Members Can Post Anonymously On This Site
Summary of Aura 20th Anniversary Event
-
Similar Topics
-
By NASA
Explore This Section Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 35 min read
Summary of the Joint NASA LCLUC–SARI Synthesis Meeting
Introduction
The NASA Land-Cover and Land-Use Change (LCLUC) is an interdisciplinary scientific program within NASA’s Earth Science program that aims to develop the capability for periodic global inventories of land use and land cover from space. The program’s goal is to develop the mapping, monitoring and modeling capabilities necessary to simulate the processes taking place and evaluate the consequences of observed and predicted changes. The South/Southeast Asia Research Initiative (SARI) has a similar goal for South/Southeast Asia, as it seeks to develop innovative regional research, education, and capacity building programs involving state-of-the-art remote sensing, natural sciences, engineering, and social sciences to enrich land use/cover change (LUCC) science in South/Southeast Asia. Thus it makes sense for these two entities to periodically meet jointly to discuss their endeavors.
The latest of these joint meetings took place January 1–February 2, 2024, in Hanoi, Vietnam. A total of 85 participants attended the three-day, in-person meeting—see Photo. A total of 85 participants attended the three-day, in-person meeting. The attendees represented multiple international institutions, including NASA (Headquarters and Centers), the University of Maryland, College Park (UMD), other American academic institutions, the Vietnam National Space Center (VNSC, the event host), the Vietnam National University’s University of Engineering and Technology, and Ho Chi Minh University of Technology, the Japanese National Institute of Environmental Studies (NIES), Center for Environmental Sciences, and the University of Tokyo. In addition, several international programs participated, including GEO Global Agricultural Monitoring (GEOGLAM), the System for Analysis, Research and Training (START), Global Observation of Forest and Land-use Dynamics (GOFC–GOLD), and NASA Harvest.
Photo. A group picture of the meeting participants on the first day of the 2024 LCLUC SARI meeting in Hanoi, Vietnam. Photo credit: Hotel staff (Hanoi Club Hotel, Hanoi, Vietnam) Meeting Overview
The purpose of the 2024 NASA LCLUC–SARI Synthesis meeting was to discuss LUCC issues – with a particular focus on their impact on Southeast Asian countries. Presenters highlighted ongoing projects aimed to advance our understanding of the spatial extent, intensity, social consequences, and impacts on the environment in South/Southeast Asian countries. While presenters reported on specific science results, they also were intentional to review and synthesize work from other related projects going on in Southeast Asia.
Meeting Goal
The meeting’s overarching goal was to create a comprehensive and holistic understanding of various LUCC issues by examining them from multiple angles, including: collating information; employing interdisciplinary approaches; integrating research; identifying key insights; and enhancing regional collaborations. The meeting sought to bring the investigators together to bridge gaps, promote collaborations, and advance knowledge regarding LUCC issues in the region. The meeting format also provided ample time between sessions for networking to promote coordination and collaboration among scientists and teams.
Meeting and Summary Format
The meeting consisted of seven sessions that focused on various LUCC issues. The summary report that follows is organized by day and then by session. All presentations in Session I and II are summarized (i.e., with all speakers, affiliations, and appropriate titles identified). The keynote presentation(s) from Sessions III–VI are summarized similarly. The technical presentations in each of these sessions are presented as narrative summaries. Session VII consisted of topical discussions to close out the meeting and summaries of these discussions are included herein. Sessions III–VI also included panel discussions, but to keep the article length more manageable, summaries of these discussions have been omitted. Readers interested in learning more about the panel discussions or viewing any of these presentations in full can access the information on the Joint LCLUC–SARI Synthesis meeting website.
DAY ONE
The first day of the meeting included welcoming remarks from the U.S. Ambassador to Vietnam (Session I), program executives of LCLUC and SARI, as well as from national space agencies in South and Southeast Asia (Session II), and other LCLUC-thematic/overview presentations (Session III).
Session 1: Welcoming Remarks
Garik Gutman [NASA Headquarters—LCLUC Program Manager], Vu Tuan [VNSC’s Vietnam Academy of Science and Technology (VAST)—Vice Director General], Chris Justice [University of Maryland, College Park (UMD)—LCLUC Program Scientist], Matsunaga Tsuneo [National Institute of Environmental Studies (NIES), Japan], and Krishna Vadrevu [NASA’s Marshall Space Flight Center—SARI Lead] delivered opening remarks that highlighted collaborations across air pollution, agriculture, forestry, urban development, and other LUCC research areas. While each of the speakers covered different topics, they emphasized common themes, including advancing new science algorithms, co-developing products, and fostering applications through capacity building and training.
After the opening remarks, special guest Marc Knapper [U.S. Ambassador to Vietnam] gave a presentation in which he emphasized the value of collaborative research between U.S. and Vietnamese scientists to address environmental challenges – especially climate change and LUCC issues. He expressed appreciation to the meeting organizers for promoting these collaborations and highlighted the joint initiatives between NASA and the U.S. Agency for International Development (USAID) to monitor environmental health and climate change, develop policies to reduce emissions, and support adaptation in agriculture. The U.S.–Vietnam Comprehensive Strategic Partnership emphasizes the commitment to address climate challenges and advance bilateral research. He concluded by encouraging active participation from all attendees and stressed the need for ongoing international collaboration to develop effective LUCC policies.
Session-II: Programmatic and Space Agency Presentations
NOTE: Other than Ambassador Knapper, the presenters in Session I gave welcoming remarks and programmatic and/or space agency presentations in Session II,.
Garik Gutman began the second session by presenting an overview of the LCLUC program, which aims to enhance understanding of LUCC dynamics and environmental implications by integrating diverse data sources (i.e., satellite remote sensing) with socioeconomic and ecological datasets for a comprehensive view of land-use change drivers and consequences. Over the past 25 years, LCLUC has funded over 325 projects involving more than 800 researchers, resulting in over 1500 publications. The program’s focus balances project distribution that spans detection and monitoring, and impacts and consequences, including drivers, modeling, and synthesis. Gutman highlighted examples of population growth and urban expansion in Southeast Asia, resulting in environmental and socio-economic impacts. Urbanization accelerates deforestation, shifts farming practices to higher-value crops, and contributes to the loss of wetlands. This transformation alters the carbon cycle, degrades air quality, and increases flooding risks due to reduced rainwater absorption. Multi-source remote sensing data and social dimensions are essential in addressing LUCC issues, and the program aims to foster international collaborations and capacity building in land-change science through partnerships and training initiatives. (To learn more about the recent activities of the LCLUC Science Team, see Summary of the 2024 Land Cover Land Use Change Science Team Meeting.)
Krishna Vadrevu explained how SARI connects regional and national projects with researchers from the U.S. and local institutions to advance LUCC mapping, monitoring, and impact assessments through shared methodologies and data. The initiative has spurred extensive activities, including meetings, training sessions, publications, collaborations, and fieldwork. To date, the LCLUC program has funded 35 SARI projects and helped build collaborations with space agencies, universities, and decision-makers worldwide. SARI Principal Investigators have documented notable land-cover and land-use transformations, observing shifts in land conversion practices across Asia. For example, the transition from traditional slash-and-burn practices for subsistence agriculture to industrial oil palm and rubber plantations in Southeast Asia. Rapid urbanization has also reshaped several South and Southeast Asian regions, expanding both horizontally in rural areas and vertically in urban centers. The current SARI solicitation funds three projects across Asia, integrating the latest remote sensing data and methods to map, monitor, and assess LUCC drivers and impacts to support policy-making.
Vu Tuan provided a comprehensive overview of Vietnam’s advances in satellite technology and Earth observation capabilities, particularly through the LOTUSat-1 satellite (name derived from the “Lotus” flower), which is equipped with an advanced X-band Synthetic Aperture Radar (SAR) sensor capable of providing high-resolution imagery [ranging from 1–16 m (3–52 ft)]. This satellite is integral to Vietnam’s efforts to enhance disaster management and climate change mitigation, as well as to support a range of applications in topography, agriculture, forestry, and water management, as well as in oceanography and environmental monitoring. The VNSC’s efforts are part of a broader strategy to build national expertise and self-reliance in satellite technology, such as developing a range of small satellites (e.g., NanoDragon, PicoDragon, and MicroDragon) that progress in size and capability. Alongside satellite development, the VNSC has established key infrastructure, facilities, and capacity building in Hanoi, Nha Trang, and Ho Chi Minh City to support satellite assembly, integration, testing, and operation. Tuan showcased the application of remotely sensed LUCC data to map and monitor urban expansion in Ha Long city from 2000–2023 and the policies needed to manage these changes sustainably – see Figure 1.
Figure 1. Urban expansion area in Ha Long City, Vietnam from 2000–2023 from multidate Landsat satellite imagery. Figure credit: Vu Tuan [VNSC] Tsuneo Matsunaga provided a detailed overview of Japan’s Greenhouse Gases Observing Satellite (GOSAT) series of satellites, data from which provide valuable insights into global greenhouse gas (GHG) trends and support international climate agreements, including the Paris Agreement.
Matsunaga reviewed the first two satellites in the series: GOSAT and GOSAT-2, then previewed the next satellite in the series: GOSAT-GW, which is scheduled to launch in 2025. GOSAT-GW will fly the Total Anthropogenic and Natural Emissions Mapping Observatory–3 (TANSO-3) – an improved version of TANSO-2, which flies on GOSAT-2. TANSO-3 includes a Fourier Transform Spectrometer (FTS-3) that has improved spatial resolution [10.5 km (6.5 mi)] over TANSO-FTS-2 and precision that matches or exceeds that of its predecessor. TANSO-FTS-3 will allow estimates with precision better than 1 ppm for carbon dioxide (CO2) and 10 ppb for methane (CH4), as well as enabling nitrogen dioxide (NO2) measurements. GOSAT–GW will also fly the Advanced Microwave Scanning Radiometer (AMSR3) that will monitor water cycle components (e.g., precipitation, soil moisture) and ocean surface winds. AMSR3 builds on the heritage of three previous AMSR instruments that have flown on NASA and Japan Aerospace Exploration Agency (JAXA) missions.
Matsunaga also highlighted the importance of ground-based validation networks, such as the Total Carbon Column Observing Network, COllaborative Carbon Column Observing Network, and the Pandora Global Network, to ensure satellite data accuracy.
Son Nghiem [NASA/Jet Propulsion Laboratory (JPL)] addressed dynamic LUCC in Cambodia, Laos, Thailand, Vietnam, and Malaysia. The synthesis study examined the factors that evolve along the rural–urban continuum (RUC). Nghiem showcased this effort using Synthetic Aperture Radar (SAR) data from the Copernicus Sentinel-1 mission to map a typical RUC in Bac Lieu, Vietnam – see Figure 2.
Figure 2. Land cover map of Bae Lieu, Vietnam, and surrounding rural areas. The image shows persistent building structures (red), agricultural areas (light green), aquacultural (light blue), tree cover (dark green), and water bodies (dark blue). Land-use classes used on this map are derived from Sentinel-1 Synthetic Aperture Radar (SAR) for the rural urban continuum around Bac Lieu. Figure credit: Son Nghiem [JPL] Nghiem described the study, which examined the role of rapid urbanization, agricultural conversion, climate change, and environment–human feedback processes in causing non-stationary and unpredictable impacts. This work illustrates how traditional trend analysis is insufficient for future planning. The study also examined whether slower or more gradual changes could inform policy development. To test these hypotheses, his research will integrate high-resolution radar and hyperspectral data with socioeconomic analyses. The study highlights the need for policies that are flexible and responsive to the unique challenges of different areas, particularly in “hot-spot” regions experiencing rapid changes.
Peilei Fan [Tufts University] presented a study that synthesizes the complex patterns of LUCC, identifying both the spatial and temporal dynamics that characterize transitions in urban systems. The study explores key drivers, including economic development, population growth, urbanization, agricultural expansion, and policy shifts. She emphasized the importance of understanding these drivers for sustainable land management and urban planning. For example, the Yangon region of Myanmar has undergone rapid urbanization – see Figure 3. Her work reveals the need for integrated approaches that consider both urban and rural perspectives to manage land resources effectively and mitigate negative environmental and social impacts. Through a combination of case studies, statistical analysis, and policy review, Fan and her team aim to provide a nuanced understanding of the interactions between human activities and environmental changes occurring in the rapidly transforming landscapes of Southeast Asia.
Figure 3. Landsat data can be used to track land cover change over time. For example, Thematic Mapper data have been used to track urban expansion around Yangon, Myanmar. The data show that the built-up area expanded from 161 km2 (62 mi2) in 1990 to 739 km2 (285 mi2) in 2020. Figure credit: Peleli Fan [Tufts University] Session III: Land Cover/Land Use Change Studies
Tanapat Tanaratkaittikul [Geo-Informatics and Space Technology Development Agency (GISTDA), Thailand] highlighted GISTDA activities, which play a crucial role in advancing Thailand’s technological capabilities and addressing both national and global challenges, including Thailand Earth Observation System (THEOS) and its successors: THEOS-2 and THEOS-2A. THEOS-1, which launched in 2008, provides 2-m (6-ft) panchromatic and 15-m (45-ft) multispectral resolution with a 26-day revisit cycle, which can be reduced to 3 days with off-nadir pointing. Launched in 2023, THEOS-2 includes two satellites – THEOS-2A [a very high-resolution satellite with 0.5-m (1.5-ft) panchromatic and 2-m (6-ft) multispectral imagery] and THEOS-2B [a high-resolution satellite with 4-m (12-ft) multispectral resolution] – with a five-day revisit cycle. GISTDA also develops geospatial applications for drought assessment, flood prediction, and carbon credit calculations to support government decision-making and climate initiatives. GISTDA partners with international collaborators on regional projects, such as the Lancang-Mekong Cooperation Special Fund Project.
Eric Vermote [NASA’s Goddard Space Flight Center] presented a keynote that focused on atmospheric correction of land remote sensing data and related algorithm updates. He highlighted the necessity of correcting surface imaging for atmospheric effects, such as molecular scattering, aerosol scattering, and gaseous absorption, which can significantly distort the satellite spectral signals and lead to potential errors in applications, such as land cover mapping, vegetation monitoring, and climate change studies.
