Jump to content

15 Years Ago: STS-129 Delivers Cargo on the Third Utilization and Logistics Flight


Recommended Posts

  • Publishers
Posted

On Nov. 16, 2009, space shuttle Atlantis began its 31st trip into space, on the third Utilization and Logistics Flight (ULF3) mission to the International Space Station, the 31st shuttle flight to the orbiting lab. During the 11-day mission, the six-member STS-129 crew worked with the six-person Expedition 21 crew during seven days of docked operations. The mission’s primary objectives included delivering two external logistics carriers and their spare parts, adding nearly 15 tons of hardware to the station, and returning a long-duration crew member, the last to return on a shuttle. Three of the STS-129 astronauts conducted three spacewalks to transfer spare parts and continue assembly and maintenance of the station. As a group of 12, the joint crews celebrated the largest and most diverse Thanksgiving gathering in space.

Official photograph of the STS-129 crew The STS-129 crew patch The ULF3 payload patch
Left: Official photograph of the STS-129 crew of Leland D. Melvin, left, Charles O. Hobaugh, Michael J. Foreman, Robert “Bobby” L. Satcher, Barry “Butch” E. Wilmore, and Randolph “Randy” J. Bresnik. Middle: The STS-129 crew patch. Right: The ULF3 payload patch.

The six-person STS-129 crew consisted of Commander Charles O. Hobaugh, Pilot Barry “Butch” E. Wilmore, and Mission Specialists Randolph “Randy” J. Bresnik, Michael J. Foreman, Leland D. Melvin, and Robert “Bobby” L. Satcher. Primary objectives of the mission included launch and transfer to the station of the first two EXPRESS Logistics Carriers (ELC-1 and ELC-2) and their multiple spare parts, and the return of NASA astronaut and Expedition 20 and 21 Flight Engineer Nicole P. Stott, the last astronaut to rotate on the shuttle.

In the Orbiter Processing Facility (OPF) at NASA’s Kennedy Space Center in Florida, workers finish processing Atlantis for STS-129 Space shuttle Atlantis rolls over from the OPF to the Vehicle Assembly Building
Left: In the Orbiter Processing Facility (OPF) at NASA’s Kennedy Space Center in Florida, workers finish processing Atlantis for STS-129. Right: Space shuttle Atlantis rolls over from the OPF to the Vehicle Assembly Building.

Atlantis rolls out to Launch Pad 39A The STS-129 crew during the Terminal Countdown Demonstration Test
Left: Atlantis rolls out to Launch Pad 39A. Right: The STS-129 crew during the Terminal Countdown Demonstration Test.

Atlantis returned to NASA’s Kennedy Space Center (KSC) from its previous mission, STS-125, on June 2, 2009, and workers towed it to the Orbiter Processing Facility (OPF) to prepare it for STS-129. The orbiter rolled over to the Vehicle Assembly Building on Oct. 6, and after mating with its external tank and twin solid rocket boosters, rolled out to Launch Pad 39A on Oct. 14, targeting a Nov. 16 launch. Six days later, the six-member crew participated in the Terminal Countdown Demonstration Test, essentially a dress rehearsal of the actual countdown for launch, returning to Houston for final training. They returned to KSC on Nov. 13 to prepare for launch.

Ares 1-X rocket lifts off from Launch Pad 39B The payload canister arrives at Launch Pad 39A
Left: With Atlantis sitting on Launch Pad 39A, the Ares 1-X rocket lifts off from Launch Pad 39B. Right: The payload canister arrives at Launch Pad 39A.

The STS-129 astronauts leave crew quarters for the ride to Launch Pad 39A Liftoff of space shuttle Atlantis on STS-129
Left: The STS-129 astronauts leave crew quarters for the ride to Launch Pad 39A. Right: Liftoff of space shuttle Atlantis on STS-129.

On Nov. 16, at 2:28 p.m. EST, space shuttle Atlantis lifted off from Launch Pad 39A to begin its 31st trip into space, carrying its six-member crew on the ULF3 space station outfitting and resupply mission. Eight and a half minutes later, Atlantis and its crew had reached orbit. The flight marked Hobaugh’s third time in space, having flown on STS-104 and STS-118, Foreman’s and Melvin’s second, having flown on STS-123 and STS-122, respectively, while Wilmore, Bresnik, and Satcher enjoyed their first taste of weightlessness.

