Jump to content

NASA Marshall Thermal Engineering Lab Provides Key Insight to Human Landing System


Recommended Posts

  • Publishers
Posted

NASA’s Human Landing System (HLS) will transport the next astronauts that land on the Moon, including the first woman and first person of color, beginning with Artemis III. For safety and mission success, the landers and other equipment in development for NASA’s Artemis campaign must work reliably in the harshest of environments.

Thermal analysis laboratory at NASA’s Marshall Space Flight Center for testing prototype space hardware and materials.
The Hub for Innovative Thermal Technology Maturation and Prototyping (HI-TTeMP) lab at NASA’s Marshall Space Flight Center in Huntsville, Alabama, provides engineers with thermal analysis of materials that may be a prototype or in an early developmental stage using a vacuum chamber, back left, and a conduction chamber, right.
NASA/Ken Hall

Engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama, are currently testing how well prototype insulation for SpaceX’s Starship HLS will insulate interior environments, including propellant storage tanks and the crew cabin. Starship HLS will land astronauts on the lunar surface during Artemis III and Artemis IV.

Marshall’s Hub for Innovative Thermal Technology Maturation and Prototyping (HI-TTeMP) laboratory provides the resources and tools for an early, quick-check evaluation of insulation materials destined for Artemis deep space missions.

“Marshall’s HI-TTeMP lab gives us a key testing capability to help determine how well the current materials being designed for vehicles like SpaceX’s orbital propellant storage depot and Starship HLS, will insulate the liquid oxygen and methane propellants,” said HLS chief engineer Rene Ortega. “By using this lab and the expertise provided by the thermal engineers at Marshall, we are gaining valuable feedback earlier in the design and development process that will provide additional information before qualifying hardware for deep space missions.”

A close-up of a conduction chamber for testing the heat conduction properties of materials and equipment to be used in Artemis missions.
A peek inside the conductive test chamber at NASA Marshall’s HI-TTeMP lab where thermal engineers design, set up, execute, and analyze materials destined for deep space to better understand how they will perform in the cold near-vacuum of space.
NASA/Ken Hall

On the Moon, spaceflight hardware like Starship HLS will face extreme temperatures. On the Moon’s south pole during lunar night, temperatures can plummet to -370 degrees Fahrenheit (-223 degrees Celsius). Elsewhere in deep space temperatures can range from roughly 250 degrees Fahrenheit (120 degrees Celsius) in direct sunlight to just above absolute zero in the shadows.

There are two primary means of managing thermal conditions: active and passive. Passive thermal controls include materials such as insulation, white paint, thermal blankets, and reflective metals. Engineers can also design operational controls, such as pointing thermally sensitive areas of a spacecraft away from direct sunlight, to help manage extreme thermal conditions. Active thermal control measures that could be used include radiators or cryogenic coolers.

Engineers use two vacuum test chambers in the lab to simulate the heat transfer effects of the deep space environment and to evaluate the thermal properties of the materials. One chamber is used to understand radiant heat, which directly warms an object in its path, such as when heat from the Sun shines on it. The other test chamber evaluates conduction by isolating and measuring its heat transfer paths.

NASA engineers working in the HI-TTeMP lab not only design, set up, and run tests, they also provide insight and expertise in thermal engineering to assist NASA’s industry partners, such as SpaceX and other organizations, in validating concepts and models, or suggesting changes to designs. The lab is able to rapidly test and evaluate design updates or iterations.

NASA’s HLS Program, managed by NASA Marshall, is charged with safely landing astronauts on the Moon as part of Artemis. NASA has awarded contracts to SpaceX for landing services for Artemis III and IV and to Blue Origin for Artemis V. Both landing services providers plan to transfer super-cold propellant in space to send landers to the Moon with full tanks.

With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of Mars. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the HLS, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.

For more on HLS, visit: 

https://www.nasa.gov/humans-in-space/human-landing-system

News Media Contact

Corinne Beckinger 
Marshall Space Flight Center, Huntsville, Ala. 
256.544.0034  
corinne.m.beckinger@nasa.gov 

