Jump to content

Hubble Makes Movie of Neptune's Rotation and Weather


HubbleSite

Recommended Posts

low_STSCI-H-p9633a-k-1340x520.png

The Hubble telescope has been used to assemble a time-lapse color movie showing a full 16-hour rotation of the distant planet Neptune. The movie, made from a series of Hubble observations over nine consecutive orbits, allows astronomers to track cloud motion on the planet. The clear pictures reveal the planet's powerful equatorial jet stream, immense storms, and dark spot in the Northern Hemisphere.

These snapshots provide views of the weather on opposite hemispheres. The photos disclose features of Neptune's blustery weather.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Hubble Space Telescope Home NASA’s Hubble Finds… Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities   5 Min Read NASA’s Hubble Finds Sizzling Details About Young Star FU Orionis
      An artist’s concept of the early stages of the young star FU Orionis (FU Ori) outburst, surrounded by a disk of material. Credits:
      NASA-JPL, Caltech In 1936, astronomers saw a puzzling event in the constellation Orion: the young star FU Orionis (FU Ori) became a hundred times brighter in a matter of months. At its peak, FU Ori was intrinsically 100 times brighter than our Sun. Unlike an exploding star though, it has declined in luminosity only languidly since then.
      Now, a team of astronomers has wielded NASA’s Hubble Space Telescope‘s ultraviolet capabilities to learn more about the interaction between FU Ori’s stellar surface and the accretion disk that has been dumping gas onto the growing star for nearly 90 years. They find that the inner disk touching the star is extraordinarily hot — which challenges conventional wisdom.
      The observations were made with the telescope’s COS (Cosmic Origins Spectrograph) and STIS (Space Telescope Imaging Spectrograph) instruments. The data includes the first far-ultraviolet and new near-ultraviolet spectra of FU Ori.
      “We were hoping to validate the hottest part of the accretion disk model, to determine its maximum temperature, by measuring closer to the inner edge of the accretion disk than ever before,” said Lynne Hillenbrand of Caltech in Pasadena, California, and a co-author of the paper. “I think there was some hope that we would see something extra, like the interface between the star and its disk, but we were certainly not expecting it. The fact we saw so much extra — it was much brighter in the ultraviolet than we predicted — that was the big surprise.”
      A Better Understanding of Stellar Accretion
      Originally deemed to be a unique case among stars, FU Ori exemplifies a class of young, eruptive stars that undergo dramatic changes in brightness. These objects are a subset of classical T Tauri stars, which are newly forming stars that are building up by accreting material from their disk and the surrounding nebula. In classical T Tauri stars, the disk does not touch the star directly because it is restricted by the outward pressure of the star’s magnetic field.
      The accretion disks around FU Ori objects, however, are susceptible to instabilities due to their enormous mass relative to the central star, interactions with a binary companion, or infalling material. Such instability means the mass accretion rate can change dramatically. The increased pace disrupts the delicate balance between the stellar magnetic field and the inner edge of the disk, leading to material moving closer in and eventually touching the star’s surface.
      This is an artist’s concept of the early stages of the young star FU Orionis (FU Ori) outburst, surrounded by a disk of material. A team of astronomers has used the Hubble Space Telescope’s ultraviolet capabilities to learn more about the interaction between FU Ori’s stellar surface and the accretion disk that has been dumping gas onto the growing star for nearly 90 years. They found that the inner disk, touching the star, is much hotter than expected—16,000 kelvins—nearly three times our Sun’s surface temperature. That sizzling temperature is nearly twice as hot as previously believed. NASA-JPL, Caltech
      Download this image

      The enhanced infall rate and proximity of the accretion disk to the star make FU Ori objects much brighter than a typical T Tauri star. In fact, during an outburst, the star itself is outshined by the disk. Furthermore, the disk material is orbiting rapidly as it approaches the star, much faster than the rotation rate of the stellar surface. This means that there should be a region where the disk impacts the star and the material slows down and heats up significantly. 
      “The Hubble data indicates a much hotter impact region than models have previously predicted,” said Adolfo Carvalho of Caltech and lead author of the study. “In FU Ori, the temperature is 16,000 kelvins [nearly three times our Sun’s surface temperature]. That sizzling temperature is almost twice the amount prior models have calculated. It challenges and encourages us to think of how such a jump in temperature can be explained.”
      To address the significant difference in temperature between past models and the recent Hubble observations, the team offers a revised interpretation of the geometry within FU Ori’s inner region: The accretion disk’s material approaches the star and once it reaches the stellar surface, a hot shock is produced, which emits a lot of ultraviolet light.
      Planet Survival Around FU Ori
      Understanding the mechanisms of FU Ori’s rapid accretion process relates more broadly to ideas of planet formation and survival.
      “Our revised model based on the Hubble data is not strictly bad news for planet evolution, it’s sort of a mixed bag,” explained Carvalho. “If the planet is far out in the disk as it’s forming, outbursts from an FU Ori object should influence what kind of chemicals the planet will ultimately inherit. But if a forming planet is very close to the star, then it’s a slightly different story. Within a couple outbursts, any planets that are forming very close to the star can rapidly move inward and eventually merge with it. You could lose, or at least completely fry, rocky planets forming close to such a star.”
      Additional work with the Hubble UV observations is in progress. The team is carefully analyzing the various spectral emission lines from multiple elements present in the COS spectrum. This should provide further clues on FU Ori’s environment, such as the kinematics of inflowing and outflowing gas within the inner region.
      “A lot of these young stars are spectroscopically very rich at far ultraviolet wavelengths,” reflected Hillenbrand. “A combination of Hubble, its size and wavelength coverage, as well as FU Ori’s fortunate circumstances, let us see further down into the engine of this fascinating star-type than ever before.”
      These findings have been published in The Astrophysical Journal Letters.
      The observations were taken as part of General Observer program 17176.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contacts:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Abigail Major, Ray Villard
      Space Telescope Science Institute, Baltimore, MD
      Share