The two EXPRESS Logistics Carriers in Atlantis’ payload bay Leland D. Melvin participates in the inspection of Atlantis’ thermal protection system The Shuttle Remote Manipulator System grasps the Orbiter Boom Sensor System for the inspection
Left: The two EXPRESS Logistics Carriers in Atlantis’ payload bay. Middle: Leland D. Melvin participates in the inspection of Atlantis’ thermal protection system. Right: The Shuttle Remote Manipulator System grasps the Orbiter Boom Sensor System for the inspection.

After reaching orbit, the crew opened the payload bay doors, deployed the shuttle’s radiators, and removed their bulky launch and entry suits, stowing them for the remainder of the flight. The astronauts spent six hours on their second day in space conducting a detailed inspection of Atlantis’ nose cap and wing leading edges, with Hobaugh, Wilmore, Melvin, and Bresnik taking turns operating the Shuttle Remote Manipulator System (SRMS), or robotic arm, and the Orbiter Boom Sensor System (OBSS).

The International Space Station as seen from Atlantis Atlantis as seen from the space station View of the space station from Atlantis during the rendezvous pitch maneuver
Left: The International Space Station as seen from Atlantis during the rendezvous and docking maneuver. Middle: Atlantis as seen from the space station, showing the two EXPRESS Logistics Carriers (ELC) in the payload bay. Right: View of the space station from Atlantis during the rendezvous pitch maneuver, with the Shuttle Remote Manipulator System grasping ELC-1 in preparation for transfer shortly after docking.

On the mission’s third day, Hobaugh assisted by his crewmates brought Atlantis in for a docking with the space station. During the rendezvous, Hobaugh stopped the approach at 600 feet and completed the Rendezvous Pitch Maneuver so astronauts aboard the station could photograph Atlantis’ underside to look for any damage to the tiles. Shortly after docking, the crews opened the hatches between the two spacecraft and the six-person station crew welcomed the six-member shuttle crew. After the welcoming ceremony, Stott joined the STS-129 crew, leaving a crew of five aboard the station. Melvin and Bresnik used the SRMS to pick up ELC-1 from the payload bay and hand it off to Wilmore and Expedition 21 NASA astronaut Jeffrey N. Williams operating the Space Station Remote Manipulator System (SSRMS), who then installed it on the P3 truss segment.

Michael J. Foreman unstows the S-band Antenna Support Assembly prior to transferring it to the station Robert “Bobby” L. Satcher lubricates the robotic arm’s Latching End Effector Satcher’s image reflected in a Z1 radiator panel
Images from the first spacewalk. Left: Michael J. Foreman unstows the S-band Antenna Support Assembly prior to transferring it to the station. Middle: Robert “Bobby” L. Satcher lubricates the robotic arm’s Latching End Effector. Right: Satcher’s image reflected in a Z1 radiator panel.

During the mission’s first of three spacewalks on flight day four, Foreman and Satcher ventured outside for six hours and 37 minutes. During the excursion, with robotic help from their fellow crew members, they transferred a spare S-band Antenna Support Assembly from the shuttle’s payload bay to the station’s Z1 truss. Satcher, an orthopedic surgeon by training, performed “surgery” on the station’s main robotic arm as well as the robotic arm on the Kibo Japanese module, by lubricating their latching end effectors. One day after joining Atlantis’ crew, Stott celebrated her 47th birthday.

Space station crew member Jeffery N. Williams assists STS-129 astronaut Leland D. Melvin in operating the space station’s robotic arm The station robotic arm installs ELC2 on the S3 truss Michael J. Foreman, left, and Randolph J. Bresnik during the mission’s second spacewalk
Left: Space station crew member Jeffery N. Williams assists STS-129 astronaut Leland D. Melvin in operating the space station’s robotic arm to transfer and install the second EXPRESS Logistics Carrier (ELC2) on the S3 truss. Middle: The station robotic arm installs ELC2 on the S3 truss. Right: Michael J. Foreman, left, and Randolph J. Bresnik during the mission’s second spacewalk.

On the mission’s fifth day, the astronauts performed another focused inspection of the shuttle’s thermal protection system. The next day, through another coordinated robotic activity involving the shuttle and station arms, the astronauts transferred ELC-2 and its complement of spares from the payload bay to the station’s S3 truss. Foreman and Bresnik completed the mission’s second spacewalk. Working on the Columbus module, they installed the Grappling Adaptor to On-Orbit Railing (GATOR) fixture that includes a system used for ship identification and an antenna for Ham radio operators. They next installed a wireless video transmission system on the station’s truss. This spacewalk lasted six hours and eight minutes.

