Members Can Post Anonymously On This Site
55 Years Ago: Apollo 12 Makes a Pinpoint Landing on the Moon
-
Similar Topics
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Launch of Blue Origin’s New Shepard suborbital rocket system on Feb. 4, 2025. During the flight test, the capsule at the top detached from the booster and spun at approximately 11 rpm to simulate lunar gravity for the NASA-supported payloads inside.Blue Origin The old saying — “Practice makes perfect!” — applies to the Moon too. On Tuesday, NASA gave 17 technologies, instruments, and experiments the chance to practice being on the Moon… without actually going there. Instead, it was a flight test aboard a vehicle adapted to simulate lunar gravity for approximately two minutes.
The test began on February 4, 2025, with the 10:00 a.m. CST launch of Blue Origin’s New Shepard reusable suborbital rocket system in West Texas. With support from NASA’s Flight Opportunities program, the company, headquartered in Kent, Washington, enhanced the flight capabilities of its New Shepard capsule to replicate the Moon’s gravity — which is about one-sixth of Earth’s — during suborbital flight.
“Commercial companies are critical to helping NASA prepare for missions to the Moon and beyond,” said Danielle McCulloch, program executive of the agency’s Flight Opportunities program. “The more similar a test environment is to a mission’s operating environment, the better. So, we provided substantial support to this flight test to expand the available vehicle capabilities, helping ensure technologies are ready for lunar exploration.”
NASA’s Flight Opportunities program not only secured “seats” for the technologies aboard this flight — for 16 payloads inside the capsule plus one mounted externally — but also contributed to New Shepard’s upgrades to provide the environment needed to advance their readiness for the Moon and other space exploration missions.
“An extended period of simulated lunar gravity is an important test regime for NASA,” said Greg Peters, program manager for Flight Opportunities. “It’s crucial to reducing risk for innovations that might one day go to the lunar surface.”
One example is the LUCI (Lunar-g Combustion Investigation) payload, which seeks to understand material flammability on the Moon compared to Earth. This is an important component of astronaut safety in habitats on the Moon and could inform the design of potential combustion devices there. With support from the Moon to Mars Program Office within the Exploration Systems Development Mission Directorate, researchers at NASA’s Glenn Research Center in Cleveland, together with Voyager Technologies, designed LUCI to measure flame propagation directly during the Blue Origin flight.
The rest of the NASA-supported payloads on this Blue Origin flight included seven from NASA’s Game Changing Development program that seek to mitigate the impact of lunar dust and to perform construction and excavation on the lunar surface. Three other NASA payloads tested instruments to detect subsurface water on the Moon as well as to study flow physics and phase changes in lunar gravity. Rounding out the manifest were payloads from Draper, Honeybee Robotics, Purdue University, and the University of California in Santa Barbara.
Flight Opportunities is part of the agency’s Space Technology Mission Directorate and is managed at NASA’s Armstrong Flight Research Center.
By Nancy Pekar, NASA’s Flight Opportunities program
Keep Exploring Discover More …
Space Technology Mission Directorate
Armstrong Flight Research Center
Flight Opportunities
Game Changing Development
Share
Details
Last Updated Feb 04, 2025 EditorLoura HallContactNancy J. Pekarnancy.j.pekar@nasa.gov Related Terms
Ames Research Center Armstrong Flight Research Center Artemis Flight Opportunities Program Game Changing Development Program Space Technology Mission Directorate View the full article
-
By NASA
NASA’s VIPER (Volatiles Investigating Polar Exploration Rover) sits outside a testing chamber after completing its thermal vacuum testing in the fall of 2024. Credit: NASA/JSC David DeHoyos To advance plans of securing a public/private partnership and land and operate NASA’s VIPER (Volatiles Investigating Polar Exploration Rover) mission on the Moon in collaboration with industry the agency announced Monday it is seeking U.S. proposals. As part of the agency’s Artemis campaign, instruments on VIPER will demonstrate U.S. industry’s ability to search for ice on the lunar surface and collect science data.
The Announcement for Partnership Proposal contains proposal instructions and evaluation criteria for a new Lunar Volatiles Science Partnership. Responses are due Thursday, Feb. 20. After evaluating submissions, any selections by the agency will require respondents to submit a second, more detailed, proposal. NASA is expected to make a decision on the VIPER mission this summer.