r

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 Min Read NASA 3D-Printed Antenna Takes Additive Manufacturing to New Heights
      The 3D-printed antenna mounted to a ladder prior to testing at NASA's Columbia Scientific Balloon Facility in Palestine, Texas. Credits: NASA/Peter Moschetti In fall 2024, NASA developed and tested a 3D-printed antenna to demonstrate a low-cost capability to communicate science data to Earth. The antenna, tested in flight using an atmospheric weather balloon, could open the door for using 3D printing as a cost-effective development solution for the ever-increasing number of science and exploration missions.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      NASA developed and tested a 3D-printed antenna to demonstrate a low-cost capability to communicate science data to Earth.NASA/Kasey Dillahay Printing
      For this technology demonstration, engineers from NASA’s Near Space Network designed and built a 3D-printed antenna, tested it with the network’s relay satellites, and then flew it on a weather balloon.
      The 3D printing process, also known as additive manufacturing, creates a physical object from a digital model by adding multiple layers of material on top of each other, usually as a liquid, powder, or filament. The bulk of the 3D-printed antenna uses a low electrical resistance, tunable, ceramic-filled polymer material.
      Using a printer supplied by Fortify, the team had full control over several of the electromagnetic and mechanical properties that standard 3D printing processes do not. Once NASA acquired the printer, this technology enabled the team to design and print an antenna for the balloon in a matter of hours. Teams printed the conductive part of the antenna with one of several different conductive ink printers used during the experiment.
      For this technology demonstration, the network team designed and built a 3D-printed magneto-electric dipole antenna and flew it on a weather balloon. [JF1]  A dipole antenna is commonly used in radio and telecommunications. The antenna has two “poles,” creating a radiation pattern similar to a donut shape.
      Testing
      The antenna, a collaboration between engineers within NASA’s Scientific Balloon Program and the agency’s Space Communications and Navigation (SCaN) program, was created to showcase the capabilities of low-cost design and manufacturing.
      Following manufacturing, the antenna was assembled and tested at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, in the center’s electromagnetic anechoic chamber.
      The anechoic chamber is the quietest room at Goddard — a shielded space designed and constructed to both resist intrusive electromagnetic waves and suppress their emission to the outside world. This chamber eliminates echoes and reflections of electromagnetic waves to simulate the relative “quiet” of space.
      To prepare for testing, NASA intern Alex Moricette installed the antenna onto the mast of the anechoic chamber. The antenna development team used the chamber to test its performance in a space-like environment and ensure it functioned as intended.
      NASA Goddard’s anechoic chamber eliminates echoes and reflections of electromagnetic waves to simulate the relative “quiet” of space. Here, the antenna is installed on the mast of the anechoic chamber.NASA/Peter Moschetti Once completed, NASA antenna engineers conducted final field testing at NASA’s Columbia Scientific Balloon Facility in Palestine, Texas, before liftoff.
      The team coordinated links with the Near Space Network’s relay fleet to test the 3D-printed antenna’s ability to send and receive data.
      The team monitored performance by sending signals to and from the 3D-printed antenna and the balloon’s planned communications system, a standard satellite antenna. Both antennas were tested at various angles and elevations. By comparing the 3D-printed antenna with the standard antenna, they established a baseline for optimal performance.
      Field testing was performed at NASA’s Columbia Scientific Balloon Facility in Palestine, Texas, prior to liftoff. To do this, the 3D-printed antenna was mounted to a ladder.NASA/Peter Moschetti In the Air
      During flight, the weather balloon and hosted 3D-printed antenna were tested for environmental survivability at 100,000 feet and were safely recovered.
      For decades, NASA’s Scientific Balloon Program, managed by NASA’s Wallops Flight Facility in Virginia, has used balloons to carry science payloads into the atmosphere. Weather balloons carry instruments that measure atmospheric pressure, temperature, humidity, wind speed, and direction. The information gathered is transmitted back to a ground station for mission use.
      The demonstration revealed the team’s anticipated results: that with rapid prototyping and production capabilities of 3D printing technology, NASA can create high-performance communication antennas tailored to mission specifications faster than ever before.
      Implementing these modern technological advancements is vital for NASA, not only to reduce costs for legacy platforms but also to enable future missions.
      The Near Space Network is funded by NASA’s SCaN (Space Communications and Navigation) program office at NASA Headquarters in Washington. The network is operated out of NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      By Kendall Murphy
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      About the Author
      Kendall Murphy
      Technical WriterKendall Murphy is a technical writer for the Space Communications and Navigation program office. She specializes in internal and external engagement, educating readers about space communications and navigation technology.
      Share
      Details
      Last Updated Jan 22, 2025 EditorGoddard Digital TeamContactKendall Murphykendall.t.murphy@nasa.govLocationGoddard Space Flight Center Related Terms
      Manufacturing, Materials, 3-D Printing Goddard Space Flight Center Scientific Balloons Space Communications & Navigation Program Space Communications Technology Technology Explore More
      4 min read NASA to Embrace Commercial Sector, Fly Out Legacy Relay Fleet 
      Article 3 months ago 3 min read NASA Enables Future of Science Observation through Tri-band Antennas
      Article 2 years ago 4 min read NASA’s Near Space Network Enables PACE Climate Mission to ‘Phone Home’
      Article 9 months ago View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      If you tell Lauren Best Ameen something is hard and cannot be done, she will likely reply, “Watch me.”  