Randolph J. Bresnik during the third STS-129 spacewalk Robert “Bobby” L. Satcher during the third spacewalk The MISSE 7 exposure experiment suitcases installed on ELC2
Left: Randolph J. Bresnik during the third STS-129 spacewalk. Middle: Robert “Bobby” L. Satcher during the third spacewalk. Right: The MISSE 7 exposure experiment suitcases installed on ELC2.

Following a crew off duty day, on flight day eight Satcher and Bresnik exited the airlock for the mission’s third and final spacewalk. Their first task involved moving an oxygen tank from the newly installed ELC-2 to the Quest airlock. They accomplished this task with robotic assistance from their fellow crew members. Bresnik retrieved the two-suitcase sized MISSE-7 experiment containers from the shuttle cargo bay and installed them on the MISSE-7 platform on ELC-2, opening them to begin their exposure time. This third spacewalk lasted five hours 42 minutes.

STS-129 Thanksgiving STS-129 Thanksgiving
Left: An early Thanksgiving meal for 12 aboard the space station. Right: After the meal, who has the dishes?

Thanksgiving Day fell on the day after undocking, so the joint crews celebrated with a meal a few days early. The meal represented not only the largest Thanksgiving celebration in space with 12 participants, but also the most international, with four nations represented – the United States, Russia, Canada, and Belgium (representing the European Space Agency).

The 12 members of Expedition 21 and STS-129 pose for a final photograph The STS-129 crew
Left: The 12 members of Expedition 21 and STS-129 pose for a final photograph before saying their farewells. Right: The STS-129 crew, now comprising seven members.

A selection of STS-129 Earth observation images of Maui A selection of STS-129 Earth observation image of Los Angeles STS-129 Earth observation image of Houston
A selection of STS-129 Earth observation images. Left: Maui. Middle: Los Angeles. Right: Houston.

Despite their busy workload, as with all space crews, the STS-129 astronauts made time to look out the windows and took hundreds of photographs of their home planet.

The space station seen from Atlantis during the flyaround Atlantis as seen from the space station during the flyaround Astronaut Nicole P. Stott looks back at the station,
Left: The space station seen from Atlantis during the flyaround. Middle: Atlantis as seen from the space station during the flyaround, with a now empty payload bay. Right: Astronaut Nicole P. Stott looks back at the station, her home for three months, from the departing Atlantis.

On flight day nine, the joint crews held a brief farewell ceremony. European Space Agency astronaut Frank De Winne, the first European to command the space station, handed over command to NASA astronaut Williams. The two crews parted company and closed the hatches between the two spacecraft. The next day, with Wilmore at the controls, Atlantis undocked from the space station, having spent seven days as a single spacecraft. Wilmore completed a flyaround of the station, with the astronauts photographing it to document its condition. A final separation burn sent Atlantis on its way.

The astronauts used the shuttle’s arm to pick up the OBSS and perform a late inspection of Atlantis’ thermal protection system. On flight day 11, Hobaugh and Wilmore tested the orbiter’s reaction control system thrusters and flight control surfaces in preparation for the next day’s entry and landing. The entire crew busied themselves with stowing all unneeded equipment.

Atlantis about to touch down at NASA’s Kennedy Space Center in Florida Atlantis touches down Atlantis deploys its drag chute as it continues down the runway
Left: Atlantis about to touch down at NASA’s Kennedy Space Center in Florida. Middle: Atlantis touches down. Right: Atlantis deploys its drag chute as it continues down the runway.

Six of the STS-129 astronauts pose with Atlantis on the runway at NASA’s Kennedy Space Center in Florida The welcome home ceremony for the STS-129 crew at Ellington Field in Houston
Left: Six of the STS-129 astronauts pose with Atlantis on the runway at NASA’s Kennedy Space Center in Florida. Right: The welcome home ceremony for the STS-129 crew at Ellington Field in Houston.

On Nov. 27, the astronauts closed Atlantis’ payload bay doors, donned their launch and entry suits, and strapped themselves into their seats, a special recumbent one for Stott who had spent the last three months in weightlessness. Hobaugh fired Atlantis’ two Orbital Maneuvering System engines to bring them out of orbit and head for a landing half an orbit later. He guided Atlantis to a smooth touchdown at KSC’s Shuttle Landing Facility.

The landing capped off a very successful STS-129 mission of 10 days, 19 hours, 16 minutes. The six astronauts orbited the planet 171 times. Stott spent 90 days, 10 hours, 45 minutes in space, completing 1,423 orbits of the Earth. After towing Atlantis to the OPF, engineers began preparing it for its next flight, STS-132 in May 2010. The astronauts returned to Houston for a welcoming ceremony at Ellington Field.

