Members Can Post Anonymously On This Site
Swirling Galaxy Parents Generations of Stars in Its Center
-
Similar Topics
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A crane lowers the steel reflector framework for Deep Space Station 23 into position Dec. 18 on a 65-foot-high (20-meter) platform above the antenna’s pedestal that will steer the reflector. Panels will be affixed to the structure create a curved surface to collect radio frequency signals.NASA/JPL-Caltech After the steel framework of the Deep Space Station 23 reflector dish was lowered into place on Dec. 18, a crew installed the quadripod, a four-legged support structure that will direct radio frequency signals from deep space that bounce off the main reflector into the antenna’s receiver.NASA/JPL-Caltech Deep Space Station 23’s 133-ton reflector dish was recently installed, marking a key step in strengthening NASA’s Deep Space Network.
NASA’s Deep Space Network, an array of giant radio antennas, allows agency missions to track, send commands to, and receive scientific data from spacecraft venturing to the Moon and beyond. NASA is adding a new antenna, bringing the total to 15, to support increased demand for the world’s largest and most sensitive radio frequency telecommunication system.
Installation of the latest antenna took place on Dec. 18, when teams at NASA’s Goldstone Deep Space Communications Complex near Barstow, California, installed the metal reflector framework for Deep Space Station 23, a multifrequency beam-waveguide antenna. When operational in 2026, Deep Space Station 23 will receive transmissions from missions such as Perseverance, Psyche, Europa Clipper, Voyager 1, and a growing fleet of future human and robotic spacecraft in deep space.
“This addition to the Deep Space Network represents a crucial communication upgrade for the agency,” said Kevin Coggins, deputy associate administrator of NASA’s SCaN (Space Communications and Navigation) program. “The communications infrastructure has been in continuous operation since its creation in 1963, and with this upgrade we are ensuring NASA is ready to support the growing number of missions exploring the Moon, Mars, and beyond.”
This time-lapse video shows the entire day of construction activities for the Deep Space Station 23 antenna at the NASA Deep Space Network’s Goldstone Space Communications Complex near Barstow, California, on Dec. 18. NASA/JPL-Caltech Construction of the new antenna has been under way for more than four years, and during the installation, teams used a crawler crane to lower the 133-ton metal skeleton of the 112-foot-wide (34-meter-wide) parabolic reflector before it was bolted to a 65-foot-high (20-meter-high) alidade, a platform above the antenna’s pedestal that will steer the reflector during operations.
“One of the biggest challenges facing us during the lift was to ensure that 40 bolt-holes were perfectly aligned between the structure and alidade,” said Germaine Aziz, systems engineer, Deep Space Network Aperture Enhancement Program of NASA’s Jet Propulsion Laboratory in Southern California. “This required a meticulous emphasis on alignment prior to the lift to guarantee everything went smoothly on the day.”
Following the main lift, engineers carried out a lighter lift to place a quadripod, a four-legged support structure weighing 16 1/2 tons, onto the center of the upward-facing reflector. The quadripod features a curved subreflector that will direct radio frequency signals from deep space that bounce off the main reflector into the antenna’s pedestal, where the antenna’s receivers are housed.
In the early morning of Dec. 18, a crane looms over the 112-foot-wide (34-meter-wide) steel framework for Deep Space Station 23 reflector dish, which will soon be lowered into position on the antenna’s base structure.NASA/JPL-Caltech Engineers will now work to fit panels onto the steel skeleton to create a curved surface to reflect radio frequency signals. Once complete, Deep Space Station 23 will be the fifth of six new beam-waveguide antennas to join the network, following Deep Space Station 53, which was added at the Deep Space Network’s Madrid complex in 2022.
