more satellite imagery, annual, monthly, and potentially daily changes can be captured in favorable months to monitor changing landscapes in arctic regions. Thermokarst lakes have been changing, and monitoring them can help in the process of understanding the changing climate in arctic areas, especially through the lens melting permafrost.

Emmanelle Cuasay

Finding Refuge in Climate Crisis: Analyzing the Differences between Refugia and Non-Refugia in the Northern Philippines Using Remote Sensing

Emmanelle Cuasay

Refugia are areas that are characterized by stable environmental conditions that can act as a refuge for species as Earth’s climate warms. In this study, fourteen Harmonized Landsat Sentinel-2 images from February 2014 – March 2024 of the northern Philippines region were used. The region of interest is the terrestrial biome by Lake Taal. Normalized Difference Vegetation Index (NDVI) maps were created from all fourteen images to determine the NDVI 25th highest quartiles of the long-term average NDVI images and of a dry and wet year NDVI image. These values were then used to create refugia and non-refugia maps using ArcGIS Pro. Land cover data from Sentinel-2 and a digital elevation model (DEM), using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), were plotted in ArcGIS Pro to determine the slope and aspect of the area. Global Ecosystems Dynamics Investigation (GEDI) data were used to look at forest height of the study area, and the distribution of forest height, slope, aspect, and elevation were plotted to determine their probability densities in refugia and non-refugia areas. Results of this study show increased biomass in refugia areas. This suggests that conservation practices are crucial to aid in the preservation of biodiversity and biomass within these refugia areas.

Jayce Crayne

Site-Based Observations of a Saharan Dust Storm’s Impacts on Evapotranspiration in North-Central Florida

Jayce Crayne

Saharan dust storms serve an important role in the western Atlantic’s climate in their contribution to Earth’s radiation budget, modulating sea surface temperatures (SSTs), fertilizing ecosystems, and suppressing cloud and precipitation patterns (Yuan et al., 2020). However, Saharan dust storms are expected to become less frequent in this region as SSTs continue to rise (Yuan et al., 2020). Predicting the climate response to this change requires a keen understanding of how the presence of these storms affect evapotranspiration (ET) and its indicators. This study utilizes site-based observational data from an AmeriFlux tower near Gainesville, FL recorded during a large dust storm in late June 2020. The storm’s progression was documented using satellite imagery from Aqua and Terra and aerosol optical depth (AOD) measurements from an Aerosol Robotic Network (AERONET) station co-located with the AmeriFlux tower. Indicators of ET such as surface air temperature, vapor pressure deficit, photosynthetic photon flux density, and net radiation were analyzed. Findings were compared to modeled ET and latent energy flux reanalysis data provided by the Global Land Data Assimilation System (GLDAS). Both model simulations and on-site observations support that ET decreased during the days dust concentrations were heaviest and for a short time thereafter. Cloud cover data adopted from meteorological aerodrome reports (METARs) provided by an automated surface observing system (ASOS) located in Gainesville showed that clouds were not a major contributor in decreasing ET during the days of heaviest dust. The results of this study show a considerable decrease in ET as a result of dust aerosols. Further research is necessary to determine whether changes in ET due to Saharan dust storms are significant enough to alter climates in the western Atlantic and, if so, what the climate response will be if the frequency of storms decreases.

Brandon Wilson

Predicting 2025 and 2028 dNBR and dNDIV for Csarf Smith River Complex / Evaluating the Effects of 2019 California Wildfire Fund