Enjoy the crew narrate a video about the STS-129 mission.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 Min Read NASA’s Ames Research Center Celebrates 85 Years of Innovation
      The NACA Ames laboratory in 1944 Credits: NASA Ames Research Center in California’s Silicon Valley pre-dates a lot of things. The center existed before NASA – the very space and aeronautics agency it’s a critical part of today. And of all the marvelous advancements in science and technology that have fundamentally changed our lives over the last 85 years since its founding, one aspect has remained steadfast; an enduring commitment to what’s known by some on-center simply as, “an atmosphere of freedom.” 
      Years before breaking ground at the site that would one day become home to the world’s preeminent wind tunnels, supercomputers, simulators, and brightest minds solving some of the world’s toughest challenges, Joseph Sweetman Ames, the center’s namesake, described a sentiment that would guide decades of innovation and research: 
      My hope is that you have learned or are learning a love of freedom of thought and are convinced that life is worthwhile only in such an atmosphere
      Joseph sweetman ames
      Founding member of the N.A.C.A.
      “My hope is that you have learned or are learning a love of freedom of thought and are convinced that life is worthwhile only in such an atmosphere,” he said in an address to the graduates of Johns Hopkins University in June 1935.
      That spirit and the people it attracted and retained are a crucial part of how Ames, along with other N.A.C.A. research centers, ultimately made technological breakthroughs that enabled humanity’s first steps on the Moon, the safe return of spacecraft through Earth’s atmosphere, and many other discoveries that benefit our day-to-day lives.
      Russell Robinson momentarily looks to the camera while supervising the first excavation at what would become Ames Research Center.NACA “In the context of my work, an atmosphere of freedom means the freedom to pursue high-risk, high-reward, innovative ideas that may take time to fully develop and — most importantly — the opportunity to put them into practice for the benefit of all,” said Edward Balaban, a researcher at Ames specializing in artificial intelligence, robotics, and advanced mission concepts.
      Balaban’s career at Ames has involved a variety of projects at different stages of development – from early concept to flight-ready – including experimenting with different ways to create super-sized space telescopes in space and using artificial intelligence to help guide the path a rover might take to maximize off-world science results. Like many Ames researchers over the years, Balaban shared that his experience has involved deep collaborations across science and engineering disciplines with colleagues all over the center, as well as commercial and academic partners in Silicon Valley where Ames is nestled and beyond. This is a tradition that runs deep at Ames and has helped lead to entirely new fields of study and seeded many companies and spinoffs.
      Before NASA, Before Silicon Valley: The 1939 Founding of Ames Aeronautical Laboratory “In the fields of aeronautics and space exploration the cost of entry can be quite high. For commercial enterprises and universities pursuing longer term ideas and putting them into practice often means partnering up with an organization such as NASA that has the scale and multi-disciplinary expertise to mature these ideas for real-world applications,” added Balaban.
      “Certainly, the topics of inquiry, the academic freedom, and the benefit to the public good are what has kept me at Ames,” reflected Ross Beyer, a planetary scientist with the SETI Institute at Ames. “There’s not a lot of commercial incentive to study other planets, for example, but maybe there will be soon. In the meantime, only with government funding and agencies like NASA can we develop missions to explore the unknown in order to make important fundamental science discoveries and broadly share them.”
      For Beyer, his boundary-breaking moment came when he searched – and found – software engineers at Ames capable and passionate about open-source software to generate accurate, high-resolution, texture-mapped, 3D terrain models from stereo image pairs. He and other teams of NASA scientists have since applied that software to study and better understand everything from changes in snow and ice characteristics on Earth, as well as features like craters, mountains, and caves on Mars or the Moon. This capability is part of the Artemis campaign, through which NASA will establish a long-term presence at the Moon for scientific exploration with commercial and international partners. The mission is to learn how to live and work away from home, promote the peaceful use of space, and prepare for future human exploration of Mars. 
      “As NASA and private companies send missions to the Moon, they need to plan landing sites and understand the local environment, and our software is freely available for anyone to use,” Beyer said. “Years ago, our management could easily have said ‘No, let’s keep this software to ourselves; it gives us a competitive advantage.’ They didn’t, and I believe that NASA writ large allows you to work on things and share those things and not hold them back.” 
      When looking forward to what the next 85 years might bring, researchers shared a belief that advancements in technology and opportunities to innovate are as expansive as space itself, but like all living things, they need a healthy atmosphere to thrive. Balaban offered, “This freedom to innovate is precious and cannot be taken for granted. It can easily fall victim if left unprotected. It is absolutely critical to retain it going forward, to ensure our nation’s continuing vitality and the strength of the other freedoms we enjoy.”
      Ames Aeronautical Laboratory.NACAView the full article
    • By NASA
      “Trying to do stellar observations from Earth is like trying to do birdwatching from the bottom of a lake.” James B. Odom, Hubble Program Manager 1983-1990.