      As deputy manager for the Cryogenic Fluid Management Portfolio Project Office at NASA’s Glenn Research Center in Cleveland, Ameen and her team look for innovative ways to keep rocket fuel cold for long-duration missions. Work in this area could be important in enabling astronauts to go to the Moon and Mars. 
      Watch the NASA Faces of Technology video that highlights her work:
      For more information about NASA’s Cryogenic Fluid Management Program, visit this page.  
      Return to Newsletter Explore More
      2 min read NASA Glenn Trains Instructors for After-School STEM Program 
      Article 7 mins ago 1 min read NASA Glenn Helps Bring Joy to Children in Need
      Article 8 mins ago 3 min read NASA Opens New Challenge to Support Climate-Minded Business Models
      Article 5 days ago View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      During the 21st Century Community Learning Centers workshop, after-school educators learn to build the “Move It” student activity from NASA’s Build, Launch and Recover Student Activity Guide.Credit: Kristen Marlatt NASA and the U.S. Department of Education are teaming up to engage students in science, technology, engineering, and math (STEM) education during after-school hours. The interagency program strives to reach approximately 1,000 middle school students in more than 60 sites across 10 states to join the program, 21st Century Community Learning Centers (CCLC). 
      Members of NASA Glenn Research Center’s Office of STEM Engagement traveled to Lansing, Michigan, last month to participate in a two-day professional development training with local after-school educators and facilitators. The training focused on integrating real-world STEM challenges into the 21st CCLC programs. 
      After-school educators engage in a student activity from NASA’s Build, Launch, and Recover Student Activity Guide. In this challenge, students become engineers and NASA crawler operators while working in teams to design and build a rubber band-powered model of NASA’s crawler-transporter that can carry the most mass possible the farthest distance without failure. Credit: Kristen Marlatt  “By engaging in NASA learning opportunities, students are challenged to use critical thinking and creativity to solve real-world challenges that scientists and engineers may face,” said Darlene Walker, NASA Glenn’s Office of STEM Engagement director. “Through the 21st CCLC program, NASA and the Department of Education aim to inspire the next generation of explorers and innovators through high-quality educational content that ignites curiosity and fosters a joy of learning for students across the country.” 
      NASA Glenn education specialists will continue to provide NASA-related content and academic projects for students, in-person staff training, program support, and opportunities for students to engage with NASA scientists and engineers.  
      For more information on NASA Glenn’s STEM Engagement, visit https://www.nasa.gov/glenn-stem/
      Return to Newsletter Explore More
      1 min read NASA Faces of Technology: Meet Lauren Best Ameen
      Article 7 mins ago 1 min read NASA Glenn Helps Bring Joy to Children in Need
      Article 8 mins ago 4 min read NASA Sets Sights on Mars Terrain with Revolutionary Tire Tech
      Article 24 hours ago View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA Glenn employees donated 11 boxes of new, unwrapped gifts to the Toys for Tots program. Credit: NASA/Sara Lowthian-Hanna  NASA’s Glenn Research Center continued a decades-long tradition of participating in the Marine Corps Reserve Toys for Tots program during the 2024 holiday season. On Dec. 9, members of the Marine Corps Reserve (3rd Battalion, 25th Marines) picked up 11 boxes of toys donated by employees from NASA Glenn’s facilities in Cleveland and Sandusky, Ohio. 
      Marine Corps representatives stand at far left and far right of NASA Glenn’s Associate Director Larry Sivic, left, Center Director Dr. Jimmy Kenyon, center, and Acting Deputy Director Dr. Wanda Peters. Credit: NASA/Sara Lowthian-Hanna  The Glenn Veterans Employee Resource Group led the donation drive. The Toys for Tots campaign collects and distributes new, unwrapped toys to less fortunate children in the area for Christmas.  
      Return to Newsletter Explore More
      1 min read NASA Faces of Technology: Meet Lauren Best Ameen
      Article 7 mins ago 2 min read NASA Glenn Trains Instructors for After-School STEM Program 
      Article 7 mins ago 4 min read NASA Sets Sights on Mars Terrain with Revolutionary Tire Tech
      Article 24 hours ago View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA Marshall will hold a candle-lighting ceremony and wreath placement at 9:30 a.m. CST. The ceremony will include remarks from Larry Leopard, associate director, and Bill Hill, director of Marshall’s Office of Safety and Mission Assurance. NASA/ Krisdon Manecke NASA’s Marshall Space Flight Center in Huntsville, Alabama, invites media to attend its observance of the agency’s Day of Remembrance at 9:30 a.m. CST Thursday, Jan. 23, in the lobby of Building 4221.
      Day of Remembrance honors the members of the NASA family who lost their lives while furthering the cause of exploration and discovery. 
      The event will include brief remarks from NASA Marshall leaders, followed by a candle lighting and moment of silence for the crews of Apollo 1 and space shuttles Challenger and Columbia. Speakers will include:
      Larry Leopard, associate director, technical. Bill Hill, director, Office of Safety and Mission Assurance. Media interested in attending the event must confirm by 12 p.m. Wednesday, Jan. 22, with Molly Porter at: molly.a.porter@nasa.gov.
      The agency will also pay tribute to its fallen astronauts with special online content, updated on NASA’s Day of Remembrance, at: 
      https://www.nasa.gov/dor/
      Molly Porter
      Marshall Space Flight Center, Huntsville, Ala.
      256-424-5158
      molly.a.porter@nasa.gov
      Share
      Details
      Last Updated Jan 21, 2025 EditorBeth RidgewayContactMolly Portermolly.a.porter@nasa.govLocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center Explore More
      5 min read Exoplanets Need to Be Prepared for Extreme Space Weather, Chandra Finds
      Article 5 days ago 4 min read NASA Instrument on Firefly’s Blue Ghost Lander to Study Lunar Interior
      Article 2 weeks ago 3 min read NASA to Test Solution for Radiation-Tolerant Computing in Space
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...