Brandon Wilson

Biodiverse regions across California remain vulnerable to harmful wildfires year round. Quantifying and measuring these regions’ wildfire resilience is necessary for understanding where/how to allocate environmental resources. Several ecological wildfire studies have been conducted utilizing artificial intelligence and remote sensing to analyze and predict biodiversity damage across wildfire prone regions, including Northern Algeria and Arkansas, USA. The current case study aims to analyze biodiversity damage from the 2023 Csarf Smith River Complex Fire in Six Rivers National Forest, California and predict the difference in Normalized Burn Ratio (dNBR) and difference in Normalized Difference Vegetation Index (dNDVI) for 2025 and 2028 using remote-sensing-based random forest (RF) regression. Furthermore, to observe, holistically, a practical method California has implemented to address state-wide wildfire damage, the 2019 California Wildfire Fund (AB 1054 and AB 111) was evaluated using the synthetic control method (SCM). For this case study, remote sensing data from the United States Geological Survey (USGS) and NASA (Landsat 9 Satellite C2 L2, TerraClimate and the Land Data Assimilation System) were utilized for processing relevant spectral indexes for the RF. Data from NOAA, Energy Information Agency, International Monetary Fund and Bureau of Economic Analysis were utilized as synthetic control datasets to evaluate the effects of the 2019 California Wildfire Fund. Elevated topography in this study area is susceptible to high severity burn effects, while less elevated topography burns less. This result affected dNBR and dNDVI predictions as elevated areas seemingly did not have strong resilience to rampant burns. This demonstrates a direct correlation to potential lower transpiration rates for elevated areas, warranting further analysis. Results of low variance, post-treatment, between the treated unit and the synthetic control unit, poses concern for the positive effect of the 2019 Wildfire Fund.

Carrie Hashimoto

Describing changes in evapotranspiration following the 2020 Creek Fire in the southern Sierra Nevada

Carrie Hashimoto

Climatic warming and high tree density have caused larger and more severe wildfires to occur in western United States forests over time. Wildfires affect both the hydrology and ecology of forests via alterations to the water balance (e.g., evapotranspiration, streamflow, infiltration, and more) and could shift vegetation communities and subsequent ecosystem structure and function. This project explores ecological characteristics of a landscape that predict the extent to which the Creek Fire in the southern Sierra Nevada has affected evapotranspiration. Strides in understanding of consequential evapotranspiration changes can create pathways to address emerging forest health challenges posed by similar western fires. For analysis, various remote sensing and modeled data were collected from OpenET, the North American Land Data Assimilation System, TerraClimate, Harmonized LandSat Sentinel-2 data, and the Shuttle Radar Topography Mission. Multiple linear regression and generalized additive models were constructed. Relative change in evapotranspiration served as the response variable. Model covariates included average temperature, total precipitation in the preceding months, average soil moisture, elevation, slope, aspect, northness, latitude, pre-fire normalized difference vegetation index (NDVI), and post-fire change in normalized burn ratio (dNBR). Best subset selection with cross validation demonstrated minimization of cross-validation error with a 7-covariate model. This reduced model yields lower complexity and more interpretability while sustaining an adjusted R2 of 0.626, compared to the full model’s adjusted R2 of 0.663. A reduced generalized additive model (GAM) with interaction terms drawn from the linear model variable selection demonstrated an adjusted R2 of 0.695, indicating a better fit that comes at the cost of reduced interpretability and higher computational requirements than the linear models. The goal of this work is to disentangle environmental indicators of post-fire evapotranspiration change, such that predictive modeling of future wildfire impacts on evapotranspiration can be achieved.