      The third servicing mission to the Hubble Space Telescope, placed in orbit in 1990, occurred during the STS-103 mission in December 1999. During the mission, originally planned for June 2000 but accelerated by six months following unexpected failures of the telescope’s attitude control gyroscopes, the astronauts restored the facility to full functionality. During their eight-day mission that featured the first space shuttle crew to spend Christmas in space, the seven-member U.S. and European crew rendezvoused with and captured Hubble, and four astronauts in rotating teams of two conducted three lengthy and complex spacewalks to service and upgrade the telescope. They redeployed the telescope with greater capabilities than ever before to continue its mission to help scientists unlock the secrets of the universe.
      Schematic showing the Hubble Space Telescope’s major components. Workers inspect the Hubble Space Telescope’s 94-inch diameter primary mirror prior to assembly. Astronauts release the Hubble Space Telescope in April 1990 during the STS-31 mission. The discovery after the Hubble Space Telescope’s launch in 1990 that its primary mirror suffered from a flaw called spherical aberration disappointed scientists who could not obtain the sharp images they had expected. But thanks to the Hubble’s built-in feature of on-orbit servicing, NASA devised a plan to correct the telescope’s optics during the first planned repair mission in 1993. A second servicing mission in 1997 upgraded the telescope’s capabilities until the next mission planned for three years later. But after three of the telescope’s six gyroscopes failed in 1997, 1998, and 1999, mission rules dictated a call up mission in case additional gyroscope failures sent Hubble into a safe mode. NASA elected to move up some of the servicing tasks from the third mission, splitting it into missions 3A and 3B, planning to fly 3A in October 1999 on Discovery’s STS-103 mission primarily to replace the failed gyroscopes. Delays to the shuttle fleet resulting from anomalies during the launch of STS-93 in July 1993 slipped STS-103 first into November and ultimately into December. Technical issues with Discovery itself pushed the launch date to mid-December, and raised concerns about having a shuttle in orbit during the Y2K transition. Once the launch had slipped to Dec. 19, mission planners cut the mission from 10 to eight days, deleting one of the four spacewalks, to ensure a return before the end of the calendar year. The servicing mission couldn’t come soon enough, as a fourth gyroscope failed aboard Hubble in mid-November, with Discovery already poised on the launch pad to prepare for STS-103. Controllers placed Hubble in a safe mode until the astronauts arrived.
      The STS-103 crew of C. Michael Foale, left, Claude Nicollier, Scott J. Kelly, Curtis L. Brown, Jean-François A. Clervoy, John M. Grunsfeld, and Steven L. Smith. The STS-103 crew patch. The mission patch for the Hubble Servicing Mission-3A. To execute the third Hubble Servicing Mission, in July 1998 NASA selected an experienced four-person team to carry out a record-breaking six spacewalks on the flight then planned for June 2000. The spacewalkers included Mission Specialists Steven L. Smith serving as payload commander, John M. Grunsfeld, C. Michael Foale, and European Space Agency (ESA) astronaut Claude Nicollier from Switzerland. The addition in March 1999 of Commander Curtis L. Brown, Pilot Scott J. Kelly, and Mission Specialist ESA astronaut Jean-François A. Clervoy of France rounded out the highly experienced crew with 18 previous spaceflights among them. Brown earned the distinction as only the fifth person to fly in space six times. For Kelly, STS-103 marked his first spaceflight. Smith, Clervoy, and Grunsfeld each had flown two previous missions, Foale four including a long-duration mission aboard Mir, and Nicollier three. Smith participated in three spacewalks during the second Hubble Servicing Mission and Nicollier served as the Remote Manipulator System (RMS) or robotic arm operator during the first.
      The STS-103 crew at the traditional prelaunch breakfast at NASA’s Kennedy Space Center in Florida. Suited up, the STS-103 astronauts leave crew quarters for the trip to Launch Pad 39B. Space shuttle Discovery on Launch Pad 39B, awaiting launch. Discovery arrived back to KSC at the end of the STS-96 mission on June 6, 1999, and workers towed it to the Orbiter Processing Facility the same day to begin readying it for STS-103. The vehicle rolled over to the Vehicle Assembly Building on Nov. 4, where workers mated it with its external tank and twin solid rocket boosters, before rolling the stack out to Launch Pad 39B on Nov. 13.