      Details
      Last Updated Nov 21, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Stars Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Exploring the Birth of Stars



      Hubble’s Night Sky Challenge



      Hubble Focus: The Lives of Stars


      This e-book highlights the mission’s recent discoveries and observations related to the birth, evolution, and death of stars.

      View the full article
    • By NASA
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      The guitar shape in the “Guitar Nebula” comes from bubbles blown by particles ejected from the pulsar through a steady wind as it moves through space. A movie of Chandra (red) data taken in 2000, 2006, 2012, and 2021 has been combined with a single image in optical light from Palomar. X-rays from Chandra show a filament of energetic matter and antimatter particles, about two light-years long, blasting away from the pulsar (seen as the bright white dot). The movie shows how this filament has changed over two decades. X-ray: NASA/CXC/Stanford Univ./M. de Vries et al.; Optical full field: Palomar Obs./Caltech & inset: NASA/ESA/STScI; Image Processing: NASA/CXC/SAO/L. Frattare) Normally found only in heavy metal bands or certain post-apocalyptic films, a “flame-throwing guitar” has now been spotted moving through space. Astronomers have captured movies of this extreme cosmic object using NASA’s Chandra X-ray Observatory and Hubble Space Telescope.
      The new movie of Chandra (red) and Palomar (blue) data helps break down what is playing out in the Guitar Nebula. X-rays from Chandra show a filament of energetic matter and antimatter particles, about two light-years or 12 trillion miles long, blasting away from the pulsar (seen as the bright white dot connected to the filament).
      Astronomers have nicknamed the structure connected to the pulsar PSR B2224+65 as the “Guitar Nebula” because of its distinct resemblance to the instrument in glowing hydrogen light. The guitar shape comes from bubbles blown by particles ejected from the pulsar through a steady wind. Because the pulsar is moving from the lower right to the upper left, most of the bubbles were created in the past as the pulsar moved through a medium with variations in density.
      X-ray: NASA/CXC/Stanford Univ./M. de Vries et al.; Optical: (Hubble) NASA/ESA/STScI and (Palomar) Hale Telescope/Palomar/CalTech; Image Processing: NASA/CXC/SAO/L. Frattare At the tip of the guitar is the pulsar, a rapidly rotating neutron star left behind after the collapse of a massive star. As it hurtles through space it is pumping out a flame-like filament of particles and X-ray light that astronomers have captured with Chandra.
      How does space produce something so bizarre? The combination of two extremes — fast rotation and high magnetic fields of pulsars — leads to particle acceleration and high-energy radiation that creates matter and antimatter particles, as electron and positron pairs. In this situation, the usual process of converting mass into energy, famously determined by Albert Einstein’s E = mc2 equation, is reversed. Here, energy is being converted into mass to produce the particles.
      Particles spiraling along magnetic field lines around the pulsar create the X-rays that Chandra detects. As the pulsar and its surrounding nebula of energetic particles have flown through space, they have collided with denser regions of gas. This allows the most energetic particles to escape the confines of the Guitar Nebula and fly to the right of the pulsar, creating the filament of X-rays. When those particles escape, they spiral around and flow along magnetic field lines in the interstellar medium, that is, the space in between stars.
      The new movie shows the pulsar and the filament flying towards the upper left of the image through Chandra data taken in 2000, 2006, 2012 and 2021. The movie has the same optical image in each frame, so it does not show changes in parts of the “guitar.” A separate movie obtained with data from NASA’s Hubble Space Telescope (obtained in 1994, 2001, 2006, and 2021) shows the motion of the pulsar and the smaller structures around it.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Hubble Space Telescope data: 1994, 2001, 2006, and 2021.X-ray: NASA/CXC/Stanford Univ./M. de Vries et al.; Optical full field: Palomar Obs./Caltech & inset: NASA/ESA/STScI; Image Processing: NASA/CXC/SAO/L. Frattare) A study of this data has concluded that the variations that drive the formation of bubbles in the hydrogen nebula, which forms the outline of the guitar, also control changes in how many particles escape to the right of the pulsar, causing subtle brightening and fading of the X-ray filament, like a cosmic blow torch shooting from the tip of the guitar.
      The structure of the filament teaches astronomers about how electrons and positrons travel through the interstellar medium. It also provides an example of how this process is injecting electrons and positrons into the interstellar medium.
      A paper describing these results was published in The Astrophysical Journal and is available here.
      NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory.
      Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description:
      This release features two short videos and a labeled composite image, all featuring what can be described as a giant flame-throwing guitar floating in space.
      In both the six second multiwavelength Guitar Nebula timelapse video and the composite image, the guitar shape appears at our lower left, with the neck of the instrument pointing toward our upper left. The guitar shape is ghostly and translucent, resembling a wispy cloud on a dark night. At the end of the neck, the guitar’s headstock comes to a sharp point that lands on a bright white dot. This dot is a pulsar, and the guitar shape is a hydrogen nebula. The nebula was formed when particles being ejected by the pulsar produced a cloud of bubbles. The bubbles were then blown into a curvy guitar shape by a steady wind. The guitar shape is undeniable, and is traced by a thin white line in the labeled composite image.
      The pulsar, known as PSR B2224+65, has also released a long filament of energetic matter and antimatter particles approximately 12 trillion miles long. In both the composite image and the six second video, this energetic, X-ray blast shoots from the bright white dot at the tip of the guitar’s headstock, all the way out to our upper righthand corner. In the still image, the blast resembles a streak of red dots, most of which fall in a straight, densely packed line. The six second video features four separate images of the phenomenon, created with Chandra data gathered in 2000, 2006, 2012, and 2021. When shown in sequence, the density of the X-ray blast filament appears to fluctuate.
      A 12 second video is also included in this release. It features four images that focus on the headstock of the guitar shape. These images were captured by the Hubble Space Telescope in 1994, 2001, 2006, and 2021. When played in sequence, the images show the headstock shape expanding. A study of this data has concluded that the variations that drive the formation of bubbles in the hydrogen nebula also control changes in the pulsar’s blast filament. Meaning the same phenomenon that created the cosmic guitar also created the cosmic blowtorch shooting from the headstock.
      View the full article
    • By NASA
      Hubble Space Telescope Home Hubble Takes a Look at Tangled… Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities   2 min read
      Hubble Takes a Look at Tangled Galaxies
      This Hubble image features a pair of interacting spiral galaxies called MCG+05-31-045. ESA/Hubble & NASA, R. J. Foley (UC Santa Cruz)
      Download this image