Share

Details

Last Updated
Nov 22, 2024

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA Stennis partnered with Mississippi Enterprise for Technology to host more than 100 members of the 57th Rocket Test Group on March 18-19.
      NASA Stennis partnered with Mississippi Enterprise for Technology to host more than 100 members of the 57th Rocket Test Group on March 18-19.NASA/Jason Richard The group toured the south Mississippi NASA center on March 19, learning how NASA Stennis operates as NASA’s primary, and America’s largest, rocket propulsion test site to serve the nation and commercial sector with its unique capabilities and expertise.
      NASA Stennis partnered with Mississippi Enterprise for Technology to host more than 100 members of the 57th Rocket Test Group on March 18-19.NASA/Jason Richard The day included tours of test stands and facilities hosted by NASA Stennis test complex personnel. Visits included the Fred Haise Test Stand, where NASA Stennis tests RS-25 engines to help power NASA’s Artemis missions to the Moon and beyond; the Thad Cochran Test Stand, where NASA Stennis will test NASA’s exploration upper stage for future Artemis missions; the E Test Complex, where NASA Stennis supports agency and commercial propulsion test activity; and the L3Harris Technologies (formerly Aerojet Rocketdyne) Engine Assembly Facility, where RS-25 engines are produced.
      NASA Stennis partnered with Mississippi Enterprise for Technology to host more than 100 members of the 57th Rocket Test Group on March 18-19.NASA/Jason Richard The group also received overviews from site personnel on the Rocket Propulsion Test Program Office located at NASA Stennis, on lessons learned from testing at the E Test Complex, and on the NASA Data Acquisition System developed onsite.
      NASA Stennis partnered with Mississippi Enterprise for Technology to host more than 100 members of the 57th Rocket Test Group on March 18-19.NASA/Jason Richard The Rocket Test Group originally formed in response to a congressional demand for an ongoing working group crossing agency and company boundaries. It is a volunteer organization intended to allow rocket test facility operators to come together to recommend solutions for difficult testing problems; lower testing costs by reducing time spent on solving critical issues and eliminating duplicate programs; facilitate the activation of new facilities; learn from each other by viewing different methods and touring various facilities; provide a networking opportunity for testing advice and problem solving support; and allow test facility operators to stay informed on the newest developments.
      NASA Stennis partnered with Mississippi Enterprise for Technology to host more than 100 members of the 57th Rocket Test Group on March 18-19.L3Harris TechnologiesView the full article
    • By European Space Agency
      Image: This image shows Webb’s recent observation of the asteroid 2024 YR4 using both its Near-Infrared Camera (NIRCam) and Mid-Infrared Instrument (MIRI). Data from NIRCam shows reflected light, while the MIRI observations show thermal light.
      On 8 March 2025, the NASA/ESA/CSA James Webb Space Telescope turned its watchful eye toward asteroid 2024 YR4, which we now know poses no significant threat to Earth in 2032 and beyond.
      This is the smallest object targeted by Webb to date, and one of the smallest objects to have its size directly measured.
      Observations were taken to study the thermal properties of 2024 YR4, including how quickly it heats up and cools down and how hot it is at its current distance from the Sun. These measurements indicate that this asteroid does not share properties observed in larger asteroids. This is likely a combination of its fast spin and lack of fine-grained sand on its surface. Further research is needed, however this is considered consistent with a surface dominated by rocks that are roughly fist-sized or larger.
      Asteroid 2024 YR4 was recently under close watch by the team at ESA's Near Earth Objects Coordination Centre, located in Italy. Planetary defence experts from the Agency's Space Safety programme worked with NASA and the international asteroid community to closely watch this object and refine its orbit, which was eventually determined to not pose a risk of Earth impact. Read details on this unusual campaign via ESA's Rocket Science blog and in news articles here and here.
      Webb’s observations indicate that the asteroid measures roughly 60 meters (comparable to the height of a 15-story building).
      The new observations from Webb not only provide unique information about 2024 YR4’s size, but can also complement ground-based observations of the object's position to help improve our understanding of the object’s orbit and future trajectory.
      Note: This post highlights data from Webb science in progress, which has not yet been through the peer-review process.
      [Image description: A collage of three images showing the black expanse of space. Two-thirds of the collage is taken up by the black background sprinkled with small, blurry galaxies in orange, blue, and white. There are two images in a column at the right side of the collage. On the right side of the main image, not far from the top, a very faint dot is outlined with a white square. At the right, there are two zoomed in views of this area. The top box is labeled NIRCam and shows a fuzzy dot at the center of the inset. The bottom box is labeled MIRI and shows a fuzzy pinkish dot.]
      View the full article
    • By NASA