“With the Deep Space Network, we are able to explore the Martian landscape with our rovers, see the James Webb Space Telescope’s stunning cosmic observations, and so much more,” said Laurie Leshin, director of JPL. “The network enables over 40 deep space missions, including the farthest human-made objects in the universe, Voyager 1 and 2. With upgrades like these, the network will continue to support humanity’s exploration of our solar system and beyond, enabling groundbreaking science and discovery far into the future.”
NASA’s Deep Space Network is managed by JPL, with the oversight of NASA’s SCaN Program. More than 100 NASA and non-NASA missions rely on the Deep Space Network and Near Space Network, including supporting astronauts aboard the International Space Station and future Artemis missions, monitoring Earth’s weather and the effects of climate change, supporting lunar exploration, and uncovering the solar system and beyond.
For more information about the Deep Space Network, visit:
https://www.nasa.gov/communicating-with-missions/dsn
News Media Contact
Ian J. O’Neill
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-2649
ian.j.oneill@jpl.nasa.gov
2024-179
Share
Details
Last Updated Dec 20, 2024 Related Terms
Deep Space Network Jet Propulsion Laboratory Space Communications & Navigation Program Space Operations Mission Directorate Explore More
4 min read Lab Work Digs Into Gullies Seen on Giant Asteroid Vesta by NASA’s Dawn
Article 8 hours ago 5 min read Avalanches, Icy Explosions, and Dunes: NASA Is Tracking New Year on Mars
Article 9 hours ago 8 min read NASA’s Kennedy Space Center Looks to Thrive in 2025
Article 2 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
5 Min Read NASA’s Ames Research Center Celebrates 85 Years of Innovation
The NACA Ames laboratory in 1944 Credits: NASA Ames Research Center in California’s Silicon Valley pre-dates a lot of things. The center existed before NASA – the very space and aeronautics agency it’s a critical part of today. And of all the marvelous advancements in science and technology that have fundamentally changed our lives over the last 85 years since its founding, one aspect has remained steadfast; an enduring commitment to what’s known by some on-center simply as, “an atmosphere of freedom.”
Years before breaking ground at the site that would one day become home to the world’s preeminent wind tunnels, supercomputers, simulators, and brightest minds solving some of the world’s toughest challenges, Joseph Sweetman Ames, the center’s namesake, described a sentiment that would guide decades of innovation and research:
My hope is that you have learned or are learning a love of freedom of thought and are convinced that life is worthwhile only in such an atmosphere
Joseph sweetman ames
Founding member of the N.A.C.A.
“My hope is that you have learned or are learning a love of freedom of thought and are convinced that life is worthwhile only in such an atmosphere,” he said in an address to the graduates of Johns Hopkins University in June 1935.
That spirit and the people it attracted and retained are a crucial part of how Ames, along with other N.A.C.A. research centers, ultimately made technological breakthroughs that enabled humanity’s first steps on the Moon, the safe return of spacecraft through Earth’s atmosphere, and many other discoveries that benefit our day-to-day lives.
Russell Robinson momentarily looks to the camera while supervising the first excavation at what would become Ames Research Center.NACA “In the context of my work, an atmosphere of freedom means the freedom to pursue high-risk, high-reward, innovative ideas that may take time to fully develop and — most importantly — the opportunity to put them into practice for the benefit of all,” said Edward Balaban, a researcher at Ames specializing in artificial intelligence, robotics, and advanced mission concepts.
Balaban’s career at Ames has involved a variety of projects at different stages of development – from early concept to flight-ready – including experimenting with different ways to create super-sized space telescopes in space and using artificial intelligence to help guide the path a rover might take to maximize off-world science results. Like many Ames researchers over the years, Balaban shared that his experience has involved deep collaborations across science and engineering disciplines with colleagues all over the center, as well as commercial and academic partners in Silicon Valley where Ames is nestled and beyond. This is a tradition that runs deep at Ames and has helped lead to entirely new fields of study and seeded many companies and spinoffs.