Vermote explained that the surface reflectance algorithm uses precise vector radiative transfer modeling to improve accuracy by incorporating atmospheric parameter inversion. It also adjusts for various atmospheric conditions and aerosol types – enhancing corrections across regions and seasons. He explained that SkyCam – a network of ground-based cameras – provides real-time assessments of cloud cover that can be used to validate cloud masks, while the Cloud and Aerosol Measurement System (CAMSIS) offers additional ground validation by measuring atmospheric conditions. He said that together, SkyCam and CAMSIS improve satellite-derived cloud masks, supporting more accurate climate models and environmental monitoring. Vermote’s work highlights the ongoing advancement of atmospheric correction methods in remote sensing.
Other presentations in this session included one in which the speaker described how Yangon, the capital city in Myanmar, is undergoing rapid urbanization and industrial growth. From 1990–2020, the urban area expanded by over 225% – largely at the expense of agricultural and green lands. Twenty-nine industrial zones cover about 10.92% of the city, which have attracted significant foreign direct investment, particularly in labor-intensive sectors. This growth has led to challenges with land confiscations, inadequate infrastructure, and environmental issues (e.g., air pollution). Additionally, rural migration for employment has resulted in informal settlements, emphasizing the need for comprehensive urban planning that balances economic development with social equity and sustainability.
Another presentation highlighted varying LUCC trends across Vietnam. In the Northern and Central Coastal Uplands, for example, swidden systems are shifting toward permanent tree crops, such as rubber and coffee. Meanwhile, the Red River Delta is seeing urban densification and consolidation of farmland – transitioning from rice to mixed farming with increased fruit and flower production. Similarly, the Central Coastal Lowlands and Southeastern regions are experiencing urban growth and a shift from coastal agriculture – in this case, to shrimp farming – leading to mangrove loss. The Central Highlands is moving from swidden to tree crops, particularly fruit trees, while the Mekong River Delta is increasing rice cropping and aquaculture. These changes contribute to urbanization, altered farming practices, and biodiversity loss. Advanced algorithms (e.g., the Time-Feature Convolutional Neural Network model) are being used to effectively map these varied LUCC changes in Vietnam.
Another presenter explained how 10-m (33-ft) resolution spatially gridded population datasets are essential to address LUCC in environmental and socio-demographic research. There was also a demonstration of PopGrid, which is a collaborative initiative that provides access to various global-gridded population databases, which are valuable for regional LUCC studies and can support informed decision-making and policy development.
DAY TWO
The second day’s presentations centered around urban LUCC (Session IV) as well as interconnections between agriculture and water resources. (Session V).
Session IV: Urban Land Cover/Land Use Change
Gay Perez [Philippines Remote Sensing Agency (PhilSA)] presented a keynote focused on PhilSA’s mission to advance Philippines as a space-capable country by developing indigenous satellite and launch technologies. He explained that PhilSA provides satellite data in various categories, including sovereign, commercial, open-access, and disaster-activated. He noted that the ground infrastructure – which includes three stations and a new facility in Quezon – supports efficient data processing. For example, Perez stated that in 2023, PhilSA produced over 10,000 maps for disaster relief, agricultural assessments, and conservation planning.
Perez reviewed PhilSA’s Diwata-2 mission, which launched in 2018 and operates in a Sun-synchronous orbit around 620 km (385 mi) above Earth. With a 10-day revisit capability, it features a high-precision telescope [4.7 m (15ft) resolution], a multispectral imager with four bands, an enhanced resolution camera, and a wide-field camera. Since launch, Diwata-2 has captured over 100,000 global images, covering 95% of the Philippines. Looking to the near future, Perez reported that PhilSA’s launch of the Multispectral Unit for Land Assessment (MULA) satellite is planned for 2025. He explained that MULA will capture images with a 5-m (~16-ft) resolution and 10–20-day revisit time, featuring 10 spectral bands for vegetation, water, and urban analysis.
Perez also described the Drought and Crop Assessment and Forecasting project, which addresses drought risks and mapping ground motion in areas, e.g., Baguio City and Pangasinan. Through partnerships in the Pan-Asia Partnership for Geospatial Air Pollution Information (PAPGAPI) and the Pandora Asia Network, PhilSA monitors air quality across key locations, tracking urban pollution and cross-border particulate transport. PhilSA continues to strengthen Southeast Asian partnerships to drive sustainable development in the region.
Jiquan Chen [Michigan State University] presented the second keynote address, which focused on the Urban Rural Continuum (URC). Chen emphasized the importance of synthesizing studies that explore factors such as population dynamics, living standards, and economic development in the URC. Key considerations include differentiating between two- and three-dimensional infrastructures and understanding constraints from historical contexts. Chen highlighted critical variables from his analysis including net primary productivity, household income, and essential infrastructure elements, such as transportation and healthcare systems. He advocated for integrated models that combine mechanistic and empirical approaches to grasp the dynamics of URC changes, stressing their implications for urban planning, environmental sustainability, and social equity. He concluded with a call for collaboration to enhance these models and tackle challenges arising from the changing urban–rural landscape.
Tep Makathy [Cambodian Institute For Urban Studies] discussed urbanization in Phnom Penh, Cambodia. He explained that significant LUCC and infrastructure developments have been fueled by direct foreign investment; however, this development has resulted in environmental degradation, urban flooding, and infrastructure strain. Tackling pollution, congestion, preservation of green spaces, and preserving the historical heritage of the city will require sustainable urban planning efforts.
Nguyen Thi Thuy Hang [Vietnam Japan University, Vietnam National University, Hanoi] explained how flooding poses a significant annual threat to infrastructure and livelihoods in Can Tho, Vietnam. Therefore, it is essential to incorporate climate change considerations into land-use planning by enhancing the accuracy of vegetation layer classifications. Doing so will improve the representation of land-cover dynamics in models that decision-makers use when planning urban development. In addition, Hang reported that a more comprehensive survey of dyke systems will improve flood protection and identify areas needing reinforcement or redesign. These studies could also explore salinity intrusion in coastal agricultural areas that could impact crop yields and endanger food security.
In this session, two presenters highlighted how SAR data, which uses high backscatter to enhance the radar signal, is being used to assist with mapping urban areas in their respective countries. The phase stability and orientation of building structures across SAR images aid in consistent monitoring and backscatter, producing distinct image textures specific to urban settings. Researchers can use this heterogeneity and texture to map urban footprints, enabling automated discrimination between urban and non-urban areas. The first presenters showed how Interferometric Synthetic Aperture Radar techniques, such as Small Baseline Subset (SBAS) and Persistent Scatterer (PS) have been highly effective for mapping and monitoring land subsidence in coastal and urban areas in Vietnam. This approach has been applied to areas along the Saigon River as well as in Ho Chi Minh, Vietnam. The second presenter described an approach (using SAR data with multitemporal coherence and the K-means classification method) that has been used effectively to study urban growth in the Denpasar Greater Area of Indonesia between 2016 and 2022. The technique identified the conversion of 4376 km2 (1690 mi2) of rural to built-up areas, averaging 72.9 hectares (0.3 mi2) per year. Urban sprawl was predominantly observed in the North Kuta District, where the shift from agricultural to built-up land use has been accompanied by severe traffic congestion and other environmental issues.
Another presenter showed how data from the QuikSCAT instrument, which flew on the Quick Scatterometer satellite, and from the Sentinel-1 C-band SAR can be combined to measure and analyze urban built-up volume, specifically focusing on the vertical growth of buildings across various cities. By integrating these datasets, researchers can assess urban expansion, monitor the development of high-rise buildings, and evaluate the impact of urbanization on infrastructure and land use. This information is essential for urban planning, helping city planners and policymakers make informed decisions to accommodate growing populations and enhance sustainable urban development.
Session V – LUCC, Agriculture, and Water Resources
Chris Justice presented the keynote for this session, in which he addressed the GEOGLAM initiative and the NASA Harvest program. GEOGLAM, initiated by the G20 Agriculture Ministers in 2011, focuses on agriculture and food security to increase market transparency and improve food security. These efforts leverage satellite-based Earth observations to produce and disseminate timely, relevant, and actionable information about agricultural conditions at national, regional, and global scales to support agricultural markets and provide early warnings for proactive responses to emerging food emergencies. NASA Harvest uses satellite Earth observations to benefit global food security, sustainability, and agriculture for disaster response, climate risk assessments, and policy support. Justice also emphasized the use of open science and open data principles, promoting the integration of Earth observation data into national and international agricultural monitoring systems. He also discussed the development and application of essential agricultural variables, in situ data requirements, and the need for comprehensive and accurate satellite data products.
During this session, another presentation focused on how VNSC is engaged in several agricultural projects, including mapping rice crops, estimating yields, and assessing environmental impacts. VNSC has created high-accuracy rice maps for different seasons that the Vietnamese government uses to monitor and manage agricultural production. Current initiatives involve using satellite data to estimate CH4 emissions from rice paddies, biomass mapping, and monitoring rice straw burning. For example, in the Mekong Delta, numerous environmental factors, including climate change-induced stress (e.g., sea-level rise), flooding, drought, land subsidence, and saltwater intrusion, along with human activities like dam construction, sand mining, and groundwater extraction, threaten the sustainability of rice farming and farmer livelihoods. To address these challenges, sustainable agricultural practices are essential to improving rice quality, diversify farming systems, adopt low-carbon techniques, and enhance water management.
Presentations highlighted the importance of both optical and SAR data for LUCC studies, particularly in mapping agricultural areas. A study using Landsat time-series data demonstrated its value in monitoring agricultural LUCC in Houa Phan Province, Laos, and Son La Province, Vietnam. Land cover types were classified through spectral pattern analysis, identifying distinct classes based on Landsat reflectance values. The findings revealed significant natural forest loss alongside increases in cropland and forest plantations due to agricultural expansion. High-resolution imagery validated these results, indicating the scalability of this approach for broader regional and global land-cover monitoring. Another study showcased the effectiveness of SAR data from the Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) on the Japanese Advanced Land Observing Satellite-2 (ALOS-2) for mapping and monitoring agricultural land use in Suphanburi, Thailand. This data proved particularly useful for capturing seasonal variations and diverse agricultural practices. Supervised machine learning methods, such as Random Forest classifiers, combined with innovative spatial averaging techniques, achieved high accuracy in distinguishing various agricultural conditions.
In the session, presenters also discussed the use of Sentinel-1 SAR data for mapping submerged and non-submerged paddy soils was highlighted, demonstrating its effectiveness in understanding water management issues see – Figure 4. Additionally, large-scale remote sensing data and cloud computing were shown to provide unprecedented opportunities for tracking agricultural land-use changes in greater detail. Case studies from India and China illustrated key challenges, such as groundwater depletion in irrigated agriculture across the Indo-Ganges region and the impacts on food, water, and air quality in both countries.
Figure 4. Series of Sentinel-1 radar data images showing submerged paddy soil (blue) and non-submerged paddy soil (red) in the Mekong Delta, Vietnam. Figure credit: Hiranori Arai [International Rice Research Institute] The session also focused on Water–Energy–Food (WEF) issues related to the Mekong River Basin’s extensive network of hydroelectric dams, which present both benefits and challenges. While these dams support sectors such as irrigated agriculture and hydropower, they also disrupt vital ecosystem services, including fish habitats and biodiversity. Collaborative studies integrating satellite and ground data, hydrological models, and socio-economic frameworks highlight the need to balance these benefits with ecological and social costs. Achieving sustainable management requires cross-sectoral and cross-border cooperation, as well as the incorporation of traditional knowledge to address WEF trade-offs and governance challenges in the region.
DAY THREE
The third day included a session that explored the impacts of fire, GHG emissions, and pollution (Session VI) as well as a summary discussion on synthesis (Session VII).
Session VI: Fires, Greenhouse Gas Emissions, and Pollution
Chris Elvidge [Colorado School of Mines] presented a keynote on the capabilities and applications of the Visible Infrared Imaging Radiometer Suite (VIIRS) Nightfire [VNF] system, an advanced satellite-based tool developed by the Earth Observation Group. VIIRS Nightfire uses four near- and short-wave infrared channels, initially designed for daytime imaging, to detect and monitor infrared emissions at night. The system identifies various combustion sources, including both flaming and non-flaming activities (e.g., biomass burning, gas flaring, and industrial processes). It calculates the temperature, source area, and radiant heat of detected infrared emitters using physical laws to enable precise monitoring of combustion events and provide insight into exothermic and endothermic processes.
Elvidge explained that VNF has been vital for near-real-time data in Southeast Asia. The system has been used to issue daily alerts for Vietnam, Thailand, and Indonesia. Recent updates in Version 4 (V4) include atmospheric corrections and testing for secondary emitters with algorithmic improvements – with a 50% success rate in identifying additional heat sources. The Earth Observation Group maintains a multiyear catalog of over 20,000 industrial infrared emitters available through the Global Infrared Emitter Explorer (GIREE) web-map service. With VIIRS sensors expected to operate until about 2040 on the Joint Polar Satellite System (JPSS) platforms, this system ensures long-term, robust monitoring and analysis of global combustion events, proving essential for tracking the environmental impacts of industrial activities and natural combustion processes on the atmosphere and ecosystems.
Toshimasa Ohara [Center for Environmental Science, Japan—Research Director] continued with the second keynote and provided an in-depth analysis of long-term trends in anthropogenic emissions across Asia. The regional mission inventory in Asia encompasses a range of pollutants and offers detailed emissions data from 1950–2020 at high spatial and temporal resolutions. The study employs both bottom-up and top-down approaches for estimating emissions, integrating satellite observations to validate data and address uncertainties. Notably, emissions from China, India, and Japan have shown signs of stabilization or reduction, attributed to stricter emission control policies and technological advancements. Ohara also highlighted Japan’s effective air pollution measures and the importance of extensive observational data in corroborating emission trends. His presentation emphasized the need for improved methodologies in emission inventory development and validation across Asia, aiming to enhance policymaking and environmental management in rapidly industrializing regions.
Several presenters during this session focused on innovative approaches to understand and mitigate GHG emissions and air pollution. One presenter showed how NO2 data from the TROPOspheric Monitoring Instrument (TROPOMI) on the European Sentinel-5 Precursor have been validated against ground-based observations from Pandora stations in Japan, highlighting the influence of atmospheric conditions on measurement accuracy. Another presenter described an innovative system that GISTDA used to combine satellite remote sensing data with Artificial Intelligence (AI). This system was used to monitor and analyze the concentration of fine particulate matter (PM) in the atmosphere in Thailand. (In this context fine is defined as particles with diameters ≤ 2.5 µm, or PM2.5.) These applications, which are accessible through online, cloud-based platforms and mobile applications for iOS and Android devices, allow users, including citizens, government officers, and policymakers, to access PM2.5 data in real-time through web and mobile interfaces.