      Liftoff of space shuttle Discovery on the STS-103 Hubble Space Telescope servicing mission 3A. The Hubble Space Telescope as Discovery approaches. The STS-103 crew berthing the Hubble into the payload bay. Beginning its 27th trip into space, Discovery lifted off from Launch Pad 39B at 7:50 p.m. EST on Dec. 19 to fix the ailing space telescope. Two days later, Brown and Kelly maneuvered Discovery to within range of Hubble so Clervoy operating the 50-foot-long RMS could grapple the telescope and berth it into the payload bay.
      During the first spacewalk, astronauts John M. Grunsfeld, left, and Steven L. Smith replacing one of the Rate Sensor Units containing two gyroscopes. Smith gives a thumbs up with his image reflected in the Hubble Space Telescope. Smith and Grunsfeld conducted the mission’s first spacewalk on Dec. 22, the flight’s fourth day in space. The duo, aided by Clervoy operating the RMS from inside Discovery, completed two of mission’s highest priority objectives. They replaced the failed gyroscopes, installing three new Rate Sensor Units, each containing two gyroscopes, to return control to the ailing telescope. They also installed six Voltage/Temperature Improvement Kits to prevent the telescope’s batteries from overheating as they aged. The excursion lasted eight hours 15 minutes, at the time the second longest spacewalk.
      During the second spacewalk, astronauts C. Michael Foale, left, and Claude Nicollier during the changeout of the fine guidance sensor. Foale at the end of the Remote Manipulator System services the Hubble Space Telescope. The next day, Nicollier and Foale conducted the mission’s second spacewalk. The main task for this excursion involved installing a new computer aboard Hubble, replacing the original 1970s vintage unit. The new radiation-hardened system ran 20 times faster and carried six times more memory while using one-third the electrical power. They also installed a fine guidance sensor before concluding the eight-hour 10-minute spacewalk.
      Astronauts Steven L. Smith, left, and John M. Grunsfeld begin their servicing activities during the third spacewalk. At the end of the third and final spacewalk, Grunsfeld, left, and Smith provide closing comments about the work the mission accomplished to service the Hubble Space Telescope. Smith and Grunsfeld ventured outside for a second time to complete the flight’s third and final spacewalk on Dec. 24, the first spacewalk conducted on Christmas Eve day. First, they replaced an old reel-to-reel tape recorder with a solid state unit providing a 10-fold increase in recording capability and replaced a failed data transmitter. They installed seven new covers on Hubble’s electronics bay doors for added protection of the telescope’s insulation. This third spacewalk lasted eight hours eight minutes.
      The first space shuttle crew to celebrate Christmas in space, the STS-103 astronauts pose wearing Santa hats. The Hubble Space Telescope shortly after the STS-103 crew released it. The next day, the STS-103 astronauts earned the distinction as the first space shuttle crew to spend Christmas Day in space. Clervoy grappled Hubble, lifted it out of the payload bay and released it to continue its mission. Hubble Space Telescope Program Manager John H. Campbell said after the release, “The spacecraft is being guided by its new gyros under the control of its brand new computer. [It] is now orbiting freely and is in fantastic shape.” After deploying Hubble, the astronauts enjoyed a well-deserved Christmas dinner, with Clervoy providing French delicacies. The crew spent Dec. 26 readying Discovery for its return to Earth, including testing its reaction control system thrusters and aerodynamic surfaces and stowing unneeded gear.
      Astronauts Steven L. Smith, left, Claude Nicollier, and John M. Grunsfeld complete their fluid loading protocol and put on their launch and entry suits prior to reentry. Space shuttle Discovery makes a perfect night landing at NASA’s Kennedy Space Center in Florida. The crew welcome home ceremony at Ellington Field in Houston. On Dec. 27, the astronauts donned their launch and entry suits and prepared for the return to Earth. They closed the payload bay doors and fired Discovery’s engines to bring them out of orbit. Just before landing, Kelly lowered the craft’s landing gear and Brown guided Discovery to a smooth night landing at KSC, concluding a flight of seven days, 23 hours, 11 minutes. They circled the Earth 119 times. The flight marked Discovery’s last solo flight as all its subsequent missions docked with the International Space Station. Workers at KSC began readying it for its next mission, STS-92 in October 2000.