      This NASA/ESA Hubble Space Telescope image depicts the cosmic tangle that is MCG+05-31-045, a pair of interacting galaxies located 390 million light-years away and a part of the Coma galaxy cluster.
      The Coma Cluster is a particularly rich cluster that contains over a thousand known galaxies. Amateur astronomers can easily spot several of these in a backyard telescope (See Caldwell 35). Most of them are elliptical galaxies, and that’s typical of a dense galaxy cluster like the Coma Cluster: many elliptical galaxies form through close encounters between galaxies that stir them up, or even collisions that rip them apart. While the stars in interacting galaxies can stay together, their gas is twisted and compressed by gravitational forces and rapidly used up to form new stars. When the hot, massive, blue stars die, there is little gas left to form new generations of young stars to replace them. As spiral galaxies interact, gravity disrupts the regular orbits that produce their striking spiral arms. Whether through mergers or simple near misses, the result is a galaxy almost devoid of gas, with aging stars orbiting in uncoordinated circles: an elliptical galaxy.
      It’s very likely that a similar fate will befall MCG+05-31-045. As the smaller spiral galaxy is torn up and integrated into the larger galaxy, many new stars will form, and the hot, blue ones will quickly burn out, leaving cooler, redder stars behind in an elliptical galaxy, much like others in the Coma Cluster. But this process won’t be complete for many millions of years.
      Explore more Coma Cluster images from Hubble.
      Hubble Uncovers Thousands of Globular Star Clusters Scattered Among Galaxies Hubble’s Galaxies With Knots, Bursts Hubble Sees Near and Far Hubble Sees Plunging Galaxy Losing Its Gas Hubble Catches Galaxies Swarmed by Star Clusters Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Nov 14, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Hubble Space Telescope Spiral Galaxies Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Galaxy Details and Mergers



      Hubble’s Galaxies



      Explore the Night Sky


      View the full article
    • By NASA
      Credit: NASA NASA, on behalf of the National Oceanic and Atmospheric Administration (NOAA), has selected Southwest Research Institute of San Antonio to build three coronagraphs for the Lagrange 1 Series project, part of NOAA’s Space Weather Next program.
      Once operational, the coronagraphs will provide critical data to NOAA’s Space Weather Prediction Center, which issues forecasts, warnings, and alerts that help mitigate space weather impacts, including electric power outages and interruption to communications and navigation systems.
      This cost-plus-fixed-fee contract is valued at approximately $60 million, and the anticipated period of performance is from this November through January 2034, concluding after launch of the second coronagraph aboard a NOAA spacecraft. The third coronagraph will be delivered as a flight spare.
      This contract award marks a transfer of coronagraph development from the government to the U.S. commercial sector. The contract scope includes design, analysis, development, fabrication, integration, test, verification, and evaluation of the      coronagraphs; launch support; supply and maintenance of ground support equipment; and support of post-launch instrument operations at the NOAA Satellite Operations Facility. The work will take place at Southwest Research Institute’s facility in San Antonio.
      The coronagraphs will observe the density structure of the Sun’s faint outermost atmosphere — the corona — and will detect Earth-directed coronal mass ejections shortly after they erupt, providing the longest possible lead time for geomagnetic storm watches. With this forewarning, public and private organizations affected by space weather can take actions to protect their assets. The coronagraphs will also provide data continuity from the Space Weather follow-on Lagrange 1 mission.
      NASA and NOAA oversee the development, launch, testing and operation of all the satellites in the project. NOAA is the program owner providing the requirements and funding along with managing the program, operations, data products, and dissemination to users. NASA and its commercial partners develop and build the instruments, spacecraft, and provide launch services on behalf of NOAA.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Abbey Donaldson
      Headquarters, Washington
      202-358-1600
      Abbey.a.donaldson@nasa.gov
      Jeremy Eggers
      Goddard Space Flight Center, Greenbelt, Md.
      757-824-2958
      jeremy.l.eggers@nasa.gov
      View the full article
    • By NASA
      In November 1969, Apollo 12 astronauts Commander Charles “Pete” Conrad, Command Module Pilot (CMP) Richard F. Gordon, and Lunar Module Pilot (LMP) Alan L. Bean completed the second crewed lunar landing mission. Conrad and Bean achieved a pinpoint landing in the Ocean of Storms within walking distance of the Surveyor 3 spacecraft that landed there in April 1967. While Gordon conducted science from lunar orbit, Conrad and Bean completed two spacewalks on the lunar surface, deploying science instruments, collecting geology samples, and inspecting Surveyor including retrieving several of it parts for study back on Earth. Preparations continued for the next two missions, Apollo 13 and 14, tentatively planned for March and July 1970, respectively.
      Apollo 12