“Moving forward with a VIPER partnership offers NASA a unique opportunity to engage with the private sector,” said Nicky Fox, associate administrator in the Science Mission Directorate at NASA Headquarters in Washington. “Such a partnership provides the opportunity for NASA to collect VIPER science that could tell us more about water on the Moon, while advancing commercial lunar landing capabilities and resource prospecting possibilities.”
This new announcement comes after NASA issued a Request for Information on Aug. 9, 2024, to seek interest from American companies and institutions in conducting a mission using the agency’s VIPER Moon rover after the program was canceled in July 2024.
Any partnership would work under a Cooperative Research and Development Agreement. This type of partnership allows both NASA and an industry partner to contribute services, technology, and hardware to the collaboration.
As part of an agreement, NASA would contribute the existing VIPER rover as-is. Potential partners would need to arrange for the integration and successful landing of the rover on the Moon, conduct a science/exploration campaign, and disseminate VIPER-generated science data. The partner may not disassemble the rover and use its instruments or parts separately from the VIPER mission. NASA’s selection approach will favor proposals that enable data from the mission’s science instruments to be shared openly with anyone who wishes to use it.
“Being selected for the VIPER partnership would benefit any company interested in advancing their lunar landing and surface operations capabilities,” said Joel Kearns, deputy associate administrator for exploration in the Science Mission Directorate. “This solicitation seeks proposals that clearly describe what is needed to successfully land and operate the rover, and invites industry to propose their own complementary science goals and approaches. NASA is looking forward to partnering with U.S. industry to meet the challenges of performing volatiles science in the lunar environment.”
The Moon is a cornerstone for solar system science and exoplanet studies. In addition to helping inform where ice exists on the Moon for potential future astronauts, understanding our nearest neighbor helps us understand how it has evolved and what processes shaped its surface.
To learn more about NASA’s lunar science, visit:
https://www.nasa.gov/moon
-end-
Karen Fox
Headquarters, Washington
202-358-1100
karen.fox@nasa.gov
Share
Details
Last Updated Feb 03, 2025 Related Terms
Missions VIPER (Volatiles Investigating Polar Exploration Rover) View the full article
-
By NASA
The first shuttle mission of 1995, STS-63 included several historic firsts. As part of Phase 1 of the International Space Station program, space shuttle Discovery’s 20th flight conducted the first shuttle rendezvous with the Mir space station, in preparation for future dockings. The six-person crew included Commander James Wetherbee, Pilot Eileen Collins – the first woman to pilot a space shuttle mission – Payload Commander Bernard Harris, and Mission Specialists Michael Foale, Janice Voss, and Vladimir Titov. The spacewalk conducted during the mission included the first African American and the first British born astronauts to walk in space. The crew conducted 20 science and technology experiments aboard the third flight of the Spacehab module. The astronauts deployed and retrieved the SPARTAN-204 satellite that during its two-day free flight carried out observations of galactic objects using an ultraviolet instrument.
The STS-63 crew patch. The STS-63 crew of Janice Voss, front row left, Eileen Collins, James Wetherbee, and Vladimir Titov; Bernard Harris, back row left, and Michael Foale. The Shuttle-Mir program patch. NASA announced the six-person STS-63 crew in September 1993 for a mission then expected to fly in May 1994. Wetherbee, selected by NASA in 1984, had already flown twice in space, as pilot on STS-32 and commander of STS-52. For Collins, selected in the class of 1990 as the first woman shuttle pilot, STS-63 marked her first spaceflight. Also selected in 1990, Harris had flown previously on STS-55 and Voss on STS-57. Foale, selected as an astronaut in 1987, had flown previously on STS-45 and STS-56. Titov, selected as a cosmonaut in 1976, had flown two previous spaceflights – a two-day aborted docking mission to Salyut-7 and the first year-long mission to Mir – and survived a launch pad abort. He served as backup to Sergei Krikalev on STS-60, who now served as Titov’s backup.
