Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The SpaceX Dragon Freedom spacecraft carrying NASA astronaut Nick Hague and Roscosmos cosmonaut Aleksandr Gorbunov approaches the International Space Station as it orbited 261 miles above Ontario, Canada, near James Bay. NASA published a new report Thursday highlighting 17 agency mechanisms that have directly and indirectly supported the development and growth of the U.S. commercial space sector for the benefit of humanity.
      The report, titled Enabling America on the Space Frontier: The Evolution of NASA’s Commercial Space Development Toolkit, is available on the agency’s website.
      “This is the most extensive and comprehensive historical analysis produced by NASA on how it has contributed to commercial space development over the decades,” said Alex MacDonald, NASA chief economist. “These efforts have given NASA regular access to space with companies, such as SpaceX and Rocket Lab, modernizing our communications infrastructure, and even led to the first private lunar lander thanks to Intuitive Machines. With commercial space growth accelerating, this report can help agency leaders and stakeholders assess the numerous mechanisms that the agency uses to support this growth, both now and in the future.”
      Throughout its history, NASA has supported the development of the commercial space sector, not only leading the way in areas such as satellite communications, launch, and remote sensing, but also developing new contract and operational models to encourage commercial participation and growth. In the last three decades, NASA has seen the results of these efforts with commercial partners able to contribute more to missions across NASA domains, and increasingly innovative agency-led efforts to engage, nurture, and integrate these capabilities. These capabilities support the agency’s mission needs, and have seen a dramatic rise in importance, according to the report.
      NASA has nurtured technology, companies, people, and ideas in the commercial space sector, contributing to the U.S. and global economies, across four distinct periods in the agency’s history:
      1915–1960: NASA’s predecessor, the National Advisory Committee on Aeronautics (NACA), and NASA’s pre-Apollo years. 1961–1980: Apollo era. 1981–2010: Space shuttle era. 2011–present: Post-shuttle commercial era. Each of these time periods are defined by dominant technologies, programs, or economic trends further detailed in the report.
      Though some of these mechanisms are relatively recent, others have been used throughout the history of NASA and NACA, leading to some overlap. The 17 mechanisms are as follows:
      Contracts and Partnership Agreements Research and Technology Development (R&TD) Dissemination of Research and Scientific Data Education and Workforce Development Workforce External Engagement and Mobility Technology Transfer Technical Support Enabling Infrastructure Launch Direct In-Space Support Standards and Regulatory Framework Support Public Engagement Industry Engagement Venture Capital Engagement Market Stimulation Funding Economic Analysis and Due Diligence Capabilities Narrative Encouragement NASA supports commercial space development in everything from spaceflight to supply chains. Small satellite capabilities have inspired a new generation of space start-ups, while new, smaller rockets, as well as new programs are just starting. Examples include CLPS (Commercial Lunar Payload Services), commercial low Earth orbit destinations, human landing systems, commercial development of NASA spacesuits, and lunar terrain vehicles. The report also details many indirect ways the agency has contributed to the vibrance of commercial space, from economic analyses to student engagement.
      The agency’s use of commercial capabilities has progressed from being the exception to the default method for many of its missions. The current post-shuttle era of NASA-supported commercial space development has seen a level of technical development comparable to the Apollo era’s Space Race. Deploying the 17 commercial space development mechanisms in the future are part of NASA’s mission to continue encouraging commercial space activities.
      To learn more about NASA’s missions, please visit:
      https//:www.nasa.gov
      Share
      Details
      Last Updated Dec 19, 2024 EditorBill Keeter Related Terms
      Office of Technology, Policy and Strategy (OTPS) View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A digital rendering of the completed Axiom Station, which includes the Payload, Power, and Thermal Module, Habitat 1, an airlock, Habitat 2, and the Research and Manufacturing Facility.Credits: Axiom Space In coordination with NASA, Axiom Space modified its planned assembly sequence to accelerate its ability to operate as a viable free-flying space station and reduce International Space Station reliance during assembly.
      NASA awarded Axiom Space a firm-fixed price, indefinite-delivery, indefinite-quantity contract in January 2020, as the agency continues to open the space station for commercial use. The contract provides insight into the development of at least one habitable commercial module to be attached to the space station with the goal of becoming a free-flying destination in low Earth orbit prior to retirement of the orbiting laboratory in 2030.
      The initial Axiom Space plan was to launch and attach its first module, Habitat 1, to the space station, followed by three additional modules.
      Under the company’s new assembly sequence, the Payload, Power, and Thermal Module will launch to the orbiting laboratory first, allowing it to depart as early as 2028 and become a free-flying destination known as Axiom Station. In free-flight, Axiom Space will continue assembly of the commercial destination, adding the Habitat 1 module, an airlock, Habitat 2 module, and the Research and Manufacturing Facility.
      “The updated assembly sequence has been coordinated with NASA to support both NASA and Axiom Space needs and plans for a smooth transition in low Earth orbit,” said Angela Hart, manager, Commercial Low Earth Orbit Development Program at NASA’s Johnson Space Center in Houston. “The ongoing design and development of commercial destinations by our partners is critical to the agency’s plan to procure services in low Earth orbit to support our needs in microgravity.”
      The revised assembly sequence will enable an earlier departure from the space station, expedite Axiom Station’s ability to support free-flight operations, and ensure the orbiting laboratory remains prepared for the U.S. Deorbit Vehicle and end of operational life no earlier than 2030.
      “The International Space Station has provided a one-of-a-kind scientific platform for nearly 25 years,” said Dana Weigel, manager, International Space Station Program at NASA Johnson. “As we approach the end of space station’s operational life, it’s critically important that we look to the future of low Earth orbit and support these follow-on destinations to ensure we continue NASA’s presence in microgravity, which began through the International Space Station.”
      NASA is supporting the design and development of multiple commercial space stations, including Axiom Station, through funded and unfunded agreements. The current design and development phase will be followed by the procurement of services from one or more companies.
      NASA’s low Earth orbit microgravity strategy builds on the agency’s extensive human spaceflight experience to advance future scientific and exploration goals. As the International Space Station nears the end of operations, NASA plans to transition to a new low Earth orbit model to continue leveraging microgravity benefits. Through commercial partnerships, NASA aims to maintain its leadership in microgravity research and ensure continued benefits for humanity.
      Learn more about NASA’s low Earth orbit microgravity strategy at:
      https://www.nasa.gov/leomicrogravitystrategy
      News Media Contacts
      Claire O’Shea
      Headquarters, Washington
      202-358-1100
      claire.a.o’shea@nasa.gov