      Left: The crew of Apollo 12 – Charles “Pete” Conrad, left, Richard F. Gordon, and Alan L. Bean. Right: The Apollo 12 crew patch.

      Left: The Apollo 12 crew of Charles “Pete” Conrad, center, Richard F. Gordon, and Alan L. Bean, facing them, at the traditional prelaunch breakfast, with their mascot “Irving” behind Conrad. Right: Conrad leads Gordon and Bean onto the astronaut van for the ride to Launch Pad 39A.

      Left: Apollo 12, moments before liftoff into rainy skies. Middle: Liftoff of Apollo 12. Right: Lightning strikes Launch Pad 39A shortly after the Apollo 12 launch.
      Lift off came precisely at 11:22 a.m. EST on Nov. 14, 1969, with the Saturn V launching Apollo 12 into a dark and rainy sky. The flight proceeded normally for the first 36 seconds, with Conrad even commenting that, “It’s a lovely liftoff. It’s not bad at all.” Then everything went haywire. With Apollo 12 at about 6,600 feet altitude and flying through clouds, observers on the ground noted lightning striking the launch pad. Onboard the spacecraft, the astronauts saw a bright flash, followed by many of the spacecraft’s electronics going offline, causing the three power-generating fuel cells to also go offline.
      A second event 52 seconds into the flight caused the spacecraft guidance navigation system to go offline. In the Mission Control Center (MCC) at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston, a young engineer named John W. Aaron monitored the spacecraft’s systems through the two incidents. He correctly deduced that the spacecraft’s Signal Conditioning Equipment (SCE) must have suffered some unknown upset and went offline. The simple solution to restoring it to normal function involved moving a seldom-used switch from its Normal to its Auxiliary position. Bean recalled the switch’s location on his panel, carried out the requested action, and restored the spacecraft’s systems. Aaron’s quick action saved the launch from two lightning strikes. Once Conrad understood the cause of the excitement, he radioed to Houston, “I think we need to do a little more all-weather testing.”

      Left: View of the Earth shortly after Trans Lunar Injection, with one of the Spacecraft Lunar Module (LM) Adapter panels silhouetted against the clouds. Middle: During Transposition and Docking, the LM Intrepid still attached to the S-IVB third stage. Right: The receding Earth during the translunar coast.
      The rest of the ascent continued without incident and Apollo 12 settled into orbit around the Earth. After verifying that all systems continued functioning properly following the lightning strikes, the astronauts received the call, “The good word is you’re Go for TLI,” the Trans Lunar Injection, the second burn of the third stage engine to send them on their way to the Moon. In his characteristic fashion, Conrad replied, “Hoop-ee-doo! We’re ready! We didn’t expect anything else!” The next major event, the Transposition and Docking (T&D) maneuver, began about 25 minutes later.
      After the separation of the Command and Service Module (CSM) Yankee Clipper from the S-IVB stage, Gordon turned it around and slowly guided it to a docking with the LM Intrepid still attached to the top of the S-IVB. Conrad commented during the maneuver, “I got an awful pretty looking Intrepid sitting out the window here, gang. We’ll go get her.” After the docking, Gordon backed away from the third stage, extracting the LM in the process, and completing the T&D maneuver. For the next three days, the astronauts continued their journey toward the Moon. Along the way, they inspected Intrepid to verify it came to no harm from the lightning strikes, conducted one midcourse maneuver to ensure their accurate arrival near the Moon, and provided two TV broadcasts showing views of Earth and their spacecraft.

      Left: Image from lunar orbit of the Fra Mauro highlands, the proposed landing site for Apollo 13 (inside white circle). Middle: The Lunar Module Intrepid as seen from the Command Module Yankee Clipper shortly after undocking. Right: Yankee Clipper as seen from Intrepid.
      The Apollo 12 astronauts awoke for their fourth mission day to find themselves within the Moon’s gravitational sphere of influence. Apollo 12 sailed behind the Moon, losing contact with Earth. Thirteen minutes later, the astronauts fired the Service Propulsion System (SPS) engine for the Lunar Orbit Insertion burn, placing them into an elliptical orbit around the Moon.