      The innovative team of engineers and scientists from NASA, the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, and more than 40 other partner organizations across the country that created the Parker Solar Probe mission has been awarded the 2024 Robert J. Collier Trophy by the National Aeronautic Association (NAA). This annual award recognizes the most exceptional achievement in aeronautics and astronautics in America with respect to improving the performance, efficiency, and safety of air or space vehicles in the previous year.   
      “Congratulations to the entire Parker Solar Probe team for this well-earned recognition,” said NASA acting Administrator Janet Petro. “This mission’s trailblazing research is rewriting the textbooks on solar science by going to a place no human-made object has ever been and advancing NASA’s efforts to better understand our solar system and the Sun’s influence, with lasting benefits for us all. As the first to touch the Sun and fastest human-made object ever built, Parker Solar Probe is a testament to human ingenuity and discovery.”
      An artist’s concept of NASA’s Parker Solar Probe. NASA On Dec. 24, 2024, Parker Solar Probe made its closest approach to the Sun, passing deep within the Sun’s corona, just 3.8 million miles above the Sun’s surface and at a top speed of close to 430,000 mph, ushering in a new era of scientific discovery and space exploration.
      “This award is a recognition of the unrelenting dedication and hard work of the Parker Solar Probe team. I am so proud of this team and honored to have been a part of it,” said Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington. “By studying the Sun closer than ever before, we continue to advance our understanding of not only our closest star, but also stars across our universe. Parker Solar Probe’s historic close approaches to the Sun are a testament to the incredible engineering that made this record-breaking journey possible.”
      Three novel aerospace technology advancements were critical to enabling this record performance: The first is the Thermal Protection System, or heat shield, that protects the spacecraft and is built to withstand brutal temperatures as high as 2,500 degrees Fahrenheit. The Thermal Protection System allows Parker’s electronics and instruments to operate close to room temperature.
      Additional Parker innovations included first-of-their-kind actively cooled solar arrays that protect themselves from overexposure to intense solar energy while powering the spacecraft, and a fully autonomous spacecraft system that can manage its own flight behavior, orientation, and configuration for months at a time. Parker has relied upon all of these vital technologies every day since its launch almost seven years ago, in August 2018.
      “I am thrilled for the Parker Solar Probe team on receiving this well-deserved award,” said Joe Westlake, director of the Heliophysics Division at NASA Headquarters. “The new information about the Sun made available through this mission will improve our ability to prepare for space weather events across the solar system, as well as better understand the very star that makes life possible for us on Earth.”
      Parker’s close-up observations of solar events, such as coronal mass ejections and solar particle events, are critical to advancing our understanding of the science of our Sun and the phenomena that drive high-energy space weather events that pose risks to satellites, air travel, astronauts, and even power grids on Earth. Understanding the fundamental physics behind events which drive space weather will enable more reliable predictions and lower astronaut exposure to hazardous radiation during future deep space missions to the Moon and Mars.
      “This amazing team brought to life an incredibly difficult space science mission that had been studied, and determined to be impossible, for more than 60 years. They did so by solving numerous long-standing technology challenges and dramatically advancing our nation’s spaceflight capabilities,” said APL Director Ralph Semmel. “The Collier Trophy is well-earned recognition for this phenomenal group of innovators from NASA, APL, and our industry and research partners from across the nation.”
      First awarded in 1911, the Robert J. Collier Trophy winner is selected by a group of aviation leaders chosen by the NAA. The Collier Trophy is housed in the Smithsonian’s National Air and Space Museum in Washington.
      “Traveling three times closer to the Sun and seven times faster than any spacecraft before, Parker’s technology innovations enabled humanity to reach inside the Sun’s atmosphere for the first time,” said Bobby Braun, head of APL’s Space Exploration Sector. “We are all immensely proud that the Parker Solar Probe team will join a long legacy of prestigious aerospace endeavors that redefined technology and changed history.”
      “The Parker Solar Probe team’s achievement in earning the 2024 Collier is a shining example of determination, genius, and teamwork,” said NAA President and CEO Amy Spowart. “It’s a distinct honor for the NAA to acknowledge and celebrate the remarkable team that turned the impossible into reality.”
      Parker Solar Probe was developed as part of NASA’s Living With a Star program to explore aspects of the Sun-Earth system that directly affect life and society. The Living With a Star program is managed by the agency’s Goddard Space Flight Center in Greenbelt, Maryland, for NASA’s Science Mission Directorate in Washington. The Applied Physics Laboratory designed, built, and operates the spacecraft and manages the mission for NASA.
      By Geoff Brown
      Johns Hopkins University Applied Physics Laboratory
      Share