      The Hubble Space Telescope continues to operate today, far exceeding the five-year life extension expected from the last of the servicing missions in 2009. Joined in space by the James Webb Space Telescope in 2021, the two instruments together continue to image the skies across a broad range of the electromagnetic spectrum to provide scientists with the tools to gain unprecedented insights into the universe and its formation.

      Watch the STS-103 crew narrate a video of their Hubble servicing mission.
      View the full article
    • By European Space Agency
      Video: 00:10:27 In 1975, 10 European countries came together with a vision to collaborate on key space activities: science and astronomy, launch capabilities and space applications: the European Space Agency, ESA, was born.
      In 2025, we mark half a century of joint European achievement – filled with firsts and breakthroughs in science, exploration and technology, and the space infrastructure and economy that power Europe today.
       
      During the past five decades ESA has grown, developing ever bolder and bigger projects and adding more Member States, with Slovenia joining as the latest full Member State in January.
       
      We’ll also celebrate the 50th anniversary of ESA’s Estrack network, 30 years of satellite navigation in Europe and 20 years since ESA launched the first demonstration satellite Giove-A which laid the foundation for the EU’s own satnav constellation Galileo. Other notable celebrations are the 20th anniversary of ESA’s Business Incubation Centres, or BICs, and the 30th year in space for SOHO, the joint ESA and NASA Solar and Heliospheric Observatory.
       
      Sadly though, 2025 will mean end of science operations for Integral and Gaia. Integral, ESA's gamma-ray observatory has exotic objects in space since 2002 and Gaia concludes a decade of mapping the stars. But as some space telescopes retire, another one provides its first full data release. Launched in 2023, we expect Euclid’s data release early in the new year.
       
      Launch-wise, we’re looking forward to Copernicus Sentinel-4 and -5 (Sentinel-4 will fly on an MTG-sounder satellite and Sentinel-5 on the MetOp-SG-A1 satellite), Copernicus Sentinel-1D, Sentinel-6B and Biomass. We’ll also launch the SMILE mission, or Solar wind Magnetosphere Ionosphere Link Explorer, a joint mission with the Chinese academy of science.
       
      The most powerful version of Europe’s new heavy-lift rocket, Ariane 6, is set to fly operationally for the first time in 2025. With several European commercial launcher companies planning to conduct their first orbital launches in 2025 too, ESA is kicking off the European Launcher Challenge to support the further development of European space transportation industry.
       