Space shuttle Discovery rolls out to Launch Pad 39B. The STS-63 crew during the Terminal Countdown Demonstration Test in the White Room of Launch Pad 39B. The STS-63 astronauts walk out of crew quarters for the van ride out to the launch pad. Space shuttle Discovery arrived back at NASA’s Kennedy Space Center in Florida on Sept. 27, 1994, after a ferry flight from California following its previous mission, STS-64. Workers towed it to the Orbiter Processing Facility the next day. Following installation of the Spacehab, SPARTAN, and other payloads, on Jan. 5, 1995, workers rolled Discovery from the processing facility to the Vehicle Assembly Building for mating with an external tank and twin solid rocket boosters. Rollout to Launch Pad 39B took place on Jan. 10. On Jan. 17-18, teams conducted the Terminal Countdown Demonstration Test, a dress rehearsal for the countdown to launch planned for Feb. 2, with the astronaut crew participating in the final few hours as they would on launch day. They returned to Kennedy on Jan. 29 for final pre-launch preparations. On Feb. 2, launch teams called a 24-hour scrub to allow time to replace a failed inertial measurement unit aboard Discovery.
Launch of space shuttle Discovery on mission STS-63. STS-63 Commander James Wetherbee on Discovery’s flight deck. STS-63 Pilot Eileen Collins on Discovery’s flight deck. On Feb. 3, Discovery and its six-person crew lifted off from Launch Pad 39B at 12:22 a.m. EST, the time dictated by orbital mechanics – Discovery had to launch into the plane of Mir’s orbit. Within 8.5 minutes, Discovery had reached orbit, for the first time in shuttle history at an inclination of 51.6 degrees, again to match Mir’s trajectory. Early in the mission, one of Discovery’s 44 attitude control thrusters failed and two others developed minor but persistent leaks, threatening the Mir rendezvous.
View of the Spacehab module in Discovery’s payload bay. The SPARTAN-204 satellite attached to the remote manipulator system or robotic arm during the flight day two operations. On the mission’s first day in space, Harris and Titov activated the Spacehab module and several of its experiments. Wetherbee and Collins performed the first of five maneuvers to bring Discovery within 46 miles of Mir for the final rendezvous on flight day four. Teams on the ground worked with the astronauts to resolve the troublesome thruster problems to ensure a safe approach to the planned 33 feet. On flight day 2, as those activities continued, Titov grappled the SPARTAN satellite with the shuttle’s robotic arm and lifted it out of the payload bay. Scientists used the ultraviolet instrument aboard SPARTAN to investigate the ultraviolet glow around the orbiter and the aftereffects of thruster firings. The tests complete, Titov placed SPARTAN back in the payload bay.
The Mir space station as seen from Discovery during the rendezvous. Space shuttle Discovery as seen from Mir during the rendezvous. Mir during Discovery’s flyaround. On flight day three, the astronauts continued working on science experiments while Wetherbee and Collins completed several more burns for the rendezvous on flight day four, the thruster issues resolved to allow the close approach to 33 feet. Flying Discovery manually from the aft flight deck, and assisted by his crew mates, Wetherbee slowly brought the shuttle to within 33 feet of the Kristall module of the space station. The STS-63 crew communicated with the Mir-17 crew of Aleksandr Viktorenko, Elena Kondakova, and Valeri Polyakov via VHF radio, and the crews could see each other through their respective spacecraft windows. After station-keeping for about 10 minutes, Wetherbee slowly backed Discovery away from Mir to a distance of 450 feet. He flew a complete circle around Mir before conducting a final separation maneuver.
The SPARTAN-204 satellite as it begins its free flight on flight day five. STS-63 crew member Vladimir Titov works on an experiment in the Spacehab module. On the mission’s fifth day, Titov once again grappled SPARTAN with the robotic arm, but this time after raising it above the payload bay, he released the satellite to begin its two-day free flight. Wetherbee steered Discovery away from the departing satellite. During its free flight, the far ultraviolet imaging spectrograph aboard SPARTAN recorded about 40 hours of observations of galactic dust clouds. During this time, the astronauts aboard the shuttle continued work on the 20 experiments in Spacehab and prepared for the upcoming spacewalk.