      Details
      Last Updated Mar 25, 2025 Editor Sarah Frazier Contact Abbey Interrante abbey.a.interrante@nasa.gov Location Goddard Space Flight Center Related Terms
      Heliophysics Goddard Space Flight Center Heliophysics Division Parker Solar Probe (PSP) The Sun Explore More
      5 min read NASA’s Parker Solar Probe Makes History With Closest Pass to Sun


      Article


      3 months ago
      4 min read Final Venus Flyby for NASA’s Parker Solar Probe Queues Closest Sun Pass


      Article


      5 months ago
      11 min read NASA Enters the Solar Atmosphere for the First Time, Bringing New Discoveries
      A major milestone and new results from NASA’s Parker Solar Probe were announced on Dec.…


      Article


      3 years ago
      View the full article
    • By NASA
      7 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA / Maria Werries The ARMD 2024 Associate Administrator Awards were presented to NASA employees, contractors, and students or interns who distinguished themselves, either individually or as part of a group, through their overall approach to their work and through results they achieved during the award year.
      LEGEND: ARMD NASA CENTERS
      ARC = Ames Research Center
      AFRC = Armstrong Flight Research Center
      GRC = Glenn Research Center
      HQ = Headquarters
      LaRC = Langley Research Center
      Technology and Innovation
      Honoree (Individual)
      Kenneth R. Lyons, ARC
      Kenneth R. Lyons made significant contributions this past year that were successfully applied in advancing NASA’s state-of-the-art unsteady Pressure Sensitive Paint (uPSP) experimental measurement in NASA’s wind tunnels. Lyons was key to the development of innovative data processing capabilities such as custom software drivers necessary to transfer the high-speed uPSP data from NASA’s wind tunnels to its High-End Computer facility – as well as other data management and methodologies overall. The uPSP development team’s principal investigator referred to his work on replacing older legacy systems as a “masterpiece.”
      Honoree (Group)
      NASA GRX-810 Licensing Team
      NASA’s GRX-810 Licensing Team demonstrated exemplary performance by developing a technologically significant new material, meeting community demands for rapid evaluation, and enabling broad industry availability through timely commercialization. The team’s efforts led to successful licensing to multiple parties, pioneering a novel approach for NASA by using co-exclusive licenses, and the negotiation of four co-exclusive licenses with commercial partners. This license structure will increase competition within the marketplace and provide incentive for each company to fast-track product development.
      Team Lead: Dr. Timothy M. Smith, GRC
      View Group Honorees
      Honorable Mention
      Shishir Pandya, ARC
      Shishir Pandya’s exemplary actions as the formulation and technical lead for the Propulsion/Airframe Integration (PAI) emerging technical challenge were instrumental in creating an actionable project plan that will examine complex aerodynamic interactions between sustainable propulsor technologies – such as open rotor concepts envisioned in programs like General Electric’s Revolutionary Innovation for Sustainable Engines (RISE). Pandya was instrumental in classifying the current PAI analysis capabilities at NASA, and scoping NASA’s, GE’s, and Boeing’s roles and responsibilities for open fan integration studies, both computational and experimental.
      Honorable Mention (Group)
      Electric Vertical Takeoff and Landing (eVTOL) Propulsion Team
      The Revolutionary Vertical Lift and Technology project’s Electric Propulsion Team achieved major accomplishments – successfully completing a technical challenge to improve propulsion system component reliability by demonstrating significant improvements in 100-kilowatt electric motors. Through an integrated interdisciplinary approach including external partner collaborations, the team produced six major technological capabilities towards further development of NASA’s Advanced Air Mobility mission.
      Team Lead: Mark Valco, GRC
      View Honorable Mention Group Honorees
      Honorable Mention (Group)
      Self-Aligned Focusing Schlieren Team
      The Self-Aligned Focusing Schlieren Team developed a highly innovative and impactful Schlieren system that revolutionizes high-speed flow visualization in aeronautics research by enabling the use of a highly efficient, non-intrusive optical measurement technique in physically constrained environments. This new approach drastically improves efficiency in accurately capturing and analyzing complex, high-speed airflows around advanced aerospace vehicles in a non-intrusive manner – providing precise visualization without requiring the cumbersome alignment procedures of traditional Schlieren systems.
      Team Lead: Brett Bathel, LaRC
      View Honorable Mention Group Honorees
      Leadership and Management Excellence
      Honoree
      Anthony Nerone, GRC
      Anthony Nerone demonstrated strong leadership in formulating and leading the implementation of the Hybrid Thermally Efficient Core project. He has successfully set up a framework to establish a high-performing project team that has been an example for other Aeronautics projects. Nerone’s strong project management has led industry to accelerate the development of advanced engine technologies which have started to see infusion into products – continuing United States leadership in sustainable aviation.