A project under the United Nations Economic and Social Commission for Asia and the Pacific in Thailand is focused on improving air quality monitoring across the Asia–Pacific region by integrating satellite and ground-based data. At the core of this effort, the Pandora Asia Network, which includes 30 ground-based instruments measuring pollutants such as NO₂ and sulfur dioxide (SO₂), is complemented by high-resolution observations from the Geostationary Environment Monitoring Spectrometer (GEMS) aboard South Korea’s GEO-KOMPSAT-2B (GK-2B) satellite. The initiative also provides training sessions to strengthen regional expertise in remote sensing technologies for air quality management and develops decision support systems for evidence-based policymaking, particularly for monitoring pollution sources and transboundary effects like volcanic eruptions. Future plans include expanding the Pandora network and enhancing data integration to support local environmental management practices.
PM2.5 levels in Vietnam are influenced by both local emissions and long-range pollutant transport, particularly in urban areas.The Vietnam University of Engineering and Technology, in conjunction with VNSC, continues to map and monitor PM2.5 using satellites and machine learning while addressing data quality issues that stem from missing satellite data and limited ground monitoring stations – see Figure 5.
In addition to mapping and monitoring pollutants, another presentater explained that significant research is underway to address their health impacts. In Hanoi, exposure to pollutants ( e.g., PM2.5, PM10, and NO2) has led to increased rates of respiratory diseases (e.g., pneumonia, bronchitis, and asthma) among children, as well as elevated instances of cardiovascular diseases among adults. A substantial mortality burden is attributable to fine particulate matter – particularly in densely populated areas like Hanoi. Compliance with stricter air quality guidelines could potentially prevent thousands of premature deaths. For example, preventive measures enacted during the COVID-19 pandemic resulted in reduced pollution levels that were associated with a decrease in avoidable mortality rates. In response to these challenges, Vietnam has implemented air quality management policies, including national technical regulations and action plans aimed at controlling emissions and enhancing monitoring; however, current national standards still fall short of the more stringent guidelines recommended by the World Health Organization. Improved air quality standards and effective policy interventions are needed to mitigate the health risks associated with air pollution in Vietnam.
Figure 5. Map of particulate matter (PM 2.5) variations observed across Vietnam, using multisatellite aerosol optical depth (AOD) data from the Moderate Resolution Imaging Spectrogradiometer (MODIS) on NASA’s Aqua and Terra platforms, and from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the NASA–NOAA Suomi NPP platform, combined with ground-based AOD and meteorological data. Figure credit: Thanh Nguyen [Vietnam National University of Engineering and Technology, Vietnam] Another presenter explained how food production in Southeast Asia contributes about 40% of the region’s total GHG emissions – with rice and beef production identified as the largest contributors for plant-based and animal-based emissions, respectively. Another presentation focused on a study that examined GHG emissions from agricultural activities, which suggests that animal-based food production – particularly beef – generates substantially higher GHG emissions per kg of food produced compared to plant-based foods, such as wheat and rice. Beef has an emission intensity of about 69 kg of CO2 equivalent-per-kg, compared to 2 to 3 kg of CO2 equivalent-per-kg for plant-based foods. The study points to mitigation strategies (e.g., changing dietary patterns, improving agricultural practices) and adopting sustainable land management. Participants agreed that a comprehensive policy framework is needed to address the environmental impacts of food production and reduce GHG emissions in the agricultural sector.
In another presentation, the speaker highlighted the fact that Southeast Asian countries need an advanced monitoring, reporting, and verification system to track GHG emissions – particularly within high-carbon reservoirs like rice paddies. To achieve this, cutting-edge technologies (e.g., satellite remote sensing, low-cost unmanned aerial vehicles, and Internet of Things devices) can be beneficial in creating sophisticated digital twin technology for sustainable rice production and GHG mitigation.
Another presentation featured a discussion about pollution resulting from forest and peatland fires in Indonesia, which is significantly impacting air quality. Indonesia’s tropical peatlands – among the world’s largest and most diverse – face significant threats from frequent fires. Repeated burning has transformed forests into shrubs and secondary vegetation regions, with fires particularly affecting forest edges and contributing to a further retreat of intact forest areas. High-resolution data is essential to map and monitor changes in forest cover, including pollution impacts.
Another speaker described a web-based Geographic Information Systems (GIS) application that has been developed to support carbon offsetting efforts in Laos – to address significant environmental challenges, e.g., deforestation and climate change. Advanced technologies (e.g., remote sensing, GIS, and Global Navigation Satellite Systems) are used to monitor land-use changes, carbon sequestration, and ecosystem health. By integrating various spatial datasets, the web GIS app enhances data collection precision, streamlines monitoring processes, and provides real-time information to stakeholders for informed decision-making. This initiative fosters collaboration among local communities, government agencies, and international partners, while emphasizing the importance of government support and international partnerships. Ultimately, the web GIS application represents a significant advancement in Laos’s commitment to environmental sustainability, economic growth, and the creation of a greener future.
Session VII. Discussion Session on Synthesis
The meeting concluded with a comprehensive discussion on synthesizing themes related to LUCC. The session focused on three themes: LUCC, agriculture, and air pollution. The session focused on trends and projections as well as the resulting impacts in the coming years. It also highlighted research related to these topics to inform more sustainable land use policies. A panel of experts from different Southeast Asian countries addressed these topics. A summary of the key points shared by the panelists for each theme during the discussion is provided below.
LUCC Discussions
This discussion focused on the challenges of balancing economic development with environmental sustainability in Southeast Asian countries, e.g., mining in Myanmar, agriculture in Vietnam, and rising land prices in Thailand. More LUCC research is needed to inform decision-making and improve land-use planning during transitions from agriculture to industrialization while ensuring food security. The panelists also discussed urban sprawl and infrastructure development along main roads in several Southeast Asian countries, highlighting the social and environmental challenges arising from uncoordinated growth. It was noted that urban infrastructure lags behind population increases, resulting in traffic congestion, pollution, and social inequality. Cambodia, for example, has increased foreign investments, which presents similar dilemmas of economic growth accompanied by significant environmental degradation. Indonesia is another example of a Southeast Asian nation facing rapid urbanization and inadequate spatial planning, leading to flooding, groundwater depletion, and pollution. These issues further highlight the need for integrated satellite monitoring to inform land-use policies. Finally, recognizing the importance of public infrastructure in growth management, it was reported that the Thai government is already using technology to manage urban development alongside green spaces.
Panelists agreed that LUCC research is critical for guiding policymakers toward sustainable land-use practices – emphasizing the necessity for improved communication between researchers and policymakers. While the integration of technologies (e.g., GIS and remote sensing) is beginning to influence policy decisions, room for improvement remains. In summary, the discussions stressed the importance of better planning, technology integration, and policy-informed research to reconcile economic growth with sustainability. Participants also highlighted the need to engage policymakers, non-government organizations, and the private sector in using scientific evidence for sustainable development. Capacity building in Laos, Cambodia, and Myanmar, where GIS and remote sensing technologies are still developing, is crucial. Community involvement is essential for translating research findings into actionable policies to address real-world challenges and social equity.
Agriculture Discussions
These discussions explored the intricate relationships between agricultural practices, economic growth, and environmental sustainability in Southeast Asia. As an example, despite national policies to manage the land transition in Vietnam, rapid conversions from forest to agricultural land and further to residential and industrial continue. While it is recognized that strict land management plans may hinder future adaptability, further regulation is needed. These rapid shifts in land use have increased land for economic development – especially in industrial and residential sectors – and contribute to environmental degradation, e.g., pollution and soil erosion. In Thailand, land is distributed among agriculture (50%), forest (30%), and urban (20%) areas. Despite a long history of agricultural practices, Vietnam faces new challenges from climate change and extreme weather.
Thailand, meanwhile, is exploring carbon credits to incentivize sustainable farming practices – although this requires significant investment and time. The nation is well-equipped with a robust water supply system, and ongoing efforts to enhance crop yields on Vietnam’s Mekong Delta, salinity levels, and flooding intensity have increased as a result of the rise in incidents of extreme weather, prompting advancements in rice farming mechanization to be implemented that are modeled after practices that have been successfully used in the Philippines.
Despite these advances, issues (e.g., over-application of rice seeds) remain. The dominant land cover type in Malaysia is tropical rainforest, although agriculture – particularly oil palm plantations – also plays a significant role in land use. While stable, it shares environmental concerns with Indonesia. The country is integrating solar energy initiatives, placing solar panels on former agricultural lands and recreational areas, which raises coastal environmental concerns. In Taiwan, substantial land use changes have stemmed from solar panel installations to support green energy goals but have led to increased temperatures and altered wind patterns.
All panelists agreed that remote sensing technologies are vital to inform agricultural policy across the region. They emphasized the need to transition from academic research to actionable insights that directly inform policy. Panelists also discussed the challenge of securing funding for actionable research – underlining the importance of recognizing the transition required for research to inform operational use. Some countries (e.g., Thailand) have established operational crop monitoring systems, while others (e.g., Vietnam) primarily depend on research projects. Despite progress in Malaysia’s monitoring of oil palm plantations, a comprehensive operational monitoring system is still lacking in many areas. The participants concluded that increased efforts are needed to promote the wider adoption of remote sensing technologies for agricultural and environmental monitoring, with emphasis on developing operational systems that can be integrated into policy and decision-making processes.
Air Pollution Discussions
The discussion on air pollution focused on various sources in Southeast Asia, which included both local and transboundary factors. Panelists highlighted that motor vehicles, industrial activities, and power plants are major contributors to pollutants, such as PM2.5, NO2, ozone (O3), and carbon monoxide (CO). Forest fires in Indonesia – particularly from South Sumatra and Riau provinces – are significantly impacting neighboring countries, e.g., Malaysia. A study found that most PM2.5 pollution in Kuala Lumpur originates from Indonesia. During the COVID-19 pandemic, pollution levels dropped sharply due to reduced economic activity; however, data from 2018–2023 shows that PM2.5 levels have returned to pre-pandemic conditions.
The Indonesian government is actively working to reduce deforestation and emissions, aiming for a 29% reduction by 2030. Indonesia is also participating in carbon markets and receiving international payments for emission reductions. Indonesia’s emissions also stem from energy production, industrial activities, and land-use changes, including peat fires. The Indonesian government reports anthropogenic sources – particularly from the energy sector and industrial activities, forest and peat fires, waste, and agriculture – continue to escalate. While Indonesia is addressing these issues, growing population and energy demands continue to drive pollution levels higher.
Vietnam and Laos are facing similar challenges related to air pollution – particularly from agricultural residue burning. Both governments are working on expanding air quality monitoring, regulating waste burning, and developing policies to mitigate pollution. Vietnam has been developing provincial air quality management plans and expanding its monitoring network. Laos has seen increased awareness of pollution, accompanied by government measures aimed at restricting burning and improving waste management practices.
The panelists agreed that collaborative efforts for regional cooperation are essential to address air pollution. This will require collaboration in research and data sharing to inform policy decisions. There is a growing interest in leveraging satellite technology and modeling approaches to enhance air quality forecasting and management. To ensure that research translates into effective policy, communication of scientific findings to policymakers is essential – particularly by clearly communicating complex research concepts in accessible formats. All panelists agreed on the importance of improving governance, transparency, and scientific communication to better translate research into policy actions, highlighting collaborations with international organizations – including NASA – to address air quality issues. While significant challenges related to air pollution persist in Southeast Asia, noteworthy efforts are underway to improve awareness, research, and collaborative governance aimed at enhancing air quality and reducing emissions.
Conclusion
The LCLUC–SARI Synthesis meeting fostered collaboration among researchers and provided valuable updates on recent developments in LUCC research, exchange of ideas, integration of new data products, and discussions on emerging science directions. This structured dialogue (particularly the discussions in each session) helped the attendees identify priorities and needs within the LUCC community. All panelists and meeting participants commended the SARI leadership for their proactive role in facilitating collaborations and discussions that promote capacity-building activities across the region. SARI activities have significantly contributed to enhancing the collective ability of countries in South and Southeast Asia to address pressing environmental challenges. The meeting participants emphasized the importance of maintaining and expanding these collaborative efforts, which are crucial for fostering partnerships among governments, research institutions, and local communities. They urged SARI to continue organizing workshops, training sessions, and knowledge-sharing platforms that can equip stakeholders with the necessary skills and resources to tackle environmental issues such as air pollution, deforestation, climate change, and sustainable land management.
Krishna Vadrevu
NASA’s Marshall Space Flight Center
krishna.p.vadrevu@nasa.gov
Vu Tuan
Vietnam National Science Center, Vietnam
vatuan@vnsc.org.vn
Than Nguyen
Vietnam National University Engineering and Technology, Vietnam
thanhntn@vnu.edu.vn
Son Nghiem
Jet Propulsion Laboratory
son.v.nghiem@jpl.nasa.gov
Tsuneo Matsunaga
National Institute of Environmental Studies, Japan
matsunag@nies.go.jp
Garik Gutman
NASA Headquarters
ggutman@nasa.gov
Christopher Justice
University of Maryland College Park
cjustice@umd.edu
Share
Details
Last Updated Feb 20, 2025 Related Terms
Earth Science View the full article
-
By NASA
Explore This Section Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 21 min read
Summary of the 10th DSCOVR EPIC and NISTAR Science Team Meeting
Introduction
The 10th Deep Space Climate Observatory (DSCOVR) Earth Polychromatic Camera (EPIC) and National Institute of Standards and Technology (NIST) Advanced Radiometer [NISTAR] Science Team Meeting (STM) was held October 16–18, 2024. Over 50 scientists attended, most of whom were from NASA’s Goddard Space Flight Center (GSFC), with several participating from other NASA centers, U.S. universities, and U.S. Department of Energy laboratories. There was one international participant – from Estonia. A full overview of DSCOVR’s Earth-observing instruments was published in a previous article in The Earth Observer and will not be repeated here. This article provides the highlights of the 2024 meeting. The meeting agenda and full presentations can be downloaded from GSFC’s Aura Validation Data Center.