STS-63 crew member Janice Voss operates the remote manipulator system during the retrieval of the SPARTAN-204 satellite. STS-63 astronauts Bernard Harris, left, and Michael Foale at the start of their spacewalk. Wetherbee and the crew flew the second rendezvous of the mission on flight day seven to retrieve SPARTAN. Voss operated the robotic arm to capture and stow the satellite in the payload bay following its 43-hour free flight. Meanwhile, Foale and Harris suited up in the shuttle’s airlock and spent four hours breathing pure oxygen to rid their bodies of nitrogen to prevent decompression sickness, also known as the bends, when they reduced their spacesuit pressures for the spacewalk.
Astronauts Bernard Harris, left, and Michael Foale during the spacesuit thermal testing part of their spacewalk. Foale, left, and Harris during the mass handling part of their spacewalk. Foale and Harris exited the airlock minutes after Voss safely stowed SPARTAN. With Titov operating the robotic arm, Harris and Foale climbed aboard its foot restraint to begin the first phase of the spacewalk, testing modifications to the spacesuits for their thermal characteristics. Titov lifted them well above the payload bay and the two spacewalkers stopped moving for about 15 minutes, until their hands and feet got cold. The spacewalk then continued into its second portion, the mass handling activity. Titov steered Foale above the SPARTAN where he lifted the satellite up and handed it off to Harris anchored in the payload bay. Harris then moved it around in different directions to characterize handling of the 2,600-pound satellite. Foale and Harris returned to the airlock after a spacewalk lasting 4 hours 39 minutes.
The STS-63 astronauts pose for their inflight crew photo. Discovery makes a successful landing at NASA’s Kennedy Space Center in Florida. The day following the spacewalk, the STS-63 crew finished the science experiments, closed down the Spacehab module, and held a news conference with reporters on the ground. Wetherbee and Collins tested Discovery’s thrusters and aerodynamic surfaces in preparation for the following day’s reentry and landing. The next day, on Feb. 11, they closed Discovery’s payload bay doors and put on their launch and entry suits. Wetherbee guided Discovery to a smooth landing on Kennedy’s Shuttle Landing Facility, ending the historic mission after eight days, six hours, and 28 minutes. They orbited the Earth 129 times. The mission paved the way for nine shuttle dockings with Mir beginning with STS-71, and 37 with the International Space Station. Workers at Kennedy towed Discovery to the processing facility to prepare it for its next mission, STS-70 in July 1995.
Over the next three years, Wetherbee, Collins, Foale, and Titov all returned to Mir during visiting shuttle flights, with Foale staying aboard as the NASA-5 long-duration crew member. Between 2001 and 2005, Wetherbee, Collins, and Foale also visited the International Space Station. Wetherbee commanded two assembly flights, Collins commanded the return to flight mission after the Columbia accident, and Foale commanded Expedition 8.
Enjoy the crew narrate a video about their STS-63 mission.
Explore More
9 min read 30 Years Ago: STS-60, the First Shuttle-Mir Mission
Article 1 year ago 7 min read Space Station 20th: STS-71, First Shuttle-Mir Docking
Article 5 years ago 11 min read Space Station 20th: Launch of Mir 18 Crew
Article 5 years ago View the full article
-
By NASA
As part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, Intuitive Machines’ second delivery to the Moon will carry NASA technology demonstrations and science investigations on their Nova-C class lunar lander. Credit: Intuitive Machines NASA will host a media teleconference at 1 p.m. EST Friday, Feb. 7, to discuss the agency’s science and technology flying aboard Intuitive Machines’ second flight to the Moon. The mission is part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign to establish a long-term lunar presence.
Audio of the call will stream on the agency’s website at:
https://www.nasa.gov/live
Briefing participants include:
Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters Niki Werkheiser, director, technology maturation, Space Technology Mission Directorate, NASA Headquarters Trent Martin, senior vice president, space systems, Intuitive Machines To participate by telephone, media must RSVP no later than two hours before the briefing to: ksc-newsroom@mail.nasa.gov. NASA’s media accreditation policy is available online.
Intuitive Machines’ lunar lander, Athena, will launch on a SpaceX Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The four-day launch window opens no earlier than Wednesday, Feb. 26.