      Left: Still from 16 mm film looking out Alan L. Bean’s window at about 3,500 feet during the descent, showing the location of Surveyor Crater, the Apollo 12 landing site. Right: Illustration of the Apollo 12 landing site and the two surface traverses.
      During the third lunar orbit, the crew fired the SPS engine again to circularize their orbit. The next day, Conrad and Bean donned their spacesuits and reactivated the LM for the separation and landing, extending Intrepid’s landing legs. After undocking and while behind the Moon, Conrad and Bean fired the LM’s Descent Propulsion System engine to lower Intrepid’s orbit. Exactly half a revolution later, Intrepid began the burn to drop it from orbit all the way to the landing in the Ocean of Storms. With Bean providing updates from the guidance computer, Conrad skillfully piloted Intrepid to a smooth landing just northwest of Surveyor Crater, and as they learned later, only 538 feet from Surveyor 3. Without much fanfare, Conrad and Bean completed the postlanding checklist, although Bean allowed himself a little exuberant “Good landing, Pete!  Outstanding, man!  Beautiful!” Conrad radioed to Mission Control, “Okay, we’re in hot shape, Houston. We’re in real good shape!” They had a chance to look out the windows, with Bean exclaiming, “Holy cran, it’s beautiful out here!” Conrad replied, “It sure is; it’s something else,” later adding, “Man! I can’t wait to get outside!”

      Left: Charles “Pete” Conrad on the Lunar Module ladder about to descend to the surface. Middle: Alan L. Bean takes his first steps on the Moon. Right: Conrad working on the central station of the Apollo Lunar Surface Experiment Package, with its various instruments deployed around it.
      Conrad and Bean donned their Portable Life Support System (PLSS) backpacks that provided oxygen and communications while on the surface and donned their helmets and gloves. They depressurized the LM, opened the hatch, and Conrad backed out onto the porch, slowly climbing down the ladder. Halfway down, he pulled a lanyard that deployed a color TV camera on the side of the LM’s descent stage, providing a view of him on the LM ladder. After he jumped from the bottom rung onto the footpad, Conrad exclaimed, “Whoopie! Man, that may have been a small one for Neil, but that’s a long one for me,” in reference to Armstrong’s famous words as he took humanity’s first step on the Moon and Conrad’s shorter stature. As he stepped off the pad, he remarked, “Oooh is that soft and queasy.” After taking a few tentative steps, Conrad informed everyone that he could see Surveyor 3 sitting inside the crater. He collected the contingency sample – in case they had to leave quickly due to an emergency, geologists would have one small sample from the Ocean of Storms.
      Bean joined Conrad on the surface, both acclimating rapidly to working in one-sixth g. Conrad set up the S-band antenna for communications with Earth, but while setting up the TV camera, Bean accidentally pointed it at the Sun and damaged the vidicon tube, ending the live TV transmission from the Moon. Bean deployed the Solar Wind Collector (SWC), a Swiss experiment that collected particles from the solar wind, and then he and Conrad set up the American flag. They began the primary task of the first spacewalk – setting up the various instruments of the Apollo Lunar Surface Experiment Package (ALSEP). Conrad and Bean carried them to their deployment location about 430 feet to the northwest of Intrepid. They explored the area around the ALSEP site, visiting craters of interest and collecting rock and soil samples before heading back toward Intrepid. They remarked on several occasions how the lunar dust clung to their suits and equipment, and as Conrad quipped, “We’re going to be a couple of dirty boogers.” First Bean then Conrad climbed up the ladder and once inside Intrepid they closed the hatch and repressurized the cabin. Their first spacewalk lasted 3 hours and 56 minutes. They set up hammocks in Intrepid and went to sleep.

      Left and middle: Charles “Pete” Conrad and Alan L. Bean with the Surveyor 3 spacecraft, with their Lunar Module (LM) Intrepid visible in the background. Right: View from inside the LM through Bean’s window following the second spacewalk.
      After a short night’s rest, Conrad and Bean prepared for their second spacewalk. As before, first Conrad and then Bean descended the ladder to the surface. Conrad walked to the ALSEP to inspect one of the instruments, the seismometer they deployed during the first spacewalk picking up his footsteps. Both then headed west from Intrepid, where Conrad rolled two rocks down into a crater, the vibrations captured by the seismometer. They collected several documented samples, often preceded with expressions like “Oooooh!” and “That’s a beauty!” and dug a trench to expose subsurface material, collecting a sample from about eight inches deep.
      They set off toward the main objective of this spacewalk – Surveyor 3, resting on the inner slope of 600-foot-wide Surveyor Crater. Entering the crater from the south rim, they walked counterclockwise while descending down the slope until they reached the robotic spacecraft. After taking “tourist” pictures with Surveyor, the two photographed the craft from all angles, noting that the trenches left by its scoop and the marks from its footpads when it bounced after landing looked as fresh as when Surveyor photographed them in 1967. Using cutters, Conrad removed the craft’s camera, scoop, and other parts for return to Earth, where engineers and scientists examined them for the effects of 31 months in the harsh lunar environment. The work at Surveyor completed, the two returned to Intrepid. Bean retrieved the SWC experiment, overcoming difficulties in rolling it back up. Compared with a short 77-minute exposure during Apollo 11, this SWC collected samples of the solar wind for nearly 19 hours. With everything packed up, Bean followed by Conrad headed up the ladder. After closing the hatch, they repressurized Intrepid, ending the 3-hour 49-minute excursion.

      The Apollo 12 landing site photographed by the Lunar Reconnaissance Orbiter in 2011, the inset showing the Lunar Module Intrepid’s descent stage.