      Program and Mission Support
      Honoree
      Diana Fitzgerald, LaRC (Booz Allen Hamilton)
      Diana Fitzgerald has demonstrated innovation, responsiveness, and impact in her contributions to the Transformational Tools and Technologies (TTT) project. Her creative and comprehensive approach to enhancing TTT’s communication processes has significantly improved the efficiency and effectiveness of the project’s operations, enabling ARMD to advance critical strategic capabilities and partnerships. Her dedication has garnered widespread recognition from colleagues and leadership and has had a substantial and measurable impact.
      Honoree (Group)
      Airspace Operations Safety Program (AOSP) Resource Analyst Group
      The AOSP Resource Analyst Group worked tirelessly to skillfully review and analyze the NASA Aeronautics budget – preparing programs and projects for planning, budget, and execution inputs. Their extraordinary performance in numerous AOSP activities building, tracking, and executing milestones resulted in a smooth and transparent execution of the program’s annual budget. The group has gone beyond the call of duty and their hard work and dedication is reflected in their discipline and commitment to NASA through critical, time-sensitive attention to detail and solution-focused problem solving.
      Team Leads: Michele Dodson, HQ and Jeffrey Farlin, HQ
      View Group Honorees
      Honorable Mention (Individual)
      Shannon Eichorn, GRC
      Shannon Eichorn developed and authored a compelling, creative vision for the future of aeronautics research and of NASA’s working environment. She envisioned and described a future in which NASA’s aeronautics research goals, future technologies, workforce, and capabilities are in synergy to maximize research quality and impact. Eichorn presented this vision to numerous leaders and groups at NASA, and the excitement in the room at each presentation led to engaging follow-on discussions and several workstream groups requested Eichorn to present to their full group. Her efforts inspire not only ARMD, but the entire agency.
      High Potentials
      Honoree
      Matthew Webster, LaRC
      Matthew Webster has had significant impact and contributions to meeting goals in the Convergent Aeronautics Solutions and Transformational Tools and Technologies projects. In his short time at NASA, he has rapidly demonstrated exceptional ability to adapt and apply technical expertise across multiple NASA projects to advance towards project technical goals. Webster has shown his leadership ability, providing exceptional skills at creating a healthy team environment enabling the group to successfully meet project goals.
      Honorable Mention
      Dahlia Pham, ARC
      Dhalia Pham’s contributions as a system analyst, researcher, and teammate in support of NASA’s efforts in electrified aircraft propulsion have shown an ability to creatively solve problems, analyze impacts, present results with strong communication skills, and collaborate with and mentor others. Her technical acumen and leadership ability raise the bar, making her an established leader amongst her peers.
      Strategic Partnerships
      Honoree
      Salvatore Buccellato, LaRC
      Salvatore Buccellato identified collaborative opportunities in hypersonics research that were mutually beneficial to NASA, the Defense Advanced Research Projects Agency (DARPA), and other non-NASA entities through his program management experience and knowledge of NASA people and capabilities. Buccellato was able to leverage NASA and non-NASA expertise and capabilities, along with DARPA funding, to further mature and advance hypersonic technologies via ground and flight tests with the goal of enabling operational flight systems. His exemplary work helped to significantly advanced hypersonic technologies and its workforce, and are expected to lead to further partnered activities for NASA.
      Pushing the Envelope
      Honoree (Group)
      Advanced Power Electronics Team, GRC
      The Advanced Power Electronics Team of the Advanced Air Transport Technology project completed an ambitious design of a prototype flight-packaged, altitude-capable electric motor drive for aviation. Their work pushed past the state of the art in flight motor drives in several areas including power density, efficiency, and power quality – and is a steppingstone towards megawatt-level, cryogenically cooled motor drives. The electric motor design underwent many successful tests and exercises, and the team’s subsequent publications and expertise help the electrified aircraft industry push past several barriers. 
      Team Leads: Matthew G. Granger, GRC
      View Group Honorees
      2024 AA Award Honorees PDF
      ARMD Associate Administrator Award
      Facebook logo @NASA@NASAaero@NASAes @NASA@NASAaero@NASAes Instagram logo @NASA@NASAaero@NASAes Linkedin logo @NASA Keep Exploring Discover More Topics From NASA
      Aeronautics Research Mission Directorate
      Aeronautics
      Drones & You
      Green Aviation Tech
      Share
      Details
      Last Updated Mar 06, 2025 EditorLillian GipsonContactJim Bankejim.banke@nasa.gov Related Terms
      Associate Administrator Awards View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA GRX-810 Licensing Team, GRC