Among the items on Intuitive Machines’ lander, the IM-2 mission will be one of the first on site, or in-situ, demonstrations of resource utilization on the Moon. A drill and mass spectrometer will measure the potential presence of volatiles or gases from lunar soil in Mons Mouton, a lunar plateau near the Moon’s South Pole. In addition, a passive Laser Retroreflector Array on the top deck of the lander will bounce laser light back at any orbiting or incoming spacecraft to give future spacecraft a permanent reference point on the lunar surface. Other technology instruments on this delivery will demonstrate a robust surface communications system and deploy a propulsive drone that can hop across the lunar surface.
Launching as a rideshare with the IM-2 delivery, NASA’s Lunar Trailblazer spacecraft also will begin its journey to lunar orbit, where it will map the distribution of the different forms of water on the Moon.
Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA is one of many customers for these flights.
For updates, follow on:
https://blogs.nasa.gov/artemis
-end-
Alise Fisher / Jasmine Hopkins
Headquarters, Washington
202-358-2546
alise.m.fisher@nasa.gov / jasmine.s.hopkins@nasa.gov
Natalia Riusech / Nilufar Ramji
Johnson Space Center, Houston
281-483-5111
nataila.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
Antonia Jaramillo
Kennedy Space Center, Florida
321-867-2468
antonia.jaramillobotero@nasa.gov
Share
Details
Last Updated Jan 31, 2025 LocationNASA Headquarters Related Terms
Commercial Lunar Payload Services (CLPS) Artemis Missions Science Mission Directorate Space Technology Mission Directorate View the full article
-
By NASA
4 Min Read NASA Space Tech’s Favorite Place to Travel in 2025: The Moon!
The first image from space of Firefly's Blue Ghost mission 1 lunar lander as it begins its 45-day transit period to the Moon. Credits: Firefly Aerospace NASA Space Technology has big travel plans for 2025, starting with a trip to the near side of the Moon!
Among ten groundbreaking NASA science and technology demonstrations, two technologies are on a ride to survey lunar regolith – also known as “Moon dust” – to better understand surface interactions with incoming lander spacecraft and payloads conducting experiments on the surface. These dust demonstrations and the data they’re designed to collect will help support future lunar missions.
Blue Ghost Mission 1 launched at 1:11 a.m. EST aboard a SpaceX Falcon 9 rocket from Launch Complex 39A at the agency’s Kennedy Space Center in Florida. The company is targeting a lunar landing on Sunday, March 2.
The first image from space of Firefly’s Blue Ghost mission 1 lunar lander as it begins its 45-day transit period to the Moon. Firefly Aerospace NASA Space Technology on Blue Ghost Mission 1
NASA’s Electrodynamic Dust Shield (EDS) will lift, transport, and remove particles using electric fields to repel and prevent hazardous lunar dust accumulation on surfaces. The agency’s Stereo Camera for Lunar Plume-Surface Studies (SCALPSS) technology will use stereo imaging to capture the impact of rocket plumes on lunar regolith as the lander descends to the Moon’s surface, returning high-resolution images that will help in creating models to predict regolith erosion – an important task as bigger, heavier payloads are delivered to the Moon in close proximity to each other.
The EDS and SCALPSS technologies will be delivered to the Moon on Firefly’s first Blue Ghost mission, named Ghost Riders in the Sky, as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative. Its landing target is a 300-mile-wide basin located on the Moon’s near side, called Mare Crisium – a large, dark, basaltic plain that filled an ancient asteroid impact. First-of-their-kind experiments will deploy after landing to gather important data in a broad spectrum of areas including geophysical characteristics, global navigation, radiation tolerant computing, and the behavior of lunar regolith.
Replicating the Moon’s harsh environment on Earth is a significant challenge because of extreme temperatures, low gravity, radiation, and dusty surface. The CLPS initiative provides unprecedented access to the lunar surface, allowing us to demonstrate technologies in the exact conditions they were designed for. Missions like Blue Ghost Mission 1 are a true game changer for NASA technology advancement and demonstration.”