      In human spaceflight, Polish ESA project astronaut Sławosz Uznański will fly to the ISS on the commercial Axiom-4 mission. Artemis II will be launched with the second European Service Module, on the first crewed mission around the Moon since 1972.
      The year that ESA looks back on a half century of European achievement will also be one of key decisions on our future. At the Ministerial Council towards the end of 2025, our Member States will convene to ensure that Europe's crucial needs, ambitions and the dreams that unite us in space become reality.
      So, in 2025, we’ll celebrate the legacy of those who came before but also help establish a foundation for the next 50 years. Join us as we look forward to a year that honours ESA’s legacy and promises new milestones in space.
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA Deputy Administrator Pam Melroy and Deputy Associate Administrator Casey Swails visit the American Airlines Integrated Operations Center near Dallas Fort Worth International Airport on a recent trip to see NASA’s digital tools for aviation efficiency in operational use.American Airlines It’s the holiday season — which means many are taking to the skies to join their loved ones.
      If you’ve ever used an app to navigate on a road trip, you’ve probably noticed how it finds you the most efficient route to your destination, even before you depart. To that end, NASA has been working to make flight departures out of major international airports more efficient — thereby saving fuel and reducing delays — in close collaboration with the aviation industry and the Federal Aviation Administration (FAA). 
      The savings are possible thanks to a NASA-developed tool called Collaborative Digital Departure Rerouting. 
      This tool determines where potential time savings could be gained by slightly altering a departure route, based on existing data about delays. The software presents its proposed more-efficient route in real time to an airline, who can then decide whether or not to use it and coordinate with air traffic control through a streamlined digital process. 
      The capability is being tested thoroughly at Dallas Fort Worth International Airport and Love Field Airport in Texas in collaboration with several major air carriers, including American Airlines, Delta, JetBlue, Southwest, and United. 
      Now, these capabilities are expanding out of the Dallas area to other major airports in Houston for further research. 
      “We’re enabling the use of digital services to greatly improve aviation efficiency,” said Shivanjli Sharma, manager of NASA’s Air Traffic Management — eXploration project which oversees the research on aviation services. “Streamlining airline operations, reducing emissions, and saving time are all part of making an efficient next-generation airspace system.” 
      NASA / Maria Werries The animation above shows the savings Collaborative Digital Departure Rerouting is responsible for at just a single airport. As the tool is expanded to be used at other airports, the savings begin to add up even more. 
      It’s all part of NASA’s vision for transforming the skies above our communities to be more sustainable, efficient, safer, and quieter. 
      Collaborative Digital Departure Rerouting is one of a series of new cloud-based digital air traffic management tools NASA and industry plan to develop and demonstrate as part of the agency’s Sustainable Flight National Partnership. These new flight management capabilities will contribute to the partnership’s goal of accelerating progress towards aviation achieving net-zero greenhouse gas emissions by 2050. 
      About the Author
      John Gould
      Aeronautics Research Mission DirectorateJohn Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.
      Facebook logo @NASA@NASAAero@NASA_es @NASA@NASAAero@NASA_es Instagram logo @NASA@NASAAero@NASA_es Linkedin logo @NASA Explore More
      2 min read NASA, Notre Dame Connect Students to Inspire STEM Careers
      Article 19 mins ago 4 min read NASA Finds ‘Sideways’ Black Hole Using Legacy Data, New Techniques
      Article 2 days ago 8 min read 2024 in Review: Highlights from NASA in Silicon Valley 
      Article 3 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      Share
      Details
      Last Updated Dec 20, 2024 Related Terms
      Aeronautics Aeronautics Research Mission Directorate Air Traffic Management – Exploration Air Traffic Solutions Airspace Operations and Safety Program Ames Research Center Green Aviation Tech Sustainable Flight National Partnership View the full article
    • By NASA
      NASA’s Glenn Research Center leaders stand with Evening With the Stars presenters. Left to right: Tim Smith, Nikki Welch, Center Director Dr. Jimmy Kenyon, Acting Deputy Director Dr. Wanda Peters, and Carlos Garcia-Galan. Credit: NASA/Jef Janis  NASA Glenn Research Center’s “An Evening With the Stars” showcased research and technology innovations that addressed this year’s theme, NASA Glenn’s Spotlight on the Stars: 10 Years and Counting. The event featured presentations from Glenn subject matter experts and a networking reception. 
      Held at Windows on the River near Cleveland’s historic waterfront on Nov. 20, the event attracted sponsors and guests from more than 50 companies, universities, and organizations eager to learn more about the center’s recent accomplishments.  
      Special guests Dennis Andersh, CEO and president of Parallax Advanced Research/Ohio Aerospace Institute; Terrence Slaybaugh, vice president of Sites and Infrastructure for JobsOhio; and Dr. Wanda Peters, NASA Glenn’s acting deputy  director, provided remarks. 
      Center Director Dr. Jimmy Kenyon took the stage to welcome visitors and share some accomplishments from an exciting year at NASA Glenn. Kenyon then introduced the presenters – NASA’s stars of the evening – and their topics. 
      “I relish this evening each year because it spotlights what is most important to our success at NASA: our people,” Kenyon said.  

      Nikki Welch is the digital manager in the Office of Communications. In this role, she helps to tell the NASA Glenn story in engaging ways for Glenn’s hundreds of thousands of followers on social media. Welch shared details about her efforts and the importance of “Connecting People to the Mission.”  
      NASA Glenn Research Center’s Nikki Welch talks about connecting people to the NASA mission through storytelling. Credit: NASA/Jef Janis  Tim Smith leads high-temperature alloy development at NASA Glenn and has led research that resulted in over a dozen research licenses and four commercial licenses. As one of the inventors of the metal alloy GRX-810, Smith shared information about Glenn’s “Super Alloy Achievements.” 
      NASA Glenn Research Center’s Tim Smith talks about NASA’s superalloy achievements. Credit: NASA/Jef Janis  Carlos Garcia-Galan is the manager of the Orion program’s European Service Module Integration Office. This module, being provided by ESA (European Space Agency), is Orion’s powerhouse. Garcia-Galan shared information on the topic “Dreaming of Going to the Moon.”  

      NASA Glenn Research Center’s Carlos Garcia-Galan talks about the spacecraft that will bring humanity back to the Moon. Credit: NASA/Jef Janis  Return to Newsletter Explore More
      1 min read Program Manager at NASA Glenn Earns AIAA Sustained Service Award 
      Article 9 mins ago 1 min read NASA Glenn’s Office of Communications Earns Top Honors 
      Article 9 mins ago 10 min read 55 Years Ago: Apollo 13, Preparations for the Third Moon Landing
      Article 2 hours ago View the full article
  • Check out these Videos

×
×
  • Create New...