Before NASA, Before Silicon Valley: The 1939 Founding of Ames Aeronautical Laboratory “In the fields of aeronautics and space exploration the cost of entry can be quite high. For commercial enterprises and universities pursuing longer term ideas and putting them into practice often means partnering up with an organization such as NASA that has the scale and multi-disciplinary expertise to mature these ideas for real-world applications,” added Balaban.
“Certainly, the topics of inquiry, the academic freedom, and the benefit to the public good are what has kept me at Ames,” reflected Ross Beyer, a planetary scientist with the SETI Institute at Ames. “There’s not a lot of commercial incentive to study other planets, for example, but maybe there will be soon. In the meantime, only with government funding and agencies like NASA can we develop missions to explore the unknown in order to make important fundamental science discoveries and broadly share them.”
For Beyer, his boundary-breaking moment came when he searched – and found – software engineers at Ames capable and passionate about open-source software to generate accurate, high-resolution, texture-mapped, 3D terrain models from stereo image pairs. He and other teams of NASA scientists have since applied that software to study and better understand everything from changes in snow and ice characteristics on Earth, as well as features like craters, mountains, and caves on Mars or the Moon. This capability is part of the Artemis campaign, through which NASA will establish a long-term presence at the Moon for scientific exploration with commercial and international partners. The mission is to learn how to live and work away from home, promote the peaceful use of space, and prepare for future human exploration of Mars.
“As NASA and private companies send missions to the Moon, they need to plan landing sites and understand the local environment, and our software is freely available for anyone to use,” Beyer said. “Years ago, our management could easily have said ‘No, let’s keep this software to ourselves; it gives us a competitive advantage.’ They didn’t, and I believe that NASA writ large allows you to work on things and share those things and not hold them back.”
When looking forward to what the next 85 years might bring, researchers shared a belief that advancements in technology and opportunities to innovate are as expansive as space itself, but like all living things, they need a healthy atmosphere to thrive. Balaban offered, “This freedom to innovate is precious and cannot be taken for granted. It can easily fall victim if left unprotected. It is absolutely critical to retain it going forward, to ensure our nation’s continuing vitality and the strength of the other freedoms we enjoy.”
Ames Aeronautical Laboratory.NACAView the full article
-
By NASA
NASA’s Glenn Research Center leaders stand with Evening With the Stars presenters. Left to right: Tim Smith, Nikki Welch, Center Director Dr. Jimmy Kenyon, Acting Deputy Director Dr. Wanda Peters, and Carlos Garcia-Galan. Credit: NASA/Jef Janis NASA Glenn Research Center’s “An Evening With the Stars” showcased research and technology innovations that addressed this year’s theme, NASA Glenn’s Spotlight on the Stars: 10 Years and Counting. The event featured presentations from Glenn subject matter experts and a networking reception.
Held at Windows on the River near Cleveland’s historic waterfront on Nov. 20, the event attracted sponsors and guests from more than 50 companies, universities, and organizations eager to learn more about the center’s recent accomplishments.
Special guests Dennis Andersh, CEO and president of Parallax Advanced Research/Ohio Aerospace Institute; Terrence Slaybaugh, vice president of Sites and Infrastructure for JobsOhio; and Dr. Wanda Peters, NASA Glenn’s acting deputy director, provided remarks.
Center Director Dr. Jimmy Kenyon took the stage to welcome visitors and share some accomplishments from an exciting year at NASA Glenn. Kenyon then introduced the presenters – NASA’s stars of the evening – and their topics.
“I relish this evening each year because it spotlights what is most important to our success at NASA: our people,” Kenyon said.
Nikki Welch is the digital manager in the Office of Communications. In this role, she helps to tell the NASA Glenn story in engaging ways for Glenn’s hundreds of thousands of followers on social media. Welch shared details about her efforts and the importance of “Connecting People to the Mission.”