Opening Presentations
The opening session of the 10th DSCOVR STM was special. Former U.S., Vice President Al Gore attended the opening session and gave a presentation at the panel discussion “Remote Sensing and the Future of Earth Observations” – see Photo. Gore was involved in the early days of planning the DSCOVR mission, which at that time was known as Triana. He reminisced about his involvement and praised the team for the work they’ve done over the past decade to launch and maintain the DSCOVR mission. Following the STM Opening Session, Gore spoke at a GSFC Engage session in Building 3 later that afternoon on the same topic, but before a wider audience. [Link forthcoming.]
Following Gore’s remarks, the remainder of the opening session consisted of a series of presentations from DSCOVR mission leaders and representatives from GSFC and National Oceanic and Atmospheric Administration (NOAA). Thomas Neumann [GSFC, Earth Sciences Division (ESD)—Deputy Director] opened the meeting and welcomed Vice President Gore and the STM participants on behalf of the ESD. Adam Szabo [GSFC—DSCOVR Project Scientist] briefly reported that the spacecraft was still in “good health.” The EPIC and NISTAR instruments on DSCOVR continue to return their full science observations. He also gave an update on DSCOVR Space Weather research. Alexander Marshak [GSFC—DSCOVR Deputy Project Scientist] briefly described DSCOVR mission history and the science results based on DSCOVR observations from the first Sun–Earth Lagrange point (hereinafter, the L1 point). He also summarized the major EPIC and NISTAR results to date. At this time, more than 125 papers related to DSCOVR are listed on the EPIC website. Elsayed Talaat [NOAA, Office of Space Weather observations—Director] discussed the future of Earth and space science studies from the L1 point.
Photo. Former U.S. Vice President Al Gore spoke at the opening session of the 10th DSCOVR Science Team Meeting. This photo shows Gore together with Makenzie Lystrup [NASA’s Goddard Space Flight Center (GSFC)—Center Director], Christa Peters-Lidard [GSFC, Director of the Science and Exploration Directorate], Elsayed Talaat [National Oceanic and Atmospheric Administration (NOAA)—Director of the Office of Space Weather Observations], Dalia Kirschbaum [GSFC—Director of Earth Sciences], other GSFC management, and members of the DSCOVR Science Team. Photo credit: Katy Comber (GSFC) Updates on DSCOVR Operations
The DSCOVR mission components continue to function nominally. The meeting was an opportunity to update participants on progress over the past year on several fronts, including data acquisition, processing, and archiving, and release of new versions of several data products. The number of people using DSCOVR data continues to increase, with a new Science Outreach Team having been put in place to aid users in several aspects of data discovery, access, and user friendliness.
Amanda Raab [NOAA, DSCOVR Mission Operations and Systems] reported on the current status of the DSCOVR mission. She also discussed spacecraft risks and issues such as memory fragmentation and data storage task anomalies but indicated that both these issues have been resolved.
Hazem Mahmoud [NASA’s Langley Research Center (LaRC)] discussed the work of the Atmospheric Science Data Center (ASDC), which is based at LaRC. He showed DSCOVR mission metrics since 2015, focusing on data downloads and the global outreach of the mission. He noted that there has been a significant rise in the number of downloads and an increasing diversity of countries accessing ozone (O3), aerosol, and cloud data products. Mahmoud also announced that the ASDC is transitioning to the Amazon Web Services cloud, which will further enhance global access and streamline DSCOVR data processing.
Karin Blank [GSFC] covered the discovery of a new type of mirage that can only be seen in deep space from EPIC. The discussion included the use of a ray tracer in determining the origin of the phenomenon, and under what conditions it can be seen.
Alexander Cede [SciGlob] and Ragi Rajagopalan [LiftBlick OG] gave an overview of the stability of the EPIC Level-1A (L1A) data over the first decade of operation. They explained that the only observable changes in the EPIC calibration are to the dark count and flat field can – and that these changes can be entirely attributed to the temperature change of the system in orbit compared to prelaunch conditions. No additional hot or warm pixels have emerged since launch and no significant sensitivity drifts have been observed. The results that Cede and Rajagopalan showed that EPIC continues to be a remarkably stable instrument, which is attributed to a large extent to its orbit around the L1 point, which is located outside the Earth’s radiation belts and thus an extremely stable temperature environment. Consequently, in terms of stability, the L1 point is far superior to other Earth observation points, e.g., ground-based, low-Earth orbit (LEO), polar orbit, or geostationary Earth orbit (GEO).
Marshall Sutton [GSFC] discussed the state of the DSCOVR Science Operation Center (DSOC). He also talked about processing EPIC Level-1 (L1) data into L2 science products, daily images available on the EPIC website, and special imaging opportunities, e.g., volcanic eruptions.
EPIC Calibration
After 10 years of operation in space, the EPIC instrument on DSCOVR continues to be a remarkably stable instrument. The three presentations describe different ways that are used to verify the EPIC measurements remain reliable.
Conor Haney [LaRC] reported on anomalous outliers during February and March 2023 from the broadband shortwave (SW) flux using EPIC L1B channel radiances. To ensure that these outliers were not a result of fluctuations in the EPIC L1B channel radiances, both the EPIC radiance measurements and coincident, ray-matched radiance measurements from the Visible Infrared Imaging Radiometer Suite (VIIRS), on the Suomi National Polar-orbiting Partnership (Suomi NPP) platform, were processed using the same deep convective cloud invariant target (DCC-IT) algorithm. This analysis confirmed that the anomalous behavior was due to the DCC-IT algorithm – and not because of fluctuations in the EPIC L1B channel radiances. The improved DCC-IT methodology was also applied to the EPIC L1B radiances. The results indicate that the EPIC record is quite stable with a lower uncertainty than when processed using the previous DCC-IT methodology.
Igor Geogdzhaev [NASA’s Goddard Institute for Space Studies (GISS)/Columbia University] reported that EPIC Visible–Near Infrared (VIS-NIR) calibration based on VIIRS (on Suomi NPP) data has showed excellent stability, while VIIRS (on NOAA-20 and -21) derived gains agree to within 1–2%. Preliminary analysis showed continuity in the gains derived from Advanced Baseline Imager (ABI) data. (ABI flies on NOAA’s two operational Geostationary Operational Environmental Satellite–Series R satellites – GOES-17 and GOES-18.
Liang–Kang Huang [Science Systems and Applications, Inc. (SSAI)] reported on updates to the EPIC ultraviolet (UV) channel sensitivity time dependences using Sun-normalized radiance comparisons between EPIC and measurements from the Ozone Mapping and Profiler Suite (OMPS) Nadir Mapper (NM) on Suomi NPP, with coinciding footprints and solar/satellite angles. Huang’s team determined vignetting factors in the sensitivity calibration between 2021–2024, as a function of charge coupled device (CCD) pixel radius and pixel polar angles, using special lunar measurement sequences.
NISTAR Status and Science with Its Observations
The NISTAR instrument remains fully functional and continues its uninterrupted data record. The NISTAR-related presentations during this meeting included more details on specific topics related to NISTAR as well as on efforts to combine information from both EPIC and NISTAR.
Steven Lorentz [L-1 Standards and Technology, Inc.] reported that the NISTAR on DSCOVR has been measuring the irradiance from the sunlit Earth in three bands for more than nine years. The three bands measure the outgoing total and reflected-solar radiation from Earth at a limited range of solar angles. To compare the long-term stability of EPIC and NISTAR responses, researchers developed a narrowband to wideband conversion model to allow the direct comparison of the EPIC multiband imagery and NISTAR SW – see Figure 1 – and silicon photodiode channels. Lorentz presented daily results spanning several years. The comparison employed different detectors from the same spacecraft – but with the same vantage point – thereby avoiding any model dependent orbital artifacts.
Figure 1. NISTAR daily average shortwave (SW) radiance plotted for each year from 2017–2024. The results indicated a 10% increase in the shortwave radiance as the backscattering angle approaches 178° in December 2020. A 6% increase is noted in September of the same year. Figure credit: Steven Lorentz (L-1 Standards and Technology) Clark Weaver [University of Maryland, College Park (UMD)] used spectral information from the SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY), which flew on the European Space Agency’s (ESA) Envisat satellite from 2002–2012, to fill EPIC spectral gaps. He reported on construction of a composite height resolution spectrum that was spectrally integrated to produce SW energy. Weaver explained that he compared the EPIC reflected SW with four-hour averages from Band 4 on NISTAR. He used spectral information from SCIAMACHY to fill in gaps. Weaver also discussed results of a comparison of area integrated EPIC SW energy with observations from NISTAR .
Andrew Lacis [GISS] reported on results of analysis of seven years of EPIC-derived planetary albedo for Earth, which reveal global-scale longitudinal variability occurring over a wide range of frequencies – with strong correlation between nearby longitudes and strong anticorrelation between diametrically opposed longitudes. This behavior in the Earth’s global-scale energy budget variability is fully corroborated by seven years of NISTAR silicon photodiode measurements, which view the Earth with 1º longitudinal resolution. This analysis establishes the DSCOVR mission EPIC/NISTAR measurements as a new and unmatched observational data source for evaluating global climate model performance– e.g., see Figure 2.
Figure 2. This graph shows the diurnal variation in planetary albedo as measured by EPIC for five different eight-day-Blurred Meridians relative to Global Mean for 2021 [left] and 2022 [right]. Figure credit: Andrew Lacis [GISS] Wenying Su [LaRC] discussed global daytime mean SW fluxes within the EPIC field of view produced from January 2016–June 2024. These quasi-hourly SW fluxes agree very well with the Synoptic data product from the Clouds and the Earth’s Radiant Energy System (CERES) instruments (currently flying on the Terra and Aqua, Suomi NPP, and NOAA-20 platforms) with the root mean square errors (rmse) less than 3 W/m2. This SW flux processing framework will be used to calculate NISTAR SW flux when Version 4 (V4) of the NISTAR radiance becomes available. Su noted that SW fluxes from EPIC are not suitable to study interannual variability as the magnitude of EPIC flux is sensitive to the percentage of daytime area visible to EPIC.
Update on EPIC Products and Science Results
EPIC has a suite of data products available. The following subsections summarize content during the DSCOVR STM related to these products. The updates focus on several data products and the related algorithm improvements.
Total Column Ozone
Jerry Ziemke [Morgan State University (MSU), Goddard Earth Sciences Technology and Research–II (GESTAR II)] and Natalya Kramarova [GSFC] reported that tropospheric O3 from DSCOVR EPIC shows anomalous reductions of ~10% throughout the Northern Hemisphere (NH) starting in Spring 2020 that continues to the present. The EPIC data, along with other satellite-based (e.g., Ozone Monitoring Instrument (OMI) on NASA’s Aura platform) and ground-based (e.g., Pandora) data, indicate that the observed NH reductions in O3 are due to combined effects from meteorology and reduced pollution, including reduced shipping pollution in early 2020 (during COVID) – see Figure 3. EPIC 1–2 hourly data are also used to evaluate hourly total O3 and derived tropospheric O3 from NASA’s Tropospheric Emissions: Monitoring of Pollution (TEMPO) geostationary instrument. Ziemke explained that comparison of TEMPO data with EPIC data has helped the researchers characterize a persistent latitude-dependent offset in TEMPO total O3 data of ~10–15% from south to north over the North American continent.
Figure 3. This dataset combines input from EPIC, OMPS, and OMI from 2004–2022. The onset of the COVID-19 pandemic in 2020 can be seen clearly in the data as it corresponds to a sudden drop in tropospheric column ozone by ~3 Dobson Units in the Northern Hemisphere. Figure credit: Jerry Ziemke (Morgan State University, GESTAR-II) Algorithm Improvement for Ozone and Sulfur Dioxide Products
Kai Yang [UMD] presented a comprehensive evaluation of total and tropospheric O3 retrievals, highlighting the long-term stability and high accuracy of EPIC measurements. He also validated EPIC’s volcanic sulfur dioxide (SO2) retrievals by comparing them with ground-based Brewer spectrophotometer measurements and summarized EPIC’s observations of SO2 from recent volcanic eruptions.
Simon Carn [University of Michigan] showed the first comparisons between the EPIC L2 volcanic SO2 product and SO2 retrievals from the Geostationary Environment Monitoring Spectrometer (GEMS) on the Korean GEO-Kompsat-2B satellite. GEMS observes East Asia as part of the new geostationary UV air quality (GEO-AQ) satellite constellation (which also includes TEMPO that observes North America and will include the Ultraviolet–Visible–Near Infrared (UVN) instrument on the European Copernicus Sentinel-4 mission, that will be launched in 2025 to observe Europe and surrounding areas) – but is not optimized for measurements of high SO2 columns during volcanic eruptions. EPIC SO2 data for the 2024 eruption of Ruang volcano in Indonesia are being used to validate a new GEMS volcanic SO2 product. Initial comparisons show good agreement between EPIC and GEMS before volcanic cloud dispersal and confirm the greater sensitivity of the hyperspectral GEMS instrument to low SO2 column amounts.
Aerosols
Alexei Lyapustin [GSFC] reported that the latest EPIC aerosols algorithm (V3) simultaneously retrieves aerosol optical depth, aerosol spectral absorption, and aerosol layer height (ALH) – achieving high accuracy. He showed that global validation of the single scattering albedo in the blue and red shows 66% and 81–95% agreement respectively, with Aerosol Robotic Network (AERONET) observations – which is within the expected error of 0.03 for smoke and dust aerosols. Lyapustin also reported on a comparison of EPIC aerosol data collected from 2015–2023 by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), which flew on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission. The results show that ALH is retrieved with rmse ~1.1 km (0.7 mi). ALH is unbiased over the ocean and is underestimated by 450 m (1470 ft) for the smoke and by 750 m (2460 ft) for the dust aerosols over land.
Myungje Choi and Sujung Go [both from University of Maryland, Baltimore County’s (UMBC), GESTAR II] presented results from a global smoke and dust characterization using Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm. This study characterized smoke and dust aerosol properties derived from MAIAC EPIC processing, examining spectral absorption, ALH, and chemical composition (e.g., black and brown carbon). Regions with smoldering wildfires, e.g., North America and Siberia, exhibited high ALH and a significant fraction of brown carbon, while Central Africa showed lower ALH with higher black carbon emissions.
Omar Torres [GSFC] discussed how L1 DSCOVR-EPIC observations are being used to study air quality (i.e., tropospheric O3 and aerosols) globally. Torres noted that this application of EPIC-L1 observations is of particular interest in the Southern Hemisphere (SH) where, unlike over the NH, there are currently no space GEO-based air quality measurements – and no plans for them in the foreseeable future.