      Left: A still from 16 mm film recorded aboard Yankee Clipper of Intrepid’s approach just prior to docking. Middle: The Moon shortly after Trans Earth Injection. Right: A receding Moon during the trans Earth coast.
      After returning inside Intrepid, Conrad and Bean took photographs out the windows, showing the signs of their visit – numerous footprints, the American flag, the S-band antenna, and in the distance, the ALSEP station. As Gordon in Yankee Clipper flew overhead on his 30th lunar revolution, Intrepid’s Ascent Stage engine ignited, and Conrad and Bean lifted off from the Moon after 31 hours and 31 minutes on the surface. Conrad exclaimed, “Liftoff! And away we go!” with Bean adding, “Boy, did it fire!” Intrepid and Yankee Clipper executed a series of maneuvers that led to their docking about three and a half hours after liftoff from the Moon. Their independent flights had lasted 37 hours and 42 minutes. The three astronauts opened the hatches between the two spacecraft and began transfers from Intrepid into Yankee Clipper, including the lunar samples, cameras, and film. Gordon transferred some unneeded items to be jettisoned in Intrepid. The transfers completed, they closed the hatches between the spacecraft and jettisoned the LM. To calibrate the seismometer left on the Moon, controllers sent a command to Intrepid to fire its thrusters to drop it out of orbit and send it crashing onto the surface. The seismometer recorded signals for nearly one hour after the impact.

      Left: Recording from the Apollo 12 seismometer of the intentional crash of Intrepid’s ascent stage. Right: LRO image of the impact area and debris field of Intrepid’s ascent stage, east of the Fra Mauro B crater.
      The primary activity for their remaining time around the Moon consisted of photographing potential landing sites for future Apollo missions, such as the Fra Mauro highlands and the Descartes region. On their 45th revolution, they went around to the Moon’s back side for the last time and they fired the SPS for the Trans Earth Injection burn. Apollo 12 left lunar orbit after 3 days 17 hours and 2 minutes. Conrad radioed to Mission Control, “Hello, Houston. Apollo 12’s en route home.”
      During the three-day return trip to Earth, the astronauts conducted a midcourse maneuver to refine their trajectory, answered questions from geologists and other scientists, and held a press conference at the end of which they held up a homemade sign to the camera that read, “Yankee Clipper sailed with Intrepid to the Sea of Storms, Moon, November 14, 1969,” signed by all three crew members. With the Sun and the Earth nearly aligned, the astronauts could only see a very thin crescent of their home planet, prompting Conrad to comment, “Houston, we just got our first glimpse of you this morning, and there’s not very much of you out there.” 

      Left: The Moon continues to shrink in size as Apollo 12 heads for home. Middle: The Earth appearing as a thin crescent. Right: The Apollo 12 astronauts observed a total solar eclipse as they passed into Earth’s shadow shortly before reentry.

      Left: The Apollo 12 Command Module Yankee Clipper descends on its three main parachutes seconds before splashdown. Middle: A recovery helicopter hovers over Yankee Clipper in the Stable II, or apex down, position, seconds after splashdown. Right: Image taken by a recovery diver of the decontamination officer assisting Alan L. Bean out of Yankee Clipper, with Richard F. Gordon, left, and Charles “Pete” Conrad already aboard the life raft.
      Shortly before reentry, orbital mechanics had a show in store for the astronauts – their trajectory passed through the Earth’s shadow, treating them to a total solar eclipse. Gordon radioed Mission Control, “We’re getting a spectacular view at eclipse,” and Bean added that it was a “fantastic sight.” The excitement of the eclipse over, the astronauts prepared the cabin for reentry. The CM separated from the Service Module and rotated to point its heatshield into the direction of flight. At 400,000 feet, Yankee Clipper now travelling at 24,625 miles per hour encountered the first tendrils of Earth’s atmosphere. About four minutes of radio blackout followed as ionized gases created by the heat of reentry surrounded the spacecraft. As Apollo 12 came out of the blackout, the prime recovery ship U.S.S. Hornet established radar contact with the spacecraft at a distance of 119 miles. At about 24,000 feet, the spacecraft jettisoned its apex cover, then deployed its two drogue parachutes to slow and stabilize the capsule. At 10,000 feet, the three main orange and white parachutes deployed, with Conrad reporting, “Three gorgeous beautiful chutes.” Precisely 244 hours and 36 minutes after lifting off from Florida, Apollo 12 splashed down in the Pacific Ocean less than four miles from Hornet, bringing the second lunar landing mission to a successful conclusion.