NASA Glenn Research Center’s Nikki Welch talks about connecting people to the NASA mission through storytelling. Credit: NASA/Jef Janis Tim Smith leads high-temperature alloy development at NASA Glenn and has led research that resulted in over a dozen research licenses and four commercial licenses. As one of the inventors of the metal alloy GRX-810, Smith shared information about Glenn’s “Super Alloy Achievements.”
NASA Glenn Research Center’s Tim Smith talks about NASA’s superalloy achievements. Credit: NASA/Jef Janis Carlos Garcia-Galan is the manager of the Orion program’s European Service Module Integration Office. This module, being provided by ESA (European Space Agency), is Orion’s powerhouse. Garcia-Galan shared information on the topic “Dreaming of Going to the Moon.”
NASA Glenn Research Center’s Carlos Garcia-Galan talks about the spacecraft that will bring humanity back to the Moon. Credit: NASA/Jef Janis Return to Newsletter Explore More
1 min read Program Manager at NASA Glenn Earns AIAA Sustained Service Award
Article 9 mins ago 1 min read NASA Glenn’s Office of Communications Earns Top Honors
Article 9 mins ago 10 min read 55 Years Ago: Apollo 13, Preparations for the Third Moon Landing
Article 2 hours ago View the full article
-
By NASA
The NASA Ames Science Directorate recognizes the outstanding contributions of (pictured left to right) Maurice Valdez, Niki Parenteau, Dori Myer, and Judy Alfter. Their commitment to the NASA mission represents the entrepreneurial spirit, technical expertise, and collaborative disposition needed to explore this world and beyond.
Space Science and Astrobiology Star: Maurice Valdez
Maurice Valdez is a system administrator, supporting desktop systems and website development for the Space Science and Astrobiology Division. Maurice is recognized for his focus and commitment to supporting the division’s scientific productivity by keeping systems compliant and functioning. His can-do attitude makes him instrumental in the success of the team, whether he is finding new solutions for hybrid meetings, fixing equipment, patching systems, or troubleshooting issues.
Photo credit: Pacific Science Center Space Science and Astrobiology Star: Niki Parenteau
Niki Parenteau, a research scientist for the Exobiology Branch, embodies the true spirit of an interdisciplinary astrobiologist. She has applied her expertise to identify potential biosignatures of life on exoplanets and has taken a leading role in the project office for the development of the Habitable Worlds Observatory (HWO), where she facilitates collaborative efforts of Ames scientists across the division and shepherds the larger scientific community to enable observations of biosignatures with HWO.
Space Biosciences Star: Dori Myer
Archivist Dori Myer has made an outstanding contribution in the Flight Systems Implementation Branch’s multi-year effort to digitize and preserve institutional knowledge. Under her guidance, the records management team digitized tens of thousands of historical records, preserving the branch’s institutional knowledge for years to come. Her exceptional initiative and dedication have transformed our record management processes, ensuring the accessibility of NASA’s rich institutional knowledge while streamlining its access in the modern age.
Earth Science Star: Judy Alfter
Judy Alfter, a Deputy Project Manager in the Earth Science Project Office (ESPO), has excelled in her multi-faceted role during the field campaign for the Plankton, Aerosol, Cloud, ocean Ecosystem Post-launch Airborne eXperiment (PACE-PAX). Judy launched the deployment phase of PACE-PAX, leading the effort to set up Twin Otter flight operations at Marina Municipal Airport in California. Following this phase, she transitioned to Santa Barbara in California to support the mobilization of PACE-PAX ship operations and concluded deployment activities at NASA Armstrong Flight Research Center’s main campus as ESPO site manager for ER-2 flight operations.
View the full article
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s Office of Technology, Policy, and Strategy, shares highlights from the office in 2024, including key accomplishments and collaborations that support the NASA mission. Read the full report, NASA’s Office of Technology, Policy, and Strategy: A Year in Review 2024
Share
Details
Last Updated Dec 18, 2024 EditorBill Keeter Related Terms
Office of Technology, Policy and Strategy (OTPS) View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.