Hiren Jethva [MSU, GESTAR II] presented the new results of the aerosol optical centroid height retrieved from the EPIC Oxygen-B band observations. He described the algorithm details, showed retrieval maps, and reviewed the comparative analysis against CALIOP backscatter-weighted measurements. The analysis showed a good level of agreement with more than 70% of matchup data within 1–1.5 km (0.6–0.9 mi) difference.
Jun Wang [University of Iowa] presented his team’s work on advancing the second generation of the aerosol optical centroid height (AOCH) algorithm for EPIC. Key advancements included: constraining surface reflectance in aerosol retrieval using an EPIC-based climatology of surface reflectance ratios between 442–680 nm; incorporating a dynamic aerosol model to characterize aged smoke particles; and employing a spectral slope technique to distinguish thick smoke plumes from clouds. Results show that both atmospheric optical depth (AOD) and AOCH retrievals are improved in the second generation of AOCH algorithm.
Olga Kalashnikova [NASA/Jet Propulsion Laboratory (JPL)] reported on improving brown carbon evolution processes in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) model with EPIC products. She indicated that DSCOVR product evaluation, using lidar aerosol height measurements from CALIOP, led to an improved operational brown carbon product. To better resolve the temporal evolution of brown carbon, chemical transport models need to include more information about near-source fires.
Mike Garay [NASA/Jet Propulsion Laboratory (JPL)] discussed constraining near-source brown carbon emissions from 2024 Canadian ‘zombie’ fires with EPIC products. He reported that fires in British Columbia, Canada showed differences in brown carbon emission near the sources. Garay explained that their investigation has revealed that these differences were related to fire intensity and variations in vegetation/soil content.
Yuekui Yang [GSFC] presented work that examined the impact of Earth’s curvature consideration on EPIC cloud height retrievals. Biases under the Plane Parallel (PPL) assumption is studied by comparing results using the improved pseudo-spherical shell approximation. PPL retrievals in general bias high and for a cloud with height of 5 km (3 mi), the bias is about 6%.
Alfonso Delgado Bonal [UMBC] stated that the EPIC vantage point offers a unique opportunity to observe not only the current state of the Earth but also its temporal evolution. By capturing multiple observations of the planet throughout the day, EPIC enables statistical reconstruction of diurnal patterns in clouds and other atmospheric parameters. Bonal’s team focused their research on O3 (primarily tropospheric) over the U.S. to demonstrate the presence of a diurnal cycle in the western regions of the continental U.S. However, ground-based data from PANDORA for specific locations do not support these diurnal variations – underscoring the critical role of space-based O3 retrievals. The proposed methodology is not limited to clouds or O3 but is broadly applicable to other EPIC measurements for the dynamic nature of our planet.
Elizabeth Berry [Atmospheric and Environmental Research (AER)] presented results from a coincident DSCOVR–CloudSat dataset [covering 2015–2020]. Cloud properties (e.g., cloud height and optical depth) from DSCOVR and CloudSat are moderately correlated and show quite good agreement given differences in the instruments sensitivities and footprints. Berry explained that a machine-learning model trained on the coincident data demonstrates high accuracy at predicting the presence of vertical cloud layers. However, precision and recall metrics highlight the challenge of predicting the precise location of cloud boundaries.
Anthony Davis [JPL] presented a pathway toward accurate estimation of the cloud optical thickness (COT) of opaque clouds and cloud systems, e.g., supercells, mesoscale convective complexes, and tropical cyclones (TCs). He described the approach, which uses differential oxygen absorption spectroscopy (DOAS) that has resolving power greater than 104 – which is comparable to that of the high-resolution spectrometers on NASA’s Orbiting Carbon Observatory–2 (OCO-2) – but is based upon the cloud information content of EPIC’s O2 A- and B-band radiances. Unlike the current operational retrieval of COT – which uses data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua – the DOAS-based technique does not saturate at COT exceeding ~60. According to a popular TC model with two-moment microphysics, COT in a tropical storm or hurricane can reach well into the hundreds, sometimes exceeding 1000. Davis said that once the new COT estimates become available, they will provide new observational constraints on process and forecast models for TCs.
Ocean
Robert Frouin [Scripps Institution of Oceanography, University of California] discussed ocean surface radiation products derived from EPIC data. He explained that significant advancements have been achieved in processing and evaluating ocean biology and biogeochemistry products derived from EPIC imagery. V1 updates enhanced accuracy by integrating Modern-Era Retrospective analysis for Research and Applications V2 (MERRA-2) ancillary data and refining calculations for atmospheric and surface parameters. Frouin introduced several diurnal products, including hourly photosynthetically active radiation (PAR) fluxes, spectral water reflectance, and chlorophyll-a concentrations. He said that these new MODIS-derived products have been validated through comparisons with data from the Advanced Himawari Imager on the Japanese Himawar–8 and –9 satellites. In order to address the gaps in these diurnal products, Frouin explained that the team developed a convolutional neural network that has been used effectively to reconstruct missing PAR values with high accuracy.
Vegetation
Yuri Knyazikhin [Boston University] reported on the status of the Vegetation Earth System Data Record (VESDR) that provides a variety of parameters including: Leaf Area Index (LAI), diurnal courses of Normalized Difference Vegetation Index (NDVI), Sunlit LAI (SLAI), Fraction of incident Photosynthetically Active Radiation (FPAR) absorbed by the vegetation, Directional Area Scattering Function (DASF), Earth Reflector Type Index (ERTI), and Canopy Scattering Coefficient (CSC). Knyazikhin discussed analysis of the diurnal and seasonal variations of these quantities. EPIC LAI and FPAR are consistent with MODIS-derived measurements of the same parameters.
Jan Pisek [University of Tartu/Tartu Observatory, Estonia] discussed efforts to derive leaf inclination information from EPIC data. The very first evaluation over Tumbarumba site (in New South Wales, Australia) showed that the angular variation in parameters obtained from EPIC reflects the expected variations due to the erectophile vegetation present at the site.
Sun Glint
Tamás Várnai [UMBC, JCET] discussed EPIC observations of Sun glint from ice clouds. The cloud glints come mostly from horizontally oriented ice crystals and have strong impact in EPIC cloud retrievals. Várnai reported that the EPIC glint product is available from the ASDC – see Figure 4. Glint data can help reduce the uncertainties related to horizontally oriented ice crystals and yield additional new insights about the microphysical and radiative properties of ice clouds.
Figure 4. [top row] EPIC glint mask examples over land in [left to right] Paraguay, Sudan, Thailand, and Brazil. [bottom row] The corresponding EPIC glint mask for each image on the top row indicates the band (red, green and blue) and the size of sun glint for each of them. Figure credit: Tamás Várnai (University of Maryland, Baltimore County) Alexander Kostinski [Michigan Technology University] explained that because they detected climatic signals (i.e., longer-term changes and semi-permanent features, e.g., ocean glitter), they developed a technique to suppress geographic “noise” in EPIC images that involves introducing temporally (monthly) and conditionally (classifying by surface/cover type, e.g., land, ocean, clouds) averaged reflectance images – see Figure 5. The resulting images display seasonal dependence in a striking manner. Additionally, cloud-free, ocean-only images highlight prominent regions of ocean glitter.
Figure 5. Monthly reflectances for clear land pixels. Earth masquerading as Jupiter; latitudinal bright bands are caused by features such as the Sahara and Antarctica. Black spots are due to the lack or dearth of clear land pixels at that latitude. Repeated spots within latitudinal bands reflect roughly bi-hourly image sampling. Figure credit: Alexander Kostinski (Michigan Technology University); from a 2024 paper published in Frontiers of Remote Sensing Jiani Yang [Caltech] reported that spatially resolving light curves from DSCOVR is crucial for evaluating time-varying surface features and the presence of an atmosphere. Both of these features are essential for sustaining life on Earth – and thus can be used to assess the potential habitability of exoplanets. Using epsilon machine reconstruction, the statistical complexity from the time series data of these light curves can be calculated. The results show that statistical complexity serves as a reliable metric for quantifying the intricacy of planetary features. Higher levels of planetary complexity qualitatively correspond to increased statistical complexity and Shannon entropy, illustrating the effectiveness of this approach in identifying planets with the most dynamic characteristics.
Other EPIC Science Results
Guoyong Wen [MSU, GESTAR II] analyzed the variability of global spectral reflectance from EPIC and the integrated broadband reflectance on different timescales. He reported that on a diurnal timescale, the global reflectance variations in UV and blue bands are statistically similar – and drastically different from those observed in longer wavelength bands (i.e., green to NIR). The researchers also did an analysis of monthly average results and found that temporal averaging of the global reflectance reduces the variability across the wavelength and that the variability of broadband reflectance is similar to that for the red band on both timescales. These results are mainly due to the rotation of the Earth on diurnal timescale and the change of the Earth’s tilt angle.
Nick Gorkavyi [Science Systems and Applications, Inc. (SSAI)] reported that EPIC – located at the L1 point, 1.5 million km (0.9 million mi) away from Earth – can capture images of the far side of the Moon in multiple wavelengths. These images, taken under full solar illumination, can be used to calibrate photographs obtained by lunar artificial satellites. Additionally, he discussed the impact of lunar libration – the changing view of the Moon from Earth, or it’s apparent “wobble” – on Earth observations from the Moon.
Jay Herman [UMBC] discussed a comparison of EPIC O3 with TEMPO satellite and Pandora ground-based measurement. The results show that total column O3 does not have a significant photochemical diurnal variation. Instead, the daily observed diurnal variation is caused by weather changes in atmospheric pressure. This measurement result agrees with model calculations.
Conclusion
Alexander Marshak, Jay Herman, and Adam Szabo led a closing discussion with ST participants on how to make the EPIC and NISTAR instruments more visible in the community. It was noted that the EPIC website now allows visitors to observe daily fluctuations of aerosol index, cloud fraction, cloud height, and the ocean surface – as observed from the L1 point. More daily products, (e.g., aerosol height and sunlit leaf area index) will be added soon, which should attract more users to the website.
Overall, the 2023 DSCOVR EPIC and NISTAR STM was successful. It provided an opportunity for participants to learn the status of DSCOVR’s Earth-observing instruments, EPIC and NISTAR, the status of recently released L2 data products, and the science results being achieved from the L1 point. As more people use DSCOVR data worldwide, the ST hopes to hear from users and team members at its next meeting. The latest updates from the mission can be found on the EPIC website.
Alexander Marshak
NASA’s Goddard Space Flight Center
alexander.marshak@nasa.gov
Adam Szabo
NASA’s Goddard Space Flight Center
adam.szabo@nasa.gov
Share
Details
Last Updated Feb 14, 2025 Related Terms
Earth Science View the full article
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA Marshall will hold a candle-lighting ceremony and wreath placement at 9:30 a.m. CST. The ceremony will include remarks from Larry Leopard, associate director, and Bill Hill, director of Marshall’s Office of Safety and Mission Assurance. NASA/ Krisdon Manecke NASA’s Marshall Space Flight Center in Huntsville, Alabama, invites media to attend its observance of the agency’s Day of Remembrance at 9:30 a.m. CST Thursday, Jan. 23, in the lobby of Building 4221.
Day of Remembrance honors the members of the NASA family who lost their lives while furthering the cause of exploration and discovery.
The event will include brief remarks from NASA Marshall leaders, followed by a candle lighting and moment of silence for the crews of Apollo 1 and space shuttles Challenger and Columbia. Speakers will include:
Larry Leopard, associate director, technical. Bill Hill, director, Office of Safety and Mission Assurance. Media interested in attending the event must confirm by 12 p.m. Wednesday, Jan. 22, with Molly Porter at: molly.a.porter@nasa.gov.
The agency will also pay tribute to its fallen astronauts with special online content, updated on NASA’s Day of Remembrance, at:
https://www.nasa.gov/dor/
Molly Porter
Marshall Space Flight Center, Huntsville, Ala.
256-424-5158
molly.a.porter@nasa.gov
Share
Details
Last Updated Jan 21, 2025 EditorBeth RidgewayContactMolly Portermolly.a.porter@nasa.govLocationMarshall Space Flight Center Related Terms
Marshall Space Flight Center Explore More
5 min read Exoplanets Need to Be Prepared for Extreme Space Weather, Chandra Finds
Article 5 days ago 4 min read NASA Instrument on Firefly’s Blue Ghost Lander to Study Lunar Interior
Article 2 weeks ago 3 min read NASA to Test Solution for Radiation-Tolerant Computing in Space
Article 2 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Earth Observer Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 32 min read
Summary of the 2024 NASA LCLUC Science Team Meeting
Introduction
The 2024 NASA Land-Cover and Land-Use Change (LCLUC) Science Team Meeting (STM) took place from April 2–4, 2024 at the Marriott Washingtonian Center in Gaithersburg, MD. During the meeting, 75 people attended in-person. Represented among the attendees were LCLUC project investigators and collaborators, NASA Headquarters (HQ) program managers, and university researchers and students – see Photo.
LCLUC is an interdisciplinary scientific program within NASA’s Earth Science program that aims to develop the capability for periodic global inventories of land use and land cover from space. The program’s goal is to develop the scientific understanding and models necessary to simulate the processes taking place and to evaluate the consequences of observed and predicted changes.
The LCLUC program’s focus is divided into three areas – impacts, monitoring, and synthesis. Each category constitutes about one-third of the program’s content. The LCLUC program is part of the Carbon Cycle and Ecosystems research area, alongside other programs, such as Terrestrial Ecosystems, Ocean Biology and Biogeochemistry, and Biodiversity.
Within NASA’s Earth Science Division (ESD), the LCLUC program collaborates with the Earth Science Technology Office (ESTO), the Earth Action Program element on Agriculture, and data initiatives, such as Harmonized Landsat Sentinel-2 (HLS), Observational Products for End-Users from Remote Sensing Analysis (OPERA), and the Commercial SmallSat Data Acquisition (CSDA) program. Externally, the program engages the U.S. Global Climate Research Program (USGCRP), U.S. Geological Survey (USGS), the U.S. Department of Agriculture (USDA), and the U.S. Forest Service (USFS). Internationally, the program collaborates with Global Observations of Forest Cover and Land-use Dynamics (GOFC-GOLD), the Group on Earth Observations (GEO), particularly Group on Earth Observations Global Agricultural Monitoring (GEOGLAM), the Global Land Program (GLP), as well as regional initiatives – e.g., the South and Southeast Asia Regional Initiative (SARI), and space agencies, including the European Space Agency (ESA), Japan Aerospace Exploration Agency (JAXA), Geo-Informatics and Space Technology Development Agency (GISTDA)–Thailand, Vietnam National Space Center (VNSC), and the Indian Space Research Organisation (ISRO).
Principal Investigators (PIs) who participate in LCLUC are required to provide free and open access to their data and products via their metadata pages, aligning with NASA’s Transform to Open Science (TOPS) initiative. The program organizes at least one international regional workshop and one domestic ST meeting each year to share LCLUC science and foster global collaborations, contributing to regional capacity-building as an added value. Additionally, the program hosts regular webinars led by PIs on topics such as agriculture, urban areas, land-use changes in conflict zones, and natural disaster hotspots (i.e., fires, droughts, and floods). Garik Gutman [NASA HQ—LCLUC Program Manager] presented updates on LCLUC research publications, journal special issues, and upcoming international meetings.
The remainder of this article summarizes the highlights of the 2024 LCLUC STM. The content is organized chronologically, with a section devoted to describing each day of the meeting and descriptive headers throughout. The full presentations from this meeting are available on the LCLUC meeting website.
Photo. A group picture of meeting participants on the first day of the 2024 LCLUC meeting in Gaithersburg, MD. Photo credit: Hotel staff (Marriott Washingtonian Center, Gaithersburg, MD) DAY ONE
The first day featured invited presentations, reports from LCLUC ST members funded through the LCLUC Research Opportunities in Space and Earth Sciences (ROSES) 2022 selections, and an overview of SARI. The day concluded with poster presentations and lightning talks highlighting recent results from ongoing LCLUC-related research.
Update from the LCLUC Program Manager
The meeting began with welcoming remarks from Garik Gutman, who provided an update on the program’s latest developments and achievements. He highlighted that the socioeconomic component is an integral part of most LCLUC projects. The program has recently expanded to include multisource land imaging, such as the ESA’s Copernicus Sentinel program, regional initiatives, and capacity-building efforts. He also underscored the importance of U.S. missions relevant to LCLUC, which produce spatially coarse resolution daily data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua and Terra platforms and the NASA–National Oceanic and Atmospheric Administration (NOAA) Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (Suomi NPP); spatially moderate resolution data every eight days from the NASA–USGS Landsat-8 (L8) and Landsat-9 (L9) satellites; and very high-resolution data from private companies, such as Planet Inc. and Maxar.
Gutman also discussed how LCLUC investigators are using data from missions on the International Space Station (ISS), e.g., ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS), Global Ecosystem Dynamics Investigation (GEDI), and Earth Surface Mineral Dust Source Investigation (EMIT). He noted the potential of radar observations from the recently launched international Surface Water and Ocean Topography (SWOT) mission – led by NASA and the Centre National d’Études Spatiales [French Space Agency] – and the upcoming NASA-ISRO Synthetic Aperture Radar (NISAR) mission (planned for launch in 2025).
LCLUC in the Broader Context of NASA
Jack Kaye [ESD—Associate Director for Research] gave an update on ESD activities that reflected on NASA’s broad capabilities in Earth Science – emphasizing the agency’s unique role in both developing and utilizing cutting-edge technology. Unlike many other agencies, NASA’s scope spans technology development, research, data provision, and tool creation. Over the past 16 months, NASA has launched several significant missions, including SWOT, Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS), Tropospheric Emissions: Monitoring of Pollution (TEMPO), and Plankton, Aerosol, Cloud, ocean Ecosystem (PACE). This surge in satellite launches highlights NASA’s role in enhancing global observational capabilities. NASA also supports a diverse array of programs, including airborne campaigns and surface-based measurement networks. Initiatives aim to improve the involvement of minority-serving institutions and incorporate open science practices with a focus on enhancing inclusivity and expanding participation. The agency also emphasizes the importance of peer review and collaboration with international and community-based partners. Kaye highlighted NASA’s commitment to producing high-quality, actionable science while navigating financial and operational challenges. This commitment extends to addressing environmental and societal impacts through programs such as Earth Action and by fostering global collaboration.
Sid Ahmed Boukabara [ESD—Senior Program Scientist for Strategy] presented a detailed overview of NASA’s Earth Science to Action Strategy, which aims to increase the impact of Earth science in addressing global challenges. This strategy acknowledges the urgency of global changes, e.g., accelerating environmental shifts, understanding Earth’s interconnected systems, and developing scalable information. NASA’s mission focuses on observing and understanding the Earth system, delivering trusted information, and empowering resilience activities through advanced technologies, partnerships, and innovations. Key principles include amplifying impact through partnerships, engaging a diverse and inclusive workforce, balancing innovation with sustainability, encouraging cutting-edge capabilities, and ensuring robust and resilient processes. The strategy emphasizes collaboration across sectors and international partnerships to leverage Earth observations enhance the value of Earth science for decision-making and policy support. The strategy also highlights the role of land-cover and land-use change activities in supporting objectives and enhancing modeling capabilities.
Thomas Wagner [ESD—Associate Director for Earth Action] outlined NASA’s Earth Action initiative (formerly known as the Applications Program), which focuses on user-centered strategies to address global challenges, e.g., climate resilience, health, and ecological conservation. By integrating applied sciences and leveraging satellite data, the initiative aims to enhance Earth observation capabilities and connect scientific research with practical applications to meet societal needs. The strategy includes a virtuous cycle, where user feedback informs the development of future programs and missions, ensuring that research and technology are aligned with real-world needs. Additionally, Earth Action emphasizes public engagement by offering open-source models and data to enhance understanding and support decision making. Through multisector consortia and problem-solving teams, the initiative addresses urgent and broad-impact issues, fostering innovation and collaboration.
Updates from LCLUC PIs on 2022 ROSES Proposal Selections
Following the programmatic overview presentations, PIs presented updates on research results from LCLUC ROSES 2022 proposal selections. Gillian Galford [University of Vermont] presented on the socioeconomic and environmental dynamics of LCLUC in the Cerrado frontier of Brazil. She presented results from the three main objectives: developing LCLUC detection methods and datasets, characterizing major land-use transitions (LUTs), and understanding the drivers behind these transitions. The research employs remote-sensing and geostatistical methods to track changes, identify “hotspots” of activity, and understand the underlying motivations for land-use changes. The research aims to provide insights that can guide conservation efforts and promote sustainable land use in the region.
Gustavo Oliveira [Clark University] presented “Irrigation as Climate-Change Adaptation in the Cerrado Biome of Brazil.” This project aims to develop methods for analyzing LCLUC data and their socioeconomic impacts, examining the expansion of irrigated agriculture and creating models to inform policy on agrarian development and water regulations. Oliveira highlighted areas of significant deforestation and the rapid growth of irrigated agriculture in the study region – positioning Western Bahia as a model for irrigation in Brazil. He explained that the research outputs include software for time series analysis and publications on land change, contributing to the broader understanding of climate adaptation strategies in the region.
Grant Connette [Smithsonian Institution] presented “Can Improved Stakeholder Representation Prevent Human-caused Mangrove Loss in the Mesoamerican Reef Ecoregion?” He examined the factors contributing to mangrove loss in the Mesoamerican Reef (MAR) ecoregion. Through a combination of Earth observation data, socioeconomic analysis, and community engagement, Connette described how the study seeks to improve the effectiveness of protected areas and inform best practices for mangrove conservation in the MAR ecoregion.
Saurav Kumar [Arizona State University] presented his team’s work, “Exploring the Nexus between LCLUC, Socio-Economic Factors, and Water for a Vulnerable Arid U.S.–Mexico Transboundary Region.” Kumar explained that the project aims to understand how natural and human systems influence LCLUC when constrained by water availability. The data used in this project come from a combination of time series data, theoretical model output, and artificial intelligence techniques. The team also focuses on stakeholder engagement, recognizing the need for comprehensive identification and involvement in addressing complex water resource issues. Kumar explained that the study seeks to predict future LCLUC transitions, assess the theoretical models of different stakeholder groups, and identify policy-relevant leverage points for sustainable water management.
Abena Boatemaa Asare-Ansah [University of Maryland, College Park (UMD)] presented on “The Multisensor Mapping of Refugee Agricultural LCLUC Hotspots in Uganda.” She explained that this study focuses on mapping changes in cropland within refugee-hosting regions using satellite data and deep learning models. Asare-Ansah described how the first year involved evaluating existing cropland maps and initiating new classifications. Future work will refine these maps and connect cropland changes to specific refugee households, aiming to better understand the relationship between refugee populations, food aid, and agricultural practices.
Elsa Ordway [University of California, Los Angeles (UCLA)] discussed her team’s efforts toward “Disentangling Land-Use Change in Central Africa to Understand the Role of Local and Indigenous Communities in Forest Restoration and Conservation.” Ordway reported that the project focuses on mapping land cover and carbon emissions, analyzing the impact of conservation efforts, and exploring potential forest restoration opportunities. She emphasized that this research highlights the critical role of local indigenous communities in forest management and the unintended consequences of conservation projects on land use – see Photo 2.
Photo 2. Some residents of a village neighboring the Dja reserve – part of the dense rain forests that form Africa’s Congo Basin. Interviews and surveys among the area’s local and indigenous communities are used to gather information on forest restoration and conservation. Photo credit: Else Ordway (UCLA) Ordway also presented on the PAN-tropical investigation of BioGeochemistry and Ecological Adaptation (PANGEA), which aims to investigate the biogeochemistry and ecological adaptation of tropical forests that are crucial for global climate regulation and biodiversity. She explained that this study emphasizes the rapid changes occurring in tropical regions primarily due to deforestation and climate change. PANGEA seeks to answer key scientific questions about the vulnerability and resilience of these ecosystems, and how this information can inform climate adaptation, mitigation, and biodiversity conservation efforts.
The ARID Experiment
Andrew Feldman [NASA’s Goddard Space Flight Center (GSFC)] presented on the Adaptation and Response in Drylands (ARID) experiment, a field campaign focused on dryland ecosystems. He described how this project aims to understand the fundamental science of drylands, including water availability, land–atmosphere interactions, climate variability, carbon stocks, and land management. The study involves significant international collaboration and stakeholder engagement, with a particular focus on the Western U.S – see Figure 1. While this project is in planning stages, ongoing efforts will be made to engage with the scientific community, gather feedback, and refine its research themes.
Figure 1. The Adaptation and Response in Drylands (ARID) experiment focuses on studying the characteristics of dryland ecosystems, e.g., water availability, land–atmosphere interactions, climate variability, carbon stocks, and land management. While the experiment is global in scope, it has a focus on the Western U.S., with numerous site locations across the desert Southwest and some in the Pacific Northwest. Figure credit: Andrew Feldman (NASA/UMD) SARI Update and Related Projects
Krishna Vadrevu [NASA’s Marshall Space Flight Center] gave a comprehensive update on SARI, a regional initiative under the LCLUC program that addresses the critical needs of the South/Southeast Asia region by integrating remote sensing, natural sciences, engineering, and social sciences. His presentation covered the initiative’s background, various funded research projects, and their outputs. The diverse SARI projects include studies on forest degradation, agricultural transitions, food security, urbanization, and their environmental impacts. SARI has supported 35 research projects, engaging more than 400 scientists and over 200 institutions that result in significant scientific contributions, including nearly 450 publications, 16 special journal issues, and five books with two additional books pending publication. Vadrevu emphasized the importance of sustainable land use policies informed by LCLUC research and provided details on upcoming meetings. He concluded with information on three ongoing projects funded under the SARI synthesis solicitation – one in South Asia and two in Southeast Asia. Summaries of these projects are highlighted below.
David Skole [Michigan State University (MSU)] leads the SARI synthesis project that spans South Asian countries, with an emphasis on tree-based systems, particularly Trees Outside Forests (TOF). The primary objective is to synthesize existing research to better understand the patterns, drivers, and impacts of TOF on carbon emissions and removals and their role in supporting rural livelihoods. This research is crucial for informing climate change policy, particularly in the context of nature-based solutions and pathways to achieve net-zero emissions. The project combines empirical data with process-based research and policy models to support the development of sustainable landscapes. By integrating biophysical and socioeconomic data, the project team members aim to provide robust, evidence-based contributions to climate mitigation and adaptation strategies, ultimately guiding regional policy decisions.
Son Nghiem [NASA/Jet Propulsion Laboratory] discussed the interrelated dynamics of LCLUC and demographic changes in Southeast Asia under various developmental pressures and climate change. Nghiem explained that the study explores how these factors interact along the rural-to-urban continuum across regions in Cambodia, the Lao People’s Democratic Republic (Laos), Thailand, Vietnam, Malaysia, and parts of Indonesia. In rapidly urbanizing and agriculturally transitioning areas, physical and human feedback processes are becoming non-stationary, leading to unpredictable impacts that challenge traditional policymaking. The study aims to capture both physical patterns (e.g., land-use) and human (socioeconomic) fabrics, integrating these within a framework to assess whether the statistical properties of the time series measured during this study remain constant or change with time.
Peilei Fan [Tufts University] presented the project, “Decoding Land Transitions Across the Urban-Rural Continuums (URC): A Synthesis Study of Patterns, Drivers, and Socio-Environmental Impacts in Southeast Asia.” The project aims to synthesize knowledge through an interdisciplinary approach. It focuses on URCs in 19 cities across eight Southeast Asian countries. It investigates how global urban hierarchies, URC connectivity, and local policies influence land-use change and related ecosystem impacts. By integrating remote-sensing data with climate and ecological models and socioeconomic analysis, the project seeks to advance theoretical understanding of land transitions and provide valuable insights for both scientific research and policymaking.
Poster sessions
Following the presentations, participants gave lightning talks linked to 17 posters, which highlighted recent results from ongoing LCLUC projects and LCLUC-related research from the Future Investigators in NASA Earth and Space Science and Technology (FINESST) and the Inter-Disciplinary Research in Earth Science (IDS) programs. A reception followed. PDF versions of the posters can be accessed on the meeting website.
DAY TWO
The second day of the meeting continued with additional presentations from the LCLUC ROSES 2022 projects and updates from international programs. In addition, the attendees listened to presentations from NASA HQ and NASA Centers, describing various initiatives and data products, such as from the Socio-Economic Data and Applications Center (SEDAC).
Updates from LCLUC PIs on ROSES 2022 Proposal Selections (cont.)
Cascade Tuholske [Montana State University] presented “Modulation of Climate Risks Due to Urban and Agricultural Land Uses in the Arabian Peninsula.” Tuholske explained how this project aims to map LCLUC, assess the effects on extreme humid heat, and characterize the socio-demographics of exposure to heat stress – see Figure 2. Key findings include evidence of a rapid increase in dangerously hot and humid weather – particularly in urban and agricultural areas – and the importance of remote sensing in studying these interactions. Future steps will involve using climate models to predict the effects of LCLUC on heat waves, water stress, and dust storms.
Figure 2. The Ghana Climate Hazards Center Coupled Model Intercomparison Project (CMIP) Phase 6 climate projection dataset map of temperatures exceeding 41 °C (106 °F) [left], future climate projection (SSP) for 2050 [middle], and the difference between the two [right]. Figure credit: From a 2024 paper in the journal Scientific Data Monika Tomaszewska [MSU] provided details on the project, “Institutional Forcings on Agricultural Landscapes in Post-Socialist Europe: Diachronic Hotspot Analysis of Common Agricultural Policy Influences on Agricultural Land Use in Romania 2002–2024.” She explained that the project focuses on how the EU’s common agricultural policy (CAP) programs (e.g., livelihood payments, environmental protections, and rural development projects) have influenced land use changes – see Figure 3. Tomaszewska summarized key findings from the study, which indicates significant changes in crop composition and spatial patterns – with notable decreases in maize and rapeseed areas between 2018 and 2023. She stated that the study aims to understand the diffusion of innovation through CAP enrollments and payments and their impact on agricultural practices in Romania.
Figure 3. Dense time series of Harmonized Landsat Sentinel-2 (HLS) data at 30-m (98-ft) resolution revealing winter and summer crops across Southern Romania in 2018 [top] and 2023 [bottom]. Magenta areas indicate forests, green areas represent summer crops (e.g., maize, sunflower, soy), and blue areas show winter crops (e.g., wheat, barley, rapeseed). Yellow areas indicate very low spring Enhanced Vegetative Index-2 due to snow or persistent clouds at higher elevations. Figure credit: Geoff Henebry (MSU) Xiao-Peng Song [UMD] presented “Energy LCLUC Hotspot: Characterizing the Dynamics of Energy Land Use and Assessing Environmental Impacts in the Permian Basin.” He said that the project aims to assess the environmental impacts of energy-related land-cover and land-use change in the region. Song showed the output from the project, which includes high-resolution LCLUC and geohazard maps that enhance understanding of energy-related environmental impacts and contribute to NASA’s LCLUC program. Results from this study are expected to inform decision makers on societal issues related to oil and gas production and its effects on the environment.
International Partner Program Updates
The International Partners Programs session featured four presentations. Ariane DeBremond [UMD] focused on the Global Land Programme (GLP), which is a comprehensive, global initiative dedicated to understanding and addressing changes in land systems and their implications for sustainability and justice. DeBremond described the program, which coordinates research on land use, land management, and land cover changes,. She emphasized land systems as social-ecological systems and fostering interdisciplinary collaboration to develop solutions for global challenges. The research agenda includes descriptive, normative, and transformative aspects, aimed at characterizing land systems, identifying causes and impacts of changes, and creating pathways for sustainability transformations. GLP also emphasizes the need for new remote-sensing data, improved generalizability, and addressing geographic biases in land system science. Recent program activities include developing a new science plan, identifying emerging themes, and organizing open science meetings. DeBremond ended by announcing that the next GLP meeting is scheduled for November 2024 in Oaxaca, Mexico.
David Skole outlined the efforts of the Global Observations of Forest and Land Cover Dynamics (GOFC–GOLD) Land Implementation Team (LC–IT) in advancing methods and tools for global land cover measurements and monitoring. The LC–IT is primarily focused on developing and evaluating space-borne and in-situ observation techniques to support global change research, forest inventories, and international policy. Skole highlighted the importance of regional networks in coordinating the use of Earth Observation (EO) data, facilitating capacity building, and addressing regional concerns through workshops and partnerships. He also discussed the changing role of EO in responding to climate change and sustainability challenges, emphasizing the need for high-integrity carbon finance and the integration of new data and technologies to support nature-based solutions. He concluded with insights into the BeZero Carbon Rating system, which evaluates carbon efficacy across various projects worldwide and highlights the need for reliable ratings to ensure the credibility of carbon markets.
David Roy [MSU] detailed the work of the GOFC-GOLD Fire Implementation Team, which focuses on improving the accuracy and utility of satellite-based fire monitoring. The team is working to enhance global fire observation requirements, particularly for small fires and those with low Fire Radiative Power, which are often underrepresented in current datasets. Roy emphasized the need for continuous development and validation of satellite-derived fire products, including a robust quality assurance framework. The team advocates for standardized methods to validate fire data and harmonize information from various satellite missions to create a more comprehensive global fire record. Roy also highlighted the need for new satellite missions with advanced fire detection capabilities and the use of machine learning to improve fire modeling and data accessibility to provide more accurate and actionable data for global change research and fire management.
Alexandra Tyukavina [UMD] presented on Land Product Validation (LPV) subgroup of the Committee on Earth Observation Satellites (CEOS) Working Group on Calibration and Validation (WGCV). The LPV is focused on updating land cover validation guidelines, incorporating new literature and data from the past 20 years. Tyukavina emphasized the need for rigorous accuracy assessment in land cover studies, highlighting the need to improve methods and reporting as well as accuracy. She also discussed the outcomes of a NASA-sponsored joint cropland validation workshop co-hosted by CEOS and GEOGLAM, which aimed to set minimum requirements for cropland validation and develop community guidelines. Tyukavina concluded her presentation with a call for reviewers to assist in updating these guidelines.
LCLUC Program Crosswalks
The Crosswalks, a LCLUC program, featured six presentations. Frederick Policelli [GSFC] presented on the CSDA program, which supports the ESD by acquiring and utilizing commercial, small-satellite data to enhance Earth science research. Launched as a pilot in November 2017, the program became a sustained effort in 2020, transitioning from Blanket Purchase Agreements to Indefinite-Delivery, Indefinite-Quantity contracts for better data management. The CSDA also introduced a tiered End User License Agreement for data usage and focuses on long-term data preservation and broad access. Policelli described how program participants collaborate with U.S. government agencies and international partners, adhering to the 2003 U.S. Commercial Remote Sensing Policy. He discussed recent developments, which include onboarding new commercial data vendors and expanding the program’s capabilities.
Jacqueline Le Moigne [ESTO] provided details on NASA’s Earth Science Technology Office’s (ESTO), Advanced Information Systems Technology (AIST) program and its development of Earth System Digital Twins (ESDT). She explained that ESDTs are intended to be dynamic, interactive systems that replicate the Earth’s past and current states, forecast future states, and assess hypothetical scenarios. They should integrate continuous data from diverse sources, utilize advanced computational and visualization capabilities, and rely heavily on machine learning for data fusion, super-resolution, and causal reasoning. Le Moigne added that ESDTs enhance our understanding of Earth systems, their interactions, and applications, particularly in the context of climate change. She highlighted various use cases (e.g., wildfires, ocean carbon processes, the water cycle, and coastal zones) demonstrating the potential of ESDTs to support decision-making and policy planning.
Roger Pielke [University of Colorado, Boulder] discussed the critical need to incorporate land-use data into weather forecasts and climate models to improve understanding of and address climate change. He emphasized the distinction between weather and climate, explaining that climate is dynamic and influenced by both natural and human factors. Pielke critiqued the focus of the approach of the Intergovernmental Panel on Climate Change (IPCC) on carbon dioxide (CO2) emissions as the primary driver of climate change, arguing that LCLUC should be considered as an equally important climate forcing. He illustrated how changes in land cover, such as in Florida and the Great Plains, can significantly impact local and regional climate, sometimes rivaling the effects of CO2. Pielke called for integrating land-use data into climate models across all scales, suggesting that NASA’s programs could lead in this effort to enhance climate forecasting and policymaking.
Brad Doorn [NASA HQ—Program Manager, NASA’s Earth Action Agriculture Program] presented an overview of the program’s status and strategic direction. He emphasized the importance of partnerships, particularly with the USDA, in advancing initiatives like Climate Smart Agriculture. NASA’s role in global food security and supply chain monitoring was highlighted through the activities of NASA’s Harvest and Acres, agriculture and food security consortia, both of which enable collaborative research to codevelop data-driven products and services and enhance predictive models to meet end-user needs. Doorn stressed the need for strong collaborations with the private sector, non-governmental organizations, and other space agencies to accelerate the development of agricultural solutions. He also highlighted the significance of integrating NASA’s capabilities in weather, water, and crop monitoring systems to provide comprehensive tools for stakeholders. Doorn explained that the program aims to bridge gaps between NASA’s observations and practical applications in agriculture, leveraging tools, such as the Global Crop Monitor, and integrating predictive capabilities for improved future planning.
Rachel Paseka [NASA HQ] presented on NASA’s open science funding opportunities with a focus on the ROSES F.7 element, which supports widely used open-source software tools, frameworks, and libraries within the NASA science community. She described the program, which offers two types of awards: Foundational Awards for projects that impact multiple divisions and Sustainment Awards for those affecting one or more divisions of the Science Mission Directorate. Foundational Awards are cooperative agreements lasting up to five years. Sustainment Awards can be grants or cooperative agreements lasting up to three years. Paseka also emphasized the importance of open science, highlighting various tools, data challenges, and collaborative efforts, including artificial intelligence (AI) models for tasks (e.g., flood detection and burn scar mapping). She concluded with an introduction of the Science Explorer (SciX) digital library and the Science Discovery Engine, both of which facilitate access to NASA’s open science data and research.
Alex de Sherbinin [SocioEconomic Data and Applications Center (SEDAC), Center for International Earth Science Information Network (CIESIN), Columbia University] provided an overview of datasets and research related to climate risk, social vulnerability, and environmental change. de Sherbinin outlined the SocioEconomic Data and Applications Center (SEDAC) mission areas, which include population land-use and emissions, mitigation, vulnerability and adaptation, hazard vulnerability assessment, poverty and food security, and environment and sustainable development. He highlighted key SEDAC datasets (e.g., LCLUC and Urban and Settlements Datasets) and their use in analyses. SEDAC data and services are accessible via tools, such as Global Forest Watch and Google Earth Engine. de Sherbinin also covered recent research citations, the impact of studies on biodiversity and urban changes, and SEDAC’s contributions to open science and training initiatives. He also emphasized the importance of integrating remote sensing data with social and health sciences for comprehensive environmental analysis.
DAY THREE
The third day of the meeting focused on satellite missions and data product updates and a LCLUC program feedback session on emerging science directions.
Landsat Mission Updates
Chris Neigh [GSFC—Landsat 9 Project Scientist] provided an overview of the status of the current Landsat missions that are in orbit (L7, L8, and L9]. He reported that all L9 Level-1 requirements have now been met and exceeded. OLI-2, the updated sensor for L9, transmits data at 14 bits compared to the L8 12-bit transmission, allowing for finer data resolution. OLI-2 offers a 25–30% improvement in the signal-to-noise ratio for dark targets, leading to enhanced data quality. The Thermal Infrared Sensor on L9 (TIRS-2) has also been improved over TIRS on L7 and L8, to mitigate stray light issues, enhancing the reliability of thermal data. Additionally, OLI-2 supports better atmospheric corrections through split window techniques using both of its channels. With two operational observatories, L8 and L9, equipped with advanced radiometry, data is provided every eight days, ensuring consistent and precise Earth observation capabilities. The radiometric and geometric performance of L9 is excellent from a Calibration/Validation (Cal/Val) perspective.
While all systems are nominal for L8 and L9, Neigh reported that L7 is nearing the end of its operational life. He stated that the Landsat Cal/Val team will continue its work for the duration of the mission as a joint USGS–NASA effort. He also highlighted the need for a global Analysis Ready Data framework and the development of proxy and simulated datasets to support the next generation of Landsat missions. Neigh ended by reporting that opportunities exist for scientists to share their high-profile, Landsat-based research through the program’s communications team.
Bruce Cook [GSFC—Landsat Next Project Scientist] provided an update on the Landsat Next mission, an ambitious extension of the Landsat Program under the Sustainable Land Imaging (SLI) program, which will be a joint effort by NASA and the USGS. Cook explained that this mission aims to greatly enhance Earth observation by launching three identical satellites, each equipped with advanced Visible Shortwave Infrared (VSWIR) and Thermal Infrared (TIR) instruments. He described how the Landsat Next constellation will improve the temporal revisit time to six days – a major advancement from the 16-day interval of L8 and L9. In order to achieve this revisit time improvement, each satellite will carry a Landsat Next Instrument Suite (LandIS) that will capture 21 VSWIR and five thermal infrared bands, which will have better spatial resolutions compared to previous Landsat missions. It will have ground sample distances of 10–20 m (33–66 ft) for visible, near infrared, and shortwave infrared bands and 60 m (197 ft) for atmospheric visible SWIR and thermal infrared bands.
Cook continued with details on LandIS, stating that Landsat Next will record 26 bands in total – 15 more than the currently active L8 and L9 missions. The LandIS will include refined versions of the 11 Landsat “heritage” bands to ensure continuity, five new bands similar to the ESA’s Copernicus Sentinel-2 mission for improved data integration, and 10 new spectral bands to meet evolving user needs and applications. Additionally, Landsat Next will have a water vapor band for atmospheric correction without needing data from other satellites. LandIS will collect all bands nearly simultaneously, reducing illumination variations between bands and aiding in cloud detection and the generation of multispectral surface reflectance and thermal emission products (e.g., evapotranspiration).
Cook said that Landsat Next is in Phase A of its mission life cycle. The current focus is on defining science requirements and converting them into specific hardware and system designs. He said that this phase is crucial for setting up the subsequent phases. Phase B will involve preliminary design and technology completion, and later phases leading to the final design, fabrication, and launch of the satellites. He ended by emphasizing that the introduction of a new reference system and a lower orbit will further enhance the satellites’ ability to capture high-quality data, leading to a significant advancement in Earth observation technology.
Harmonized Landsat–Sentinel Project Update
Junchang Ju [GSFC] discussed the Harmonized Landsat Sentinel-2 (HLS) project, which aims to integrate data from the L8, L9, Sentinel-2A, and Sentinel-2B satellites for more frequent and detailed Earth observations. Currently the MODIS climate modeling grid data is used for atmospheric correction – see Figure 4. The newer HLS version will use VIIRS-based water vapor and ozone fields instead of MODIS data for atmospheric correction using the land surface reflectance code. Ju explained how HLS adopts the Military Grid Reference System used by Sentinel-2. HLS V2.0 corrects a mistake in view angle normalization of earlier versions (V1.3 and V1.4). Atmospherically corrected data from Hyperion (an instrument on NASA’s Earth Observing–1 extended mission) is used to make bandpass adjustments. A temporally complete global HLS V2.0 dataset has been available since August 2023. He also highlighted the availability and access of HLS data through various platforms – e.g., EarthData and WorldView, in Amazon Web Services and the project’s future plans, such as enhancing vegetation indices, cloud mask improvements, and 10-m (33-ft) improved resolution product.
Figure 4. Sentinel-2B image over the Baltimore-Washington area on April 7, 2022 [left]. Example true color images of top of atmospheric reflectance and the corresponding HLS surface reflectance are shown [right]. The atmospheric ancillary data used in the surface reflectance derivation was from the MODIS Climate Modeling Grid (CMG) data before the transition to VIIRS was implemented. Figure Credit: Junchang Ju (GSFC) NISAR Update
Gerald Bawden [NASA HQ—NISAR Program Scientist] delivered a presentation about the NISAR mission, which is a collaborative effort between NASA and the ISRO. He explained that NISAR will be a dual-frequency Synthetic Aperture Radar satellite using 24-cm (9-in) L-band and 10-cm (4-in) S-band radar frequencies. This dual-frequency approach will enable high-resolution imaging of Earth’s surface, offering near-global land and ice coverage with a 12-day repeat cycle for interferometry and approximately 6-day coverage using both ascending and descending orbits. The mission’s goals include providing valuable data to understand and manage climate variability, carbon dynamics, and catastrophic events (e.g., earthquakes). Specific applications include monitoring deformation, measuring ice sheet velocities, observing sea-ice deformation, and assessing biomass and crop disturbances. Bawden discussed NISAR’s data products, which will include raw radar data (Level-0) and geocoded single-look complex images and multi-look interferograms (Level-2). He stated that these data products will be crucial for various research and practical applications, including ecological forecasting, wildfire management, resource management, and disaster response. NISAR’s data will be openly accessible to the global scientific community through the Alaska Satellite Facility Data Active Archive Center. Initially planned for early 2024, the NISAR launch has been delayed to 2025. Bawden reported that NISAR will undergo a three-month commissioning phase after launch – before starting science operations. He also emphasized NASA’s commitment to open science, with NISAR’s data processing software and algorithms being made available as open-source tools, accompanied by training resources to facilitate their use.
Land Surface Disturbance Alert Classification System Update
Matthew Hansen [UMD] focused on the Land Surface Disturbance Alert (DIST-ALERT) classification system, designed for near-real-time global vegetation extent and loss mapping. He described the DIST-ALERT system, which uses HLS data, combining inputs from L8, L9, Sentinel-2A, and -2B to achieve a high-revisit rate of approximately 2–3 days at a 30-m (98-ft) resolution. DIST-ALERT operates with a primary algorithm that tracks vegetation loss through time-series analysis of fractional vegetation cover (FVC) and a secondary algorithm that detects general spectral anomalies. The system integrates drone data from various biomes to build a k-nearest neighbors model that is applied globally to predict FVC at the HLS-pixel scale. Hansen explained that DIST-ALERT monitors disturbances by comparing current vegetation fraction against a seasonal baseline, capturing changes such as forest fires, logging, mining, urban expansion, drought, and land conversion. He concluded by highlighting some case studies, including analysis of forest fires in Quebec, Canada, logging in the Republic of Congo, and gold mining in Ghana. He also said that the team released an improved version (V1) in March 2024, following a provisional release (V0) that was operational from February 2023 to February 2024.
State of LCLUC Report
Chris Justice [UMD—LCLUC Program Scientist] provided comments on the current state of the LCLUC program, followed by an open discussion to gather feedback. He emphasized the need for PI’s to effectively communicate their work to the broader community and highlighted the recent LCLUC initiative to create policy-oriented briefs based on research results, demonstrating its relevance to the Earth Science to Action Strategy. Justice acknowledged that challenges lie ahead for the LCLUC program – particularly considering the anticipated resource constraints in the coming year. He noted that the program plans to strengthen its position by forming partnerships with other ESD program elements and increasing involvement across NASA Centers. The program is also emphasizing the use of advanced remote sensing technologies, AI, and deep-learning data analytics, to deliver more precise and actionable insights into land dynamics contributing to better decision-making and policy development in land management and environmental conservation.
Justice also suggested the need for better integration between different scientific fields (i.e., between LCLUC and climatology, climate mitigation, and adaptation) to enhance interdisciplinary research and collaboration. He cited the current program solicitation (e.g., ROSES 2024 A.2) as an example of this integration and the recent IDS solicitation in ROSES 2022 A.28. Justice reminded participants that the solicitation focuses on collaborating with AIST to develop Land Digital Twins that incorporate available remote sensing data time series as non-static boundary conditions in weather forecast and climate models. Improvements in model forecasts and climate simulations will highlight the importance of accounting for LCLUC in these models – advancing the goals of the IPCC.
Conclusion
Garik Gutman concluded the meeting by summarizing key points raised about data management strategies, educational outreach efforts, LCLUC research outside the U.S., and current and upcoming projects. He highlighted that the program requires PIs to provide metadata for data products generated under NASA-funded projects, ensuring these resources are freely and openly accessible to the scientific community. Gutman acknowledged the challenges of conducting research and fieldwork in foreign countries due to funding and, at times, security issues, but praised the PIs for their efforts to expand the program globally. He also noted the program’s outreach efforts, which include engaging PIs, collaborators, and interested parties through its website, newsletters, webinars, and policy briefs. LCLUC emphasizes the importance of effectively communicating research results and encourages researchers to share their findings via NASA’s Earth Sciences Research Results Portal to enhance visibility among leadership and communication teams.
Gutman ended his presentation by providing details about forthcoming meetings in the Philippines, South Korea, and Turkey, as well as workshops scheduled for 2024, which will involve various stakeholders in the LCLUC community and are vital for fostering collaboration and advancing the program’s goals. He concluded by recognizing the contributions of long-term supporters and collaborators, reaffirming the program’s ongoing commitment to advancing Earth observation and land-use science.
Overall, the 2024 LCLUC meeting was highly successful in fostering collaboration among researchers and providing valuable updates on recent developments in LCLUC research. The exchange of ideas, integration of new data products, and discussions on emerging science directions were particularly impactful, contributing to the advancement of the LCLUC program’s goals.
Krishna Vadrevu
NASA’s Marshall Space Flight Center
krishna.p.vadrevu@nasa.gov
Meghavi Prashnani
University of Maryland, College Park
meghavi@umd.edu
Christopher Justice
University of Maryland, College Park
cjustice@umd.edu
Garik Gutman
NASA Headquarters
ggutman@nasa.gov
Share
Details
Last Updated Jan 09, 2025 Related Terms
Earth Science View the full article
-
By NASA
Earth Observer Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 27 min read
Summary of the Third Annual AEOIP Workshop
Introduction
The Applied Earth Observations Innovation Partnership (AEOIP) was established in 2018 to facilitate knowledge coproduction and optimization of NASA Earth observations that can be used by natural resource managers for decision making. Through continued iteration and reflection, coproduction brings together stakeholders to share responsibilities and the completion of activities towards a common goal. AEOIP enables strong collaborations between NASA and the U.S. Forest Service (USFS), along with growing participation from U.S. Geological Survey (USGS), Bureau of Land Management (BLM), and other federal land management agencies.
AEOIP has held several previous meetings: the first was a Joint Applications Workshop on Satellite Data for Natural Resource Management held April 29–May 2, 2019, reported in an Earth Observer article, “Summary of the USFS–NASA Joint Applications Workshop on Satellite Data for Natural Resource Management.” The group met again virtually in 2020 during PitchFest. In 2022, a virtual workshop on Integrating Remote Sensing Data for Land Management Decision-Making took place March 23–24, 2022. In 2023, the AEOIP workshop took place April 25–27, 2023, with a hybrid format – the in-person participants met at the USFS Geospatial Technology and Applications Center (GTAC) in Salt Lake City, UT. The 2023 workshop focused on Addressing Land & Water Monitoring Needs Using Remote Sensing Data.
These workshops have been designed to build connections between participants across the research-to-applications spectrum with subject matter experts from a variety of federal agencies and other affiliations to continue to promote interagency collaboration within the Earth Observations (EO) applications field. This goal is accomplished using interactive panels and guided discussion sessions that highlight new tools and techniques, promote NASA EO data product uptake, and foster connections between data providers and data users.
2024 Workshop Overview
The most recent AEOIP workshop took place April 23–25, 2024, with a hybrid format. The in-person participants met in Ann Arbor, MI. The three-day event had a similar structure to its predecessors but with a wildland fire management theme. Altogether, 135 people participated in the workshop, with 77 attending in person and 58 virtually – see Photo 1.
Photo 1. Participants at the 2024 AEOIP workshop. Photo credit: AEOIP Meeting Objectives
The workshop objectives were to:
meet AEOIP’s mission by providing a forum for building new relationships among Earth observations data providers, users, and stakeholders; gather and/or codevelop “shovel-ready” ideas to better leverage Earth observations to meet science and management priorities of U.S. land and natural resource management agencies; gather needs for and/or develop educational materials to support the use of existing EO training resources for fire management; and gather ideas for the 2025 workshop and other AEOIP activities. Breakout Sessions
A large segment of this workshop was dedicated to four concurrent topical breakout sessions – referred to in this report as Breakout Sessions A–D. The topics covered in each breakout session are listed below, along with the name(s) of those who facilitated discussion.
Breakout Session A: Fuels, Wildland Fire Emissions, Carbon & Climate – Andy Hudak [USFS] and Edil Sepulveda Carlo [NASA’s Goddard Space Flight Center (GSFC)/Science Systems and Applications Inc. (SSAI)]; Breakout Session B: Prescribed Fire Planning & Management – Nancy French [Michigan Tech Research Institute (MTRI)], Birgit Peterson [USGS], and Jessica Meisel [University of Idaho]; Breakout Session C: Fractional Vegetation Cover Products & Decision Making – Tim Assal and Jake Slyder [both U.S. Department of Interior, BLM], and Liz Hoy and Amanda Armstrong [both at GSFC]; and Alexis O’Callahan [University of Arkansas]. Breakout Session D: Post-fire Effects & Recovery: Assess, Predict, Remediate, and Monitor – Mary Ellen Miller [MTRI]. All of the breakout groups met on each day of the meeting. On the morning of the first day, the facilitators of each group gave brief “elevator pitches” about each breakout topic, and participants selected a topic for focus. After that, a block of time each day was dedicated to breakout activities and discussions. Participants were asked to focus on different aspects of the topic each day. In the afternoon of the first day, each group focused on identifying needs and challenges in the area being discussed – with a brief report-out at the end of the day. On the afternoon of the second day, the focus was on data availability and solutions – i.e., finding ways to overcome obstacles to making data more readily available to users – again with a brief report- out at the end of the day. On the morning of the third day, there were topical presentations. Each group worked to synthesize their three days of discussions and chose a representative to give a summary report during the closing plenary later that morning.
Workshop Summary
The remainder of this article presents highlights from each day of the workshop. This includes the most important presentations given during the meeting and those given during the breakout sessions. The report also includes highlights from training breakouts given on the second day of the workshop and a summary of a prescribed fire field trip, which took place the day before the workshop and visited two locations – see Optional “Field Trip” for AEOIP Workshop Participants to learn more.
Optional “Field Trip” for AEOIP Workshop Participants
On April 22, 2024, an optional field trip was offered that featured two sites demonstrating prescribed fire in Michigan. For the first stop on the trip, Kevin Butler [Washtenaw County—Natural Areas Preservation Program Stewardship Supervisor] gave a tour of a prescribed fire site in Park Lyndon, a county park in the northwest part of Washtenaw County, MI. The park is being restored to maintain native species using prescribed fire as invasive species control. The intent of these efforts is to restore oak meadows and preserve over 500 species of plants across fens, marshes, ponds, forest, and prairie lands.
On the second leg of the trip, Tina Stephens [City of Ann Arbor—Volunteer and Outreach Coordinator] led a tour of Furstenberg Nature Area, in the city of Ann Arbor, MI. She highlighted the importance of prescribed burning to achieve ecological benefits. The 0.15-km2 (38-acre) park contains wetlands, woodlands, prairie, and oak savanna. Since the mid-1990’s, Natural Area Preservation staff and volunteers have maintained those ecosystems through controlled burns and invasive shrub removal. The second tour stop included a small prescribed fire demonstration – see Photo 2.
Photo 2. Ann Arbor park staff conduct a prescribed fire demonstration for workshop participants during the Furstenberg Nature Area tour portion of the AEOIP field trip. Photo credit: Joseph Paki DAY ONE
On the first day, Kira Sullivan-Wiley [Pew Institute] gave a plenary presentation, in which she discussed the value of coproduction, which in the context of AEOIP can be described as honoring the generative capacity of others as a means of optimizing the use of Earth by natural resource managers for decision making – see Photo 3. The benefits of this approach include cost reduction, tracking new ideas, and empowering marginalized voices.
The first block of breakout sessions also occurred during the afternoon of the first day, along with a short report-out. In light of the keynote discussion on coproduction, deliverables from this meeting’s breakout sessions can be seen as coproduced, new or improved conduits between NASA and land-managing entities.
After the keynote, representatives of government agencies (NASA, USFS, and BLM) presented their respective agency’s perspectives. The manager of a nearby state park in Michigan followed with a local perspective. A series of short presentations in the late afternoon featured various program highlights from NASA’s Earth Science Division, which are not detailed in this report – see workshop agenda for list of programs and speakers.
Notable Presentations
In addition to Kira Sullivan–Wiley’s keynote (described above), Christina Moats-Xavier [NASA Headquarters, Earth Action Program—Program Manager for Mission Engagement] shared NASA’s perspective, focusing on NASA’s Earth Science-to-Action strategy, which aims to