      Left: Apollo 12 astronauts Richard F. Gordon, left, Alan L. Bean, and Charles “Pete” Conrad aboard the recovery helicopter. Middle: Conrad, front, Gordon, and Bean walk from the helicopter to the Mobile Quarantine Facility (MQF). Right: Admiral John S. McCain addresses the Apollo 12 astronauts in the MQF.
      The capsule assumed the apex down Stable 2 position in the water, but in less than five minutes three self-inflating balloons righted the spacecraft into the Stable 1 upright orientation. Five minutes later, a helicopter dropped the first three recovery team swimmers into the water, tasked with securing a flotation collar and rafts to the spacecraft. Decontamination officer Ernest “Ernie” L. Jahncke next dropped into the water and once the crew opened the hatch, he handed them fresh flight suits and respirators. A few minutes later, the crew reopened the hatch, and first Conrad, then Gordon, and finally Bean climbed aboard a life raft where Jahncke used a disinfectant solution to decontaminate the astronauts and the spacecraft. The recovery helicopter lowered a Billy Pugh net to haul the astronauts up from the raft, first Gordon, then Bean, and finally Conrad. Aboard the helicopter, NASA flight surgeon Dr. Clarence A. Jernigan gave each astronaut a brief physical examination during the short flight back to Hornet, declaring all three healthy.
      After it landed on Hornet’s deck, sailors lowered the helicopter to the hangar deck, where Conrad, Gordon, and Bean, followed by Dr. Jernigan, walked the few steps to the Mobile Quarantine Facility (MQF) where NASA engineer Brock R. “Randy” Stone awaited them. He sealed the door of the MQF exactly one hour after splashdown. The five men spent the next five days together in the MQF until they arrived at the Lunar Receiving Laboratory (LRL) at MSC. The astronauts took congratulatory phone calls from President Richard M. Nixon, who field-promoted all three from U.S. Navy Commanders to Captains, and from NASA Administrator Thomas O. Paine. After the astronauts talked briefly with their families, Commander-in-Chief of Pacific Naval Forces Admiral John S. McCain formally welcomed them back to Earth, followed by brief speeches by Rear Admiral Donald C. Davis, Commander of Recovery Forces, and Capt. Carl J. Seiberlich, Hornet’s skipper.

      Left: Apollo 12 Command Module Yankee Clipper in the water with U.S.S. Hornet approaching as a rescue helicopter circles. Middle: Recovery team members lift Yankee Clipper out of the water. Right: Sailors haul Yankee Clipper aboard the Hornet.
      Within an hour after the astronauts arrived on board Hornet, the recovery team hauled Yankee Clipper out of the water and towed it below to the hangar deck next to the MQF. As Hornet set sail for Pearl Harbor, arriving there four days later, workers attached a hermetically sealed plastic tunnel between the MQF and Yankee Clipper, allowing Stone to leave the MQF and open the hatch to the capsule without breaking the biological barrier. He retrieved the two rock boxes containing the lunar samples, the bags containing the Surveyor parts, film cassettes, and mission logs from the capsule. He brought them to the MQF where he sealed them in plastic bags and transferred them to the outside through a transfer lock that included a decontamination wash.
      Outside the MQF, NASA engineers placed these items into transport containers and loaded them aboard two separate aircraft. The first aircraft carrying one rock box and a second package containing film departed Hornet within nine hours of the recovery, flying to Pago Pago, American Samoa. From there the two containers were placed aboard a cargo aircraft and flown directly to Ellington Air Force Base (AFB) near MSC in Houston, arriving there late in the afternoon of Nov. 25. A second aircraft departed Hornet 14 hours after the first and included the second rock box, additional film as well as the astronaut medical samples. It flew to Pago Pago where workers transferred the containers to another cargo plane that flew them to Houston. Less than 48 hours after splashdown, scientists in the LRL were examining the lunar samples and processing the film.

      Left: Technicians carry the first box of Apollo 12 lunar samples from the cargo plane after its arrival at Ellington Air Force Base in Houston. Middle: Technicians log in the first set of Apollo 12 lunar samples and film at the Lunar Receiving Laboratory’s (LRL) loading dock. Right: A technician weighs the first Apollo 12 Sample Return Container in the LRL.

      Left: Technicians place the first Apollo 12 Sample Return Container (SRC) inside a glovebox at the Lunar Receiving Laboratory. Middle: The first Apollo 12 SRC inside a glovebox. Right: Scientists get the first glimpse of the Moon rocks inside the first SRC.

      Left: Apollo 12 astronauts Richard F. Gordon, second from left, Alan L. Bean and Charles “Pete” Conrad prepare their mission report inside the MQF. Middle: Workers at Pearl Harbor in Honolulu offload the Mobile Quarantine Facility (MQF) from Hornet with the Apollo 12 crew inside. Right: Workers at Ellington Air Force Base in Houston offload the MQF with the astronauts inside.
      Meanwhile, in the Pacific Ocean, Hornet sailed for Pearl Harbor, Hawaii, with the astronauts inside the MQF to maintain the strict back-contamination protocols. They also celebrated Thanksgiving on Nov. 27. Dr. Jernigan conducted regular medical examinations of the astronauts, who showed no ill effects from their ten-day spaceflight or any signs of infection by any lunar microorganisms. The crew members availed themselves of one amenity aboard the MQF that was a novelty at the time – a microwave oven for meal preparation.
      On Nov. 28, Hornet arrived at Pearl Harbor. Workers lifted the MQF with the astronauts inside onto a flat-bed trailer. After a brief welcoming ceremony including traditional Hawaiian flower leis, ukulele music, and hula dancers, they drove the MQF to nearby Hickam AFB, where Air Force personnel loaded it onto a cargo aircraft. After an eight-hour flight, the aircraft arrived at Ellington on the morning of Nov. 29, where the MQF was offloaded in front of a waiting crowd of well-wishers including MSC Director Robert R. Gilruth and Apollo 11 astronaut Neil A. Armstrong. The astronauts’ wives and children were on hand to welcome them home to Houston. Workers placed the MQF on a flat-bed truck and drove it to the LRL. Less than two hours after landing in Houston the astronauts arrived inside the Crew Reception Area (CRA) where they spent the next 11 days. During their time in quarantine, they completed many of the postflight debriefs and examined the lunar rocks as well as the parts of Surveyor 3 such as its camera that they returned from the Ocean of Storms.