      * Denotes Team Lead
      NASA Ames Research Center
      John Lawson
      NASA Glenn Research Center
      Steven M. Arnold
      Aaron B. Brister
      Robert W. Carter
      Robert H. Earp
      Timothy P. Gabb
      Christopher J. Giuffre
      Paul R. Gradl
      Jason M. Hanna
      Bryan J. Harder
      Amy B. Hiltabidel
      Dale A. Hopkins
      Christopher A. Kantzos
      Michael J. Kulis
      Geoffrey S. Minter
      Brian T. Newbacher
      Callista M. Puchmeyer
      Richard W. Rauser
      Harvey L. Schabes
      Timothy M. Smith*
      Aaron C. Thompson
      Mary F. Wadel
      Austin J. Whitt
      Laura G. Wilson
      NASA’s Marshall Space Flight Center
      Paul Gradl
      HX5, LLC
      Christopher J. Giuffre
      Aaron C. Thompson
      Austin J. Whitt
      University of Toledo
      Richard W. Rauser
      2024 AA Award Honorees
      2024 AA Award Honorees PDF
      ARMD Associate Administrator Awards
      Facebook logo @NASA@NASAaero@NASAes @NASA@NASAaero@NASAes Instagram logo @NASA@NASAaero@NASAes Linkedin logo @NASA Keep Exploring Discover More Topics From NASA
      Missions
      Artemis
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated Mar 06, 2025 EditorLillian GipsonContactJim Bankejim.banke@nasa.gov Related Terms
      Associate Administrator Awards View the full article
  • Check out these Videos

×
×
  • Create New...