      Anna Schneider
      Johnson Space Center, Houston
      281-483-5111
      anna.c.schneider@nasa.gov
      Keep Exploring Discover Related Topics
      Low Earth Orbit Economy
      Commercial Destinations in Low Earth Orbit
      Commercial Space
      International Space Station
      View the full article
    • By NASA
      4 Min Read Space Gardens
      NASA astronaut Kayla Barron with chile peppers in the station’s Advanced Plant Habitat. Credits: NASA Science in Space December 2024
      As NASA plans missions to the Moon and Mars, one challenge is figuring out how to provide crew members with enough healthy food. Bringing along a supply for months or even years in space is impractical, and stored food can lose taste and nutritional value. Growing plants in space is one way to help solve this problem. Tending space gardens also has positive psychological effects for crew members, and plants can be part of life support systems that provide services such as producing oxygen and reducing carbon dioxide.
      Outredgeous romaine lettuce grows inside a laboratory at NASA’s Kennedy Space Center in Florida for preflight testing of Plant Habitat-07.NASA A current investigation, Plant Habitat-07, looks at how plants and their associated communities of microorganisms respond to different levels of water. The study uses ‘Outredgeous’ red romaine lettuce, a food crop already known to grow well on the International Space Station. Results from this investigation could inform ways to produce healthy crops under different water conditions in space and on Earth.
      Multiple studies of plants on the space station have tested a wide range of crops and methods for growing them. Researchers have successfully grown lettuces, Chinese cabbage, mustard greens, kale, tomatoes, radishes, and chile peppers in space. Here are details on results from earlier plant studies.
      Better lighting
      NASA astronaut Nick Hague harvests Mizuna mustard greens for VEG-04.NASA The Veg-04A and Veg-04B investigations looked at the effects of light quality and fertilizer on plant growth in space. Researchers found differences in yield and nutritional content depending on how leafy greens are grown and harvested – including choice of light spectrum (red versus blue), a consideration for design of future plant growth facilities.
      It’s in their genes
      Arabidopsis thaliana plants grow in the type of nutrient gel Petri plate used for APEX-04. Anna-Lisa Paul, University of Florida APEX-04 studied molecular changes in thale cress seedlings. Researchers found differences in the expression of specific genes in the root systems of the plants, including two genes not previously known to influence root development. This finding could identify ways to genetically modify plants to grow better on future long-duration missions.
      European Modular Cultivation System Seed Cassettes used for the Plant RNA Regulation investigation.NASA Plant Signaling, a NASA investigation conducted in cooperation with ESA (European Space Agency), studied the effects of various gravity levels on plant seedlings, and Plant RNA Regulation compared gene expression involved in the development of roots and shoots in microgravity and simulated 1 g (Earth’s gravity). Both investigations used the European Modular Cultivation System, a centrifuge that creates 1 g in space and makes it possible to examine the effects of partial gravity. The investigations found increases in the expression of some genes, such as those involved in light response, and decreases in expression of others, including defense response. These findings can help inform design of space-based plant growth facilities.
      And in their hormones
      Auxins are plant hormones that affect processes such as root growth. Gravity affects the abundance of these hormones and their movement within a plant. Auxin Transport, an investigation from JAXA (Japan Aerospace Exploration Agency), examined the role of auxins in controlling growth of pea and maize seedlings in microgravity. Researchers found that microgravity caused decreases in hormones involved in determining direction of growth in pea seedlings and increases of those same hormones in maize seedlings. Understanding how microgravity affects plant hormonal pathways could hep improve the design of space-based plant growth systems.
      Growth and gravity
      Plant development on Earth is strongly influenced by gravity, but exactly how that works at the molecular level is not well understood. APEX-03-1 investigated the effects of microgravity on plant development and, along with previous studies, showed that spaceflight triggers changes in the development of cell walls in plant roots. Strong cell walls provide mechanical strength needed for roots to grow, and this finding provides insight into how to develop plants that are well-adapted to space conditions.
      NASA astronaut Karen Nyberg harvests samples for the Resist Tubule investigation.NASA JAXA’s Resist Tubule also studied the mechanisms of gravity resistance in plants. Researchers found that thale cress plants grown in microgravity exhibited reduced levels of sterols, compounds involved in a variety of cellular processes, which could limit plant growth. These findings could help scientists genetically engineer plants that grow better in microgravity.
      Melissa Gaskill
      International Space Station Research Communications Team
      Johnson Space Center
      Keep Exploring Discover More Topics From NASA
      Space Station Research and Technology
      Station Benefits for Humanity
      Humans In Space
      International Space Station News
      View the full article
    • By Space Force
      The NACE program’s mission is to rapidly iterate and improve space superiority, intelligence surveillance and reconnaissance, and defensive cyber command-and-control processes and procedures.

      View the full article
  • Check out these Videos

×
×
  • Create New...