      Left: Robert R. Gilruth, director of the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, welcomes the Apollo 12 astronauts home. Middle: The Apollo 12 astronauts’ wives Barbara Gordon, left, Jane Conrad, and Sue Bean and their children welcome their husbands home. Right: Apollo 11 astronaut Neil A. Armstrong greets the Apollo 12 crew upon their return to Ellington.

      Left: Workers drive the Apollo 12 astronauts inside the Mobile Quarantine Facility (MQF) from Ellington Air Force Base to the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston. Middle: The MQF approaches MSC. Right: The MQF docked the MSC’s Building 37, the Lunar Receiving Laboratory.

      Left: Charles “Pete” Conrad examines some of the Moon rocks he and Alan L. Bean returned from the Moon. Middle: Conrad and Richard F. Gordon place the rocks samples back in the collection bags. Right: Conrad examines the camera from Surveyor 3 that he and Bean returned from the Moon.

      Left: The Apollo 12 Command Module Yankee Clipper arrives at the Lunar Receiving Laboratory (LRL) at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston. Middle: Yankee Clipper temporarily parked outside the LRL before workers roll it inside. Right: In the LRL, Richard F. Gordon writes on Yankee Clipper that served as his home for 10 days.
      After the astronauts departed Hornet in Pearl Harbor, workers lifted Yankee Clipper from the carrier’s flight deck to the dock and drove it to Hickam AFB where technicians safed the vehicle by draining its toxic fuels. To preserve back-contamination protocols, Yankee Clipper’s hatch remained sealed. On Dec. 1, workers loaded Yankee Clipper onto a cargo aircraft at Hickam AFB. It arrived at Ellington AFB the next day and workers trucked it to the LRL, then towed it inside the spacecraft room of the CRA. The Apollo 12 astronauts signed their names on the capsule below the same words they held up during their inflight news conference – “Yankee Clipper Sailed with Intrepid to The Ocean of Storms, Moon, November 14, 1969.”

      Left: The Apollo 12 Command Module Yankee Clipper on display at the Virginia Air and Space Center in Hampton. Middle: A technician examines the Surveyor 3 camera returned by Apollo 12. Right: The Surveyor 3 camera on display at the Smithsonian Institution’s National Air and Space Museum in Washington, D.C.
      Visitors to the Virginia Air and Space Center in Hampton can view the Apollo 12 CM Yankee Clipper on display. Surveyor’s camera is on display at the Smithsonian Institution’s National Air and Space Museum in Washington, D.C.
      Apollo 13

      Left: Apollo 13 astronaut James A. Lovell preparing to test his spacesuit in a vacuum chamber in the Space Environment Simulation Laboratory at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston. Middle: Workers at NASA’s Kennedy Space Center in Florida prepare the Apollo 13 Command and Service Module. Right: Lovell during the geology field trip to Kilbourne Hills, New Mexico.
      The next Moon landing mission, Apollo 13, planned to launch on March 12, 1970, and visit the Fra Mauro highlands region of the Moon. With the mission’s increased emphasis on science, geology training for the Apollo 13 prime crew of Commander James A. Lovell, CMP Thomas K. “Ken” Mattingly, and LMP Fred W. Haise, and their backups John W. Young, Jack L. Swigert, and Charles M. Duke, took on greater importance. Lovell, Haise, Young, and Duke, accompanied by several geologists, traveled to Kilbourne Hole, New Mexico, for a one-day geology field trip on Nov. 11. The area’s volcanic origins served as appropriate training for their planned landing site, then believed to be a result of volcanic activity. The astronauts practiced deploying their ALSEP set of instruments, including during suited tests in a vacuum chamber in MSC’s Space Environment Simulation Laboratory. At KSC, workers in the Manned Spacecraft Operations Building (MSOB) continued preparing both the CSM and the LM for Apollo 13 prior to stacking with the Saturn V rocket in December.
      Apollo 14

      Left: The Apollo 14 Command and Service Modules arrive at NASA’s Kennedy Space Center (KSC) for preflight processing. Middle: The Apollo 14 Lunar Module (LM) descent stage arrives at KSC. Right: The Apollo 14 LM ascent stage arrives at KSC.
      Spacecraft components for Apollo 14, then planned for launch around July 1970, arrived at KSC in November 1969. The CM and SM arrived on Nov. 19 and workers in the MSOB mated the two components five days later. The two stages of the LM arrived in the MSOB on Nov. 24.
      With special thanks to Robert B. Fish for his expertise on U.S.S. Hornet recovery operations.
      To be continued …
      News from around the world in November 1969:
      November 10 – Sesame Street premieres on PBS.
      November 12 – Five Americans and one New Zealander became the first women to visit the South Pole.
      November 15 – Wendy’s Hamburgers opens in Columbus, Ohio.
      November 20 – Brazilian soccer star Pelé scores his 1,000th goal.
      November 22 – Isolation of a single gene announced by scientists at Harvard University.
      Explore More
      12 min read 40 Years Ago: STS-51A – “The Ace Repo Company”
      Article 6 days ago 1 min read Oral History with Jon A. McBride, 1943 – 2024
      Article 7 days ago 9 min read 30 Years Ago: STS-66, the ATLAS-3 Mission to Study the Earth’s Atmosphere
      Article 1 week ago View the full article
  • Check out these Videos

×
×
  • Create New...