Michael Johansen
Flight Demonstrations Lead for NASA’s Game Changing Development program
Dust particles scatter during an experiment for the Electrodynamic Dust Shield in a laboratory at NASA’s Kennedy Space Center in Florida. NASA NASA’s Stereo Camera for Lunar Plume-Surface Studies technology integrated on Firefly’s Blue Ghost lander. Firefly Aerospace A complex wrinkle ridge in Mare Crisium at low Sun, seen in an image captured by the Lunar Reconnaissance Orbiter Camera.NASA/GSFC/Arizona State University Understanding regolith
The Moon’s dusty environment was one of the greatest challenges astronauts faced during Apollo Moon missions, posing hazards to lunar surface systems, space suits, habitats, and instrumentation. What was learned from those early missions – and from thousands of experiments conducted on Earth and in space since – is that successful surface missions require the ability to eliminate dust from all kinds of systems. Lunar landings, for example, cause lunar dust to disperse in all directions and collect on everything that lands there with it. This is one of the reasons such technologies are important to understand. The SCALPSS technology will study the dispersion of lunar dust, while EDS will demonstrate a solution to mitigate it.
Getting this new data on lunar regolith with be pivotal for our understanding of the lunar surface. We’ve long known that lunar dust is a huge challenge. The Lunar Surface Innovation Initiative has enabled us to initiate lunar dust mitigation efforts across the agency, working with industry and international partners. The lunar science, exploration, and technology communities are eager to have new quantitative data, and to prove laboratory experiments and develop technology solutions.”
Kristen John
Technical Integration Lead for NASA’s Lunar Surface Innovation Initiative (LSII)
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
[VIDEO] Dust on the lunar surface is a significant hazard for systems and astronauts living and working on the Moon. NASA space technologies are developing solutions to retire hurdles in this capability area. NASA Space Technology Dust mitigation technology has come a long way, but we still have a lot to learn to develop surface systems and infrastructure for more complex missions. LSII is actively engaged in this effort, working with the lunar community across sectors to expand knowledge and design new approaches for future technologies. Working alongside the Lunar Surface Innovation Consortium, LSII has a unique opportunity to take a holistic look at dust’s role in the development of surface infrastructure with other key capability areas including in-situ resource utilization, surface power, and surviving the lunar night.
Learning from the the Moon benefits Mars science and exploration
Capabilities for minimizing dust interaction are as important for future missions on Mars as it is for missions on the Moon. Like the Moon, Mars is also covered with regolith, also called Martian dust or Martian soil, but the properties are different than lunar regolith, both in shape and mineralogy. The challenges Mars rovers have encountered with Martian regolith have provided great insight into the challenges we will face during lunar surface missions. Learning is interwoven and beneficial to future missions whether hundreds of thousands of miles from Earth, on the Moon, or millions, on Mars.
Scientist-astronaut Harrison Schmitt, Apollo 17 lunar module pilot, uses an adjustable sampling scoop to retrieve lunar samples during the second Apollo 17 extravehicular activity (EVA). NASA NASA’s Perseverance Mars rover snagged two samples of regolith – broken rock and dust – on Dec. 2 and 6, 2022. This set of images, taken by the rover’s left navigation camera, shows Perseverance’s robotic arm over the two holes left after the samples were collected.NASA/JPL-Caltech Learn more from a planetary scientist about how science factors into lunar dust mitigation technologies:
LSIC Lunar Engineering 101 video series (Dust/Regolith module) Share
Details
Last Updated Jan 24, 2025 LocationNASA Headquarters Related Terms
Missions Artemis Commercial Lunar Payload Services (CLPS) Earth's Moon Game Changing Development Program Kennedy Space Center Langley Research Center Lunar Surface Innovation Consortium Lunar Surface Innovation Initiative NASA Headquarters Space Technology Mission Directorate Explore More
4 min read NASA Cameras to Capture Interaction Between Blue Ghost, Moon’s Surface
Article 1 month ago 4 min read NASA Technology Helps Guard Against Lunar Dust
Article 10 months ago 3 min read NASA Lander to Test Vacuum Cleaner on Moon for Sample Collection
Article 2 weeks ago Keep Exploring Discover More Topics From NASA
Space Technology Mission Directorate
NASA’s Lunar Surface Innovation Initiative
Game Changing Development Projects
Game Changing Development projects aim to advance space technologies, focusing on advancing capabilities for going to and living in space.
Commercial Lunar Payload Services (CLPS)
The goal of the CLPS project is to enable rapid, frequent, and affordable access to the lunar surface by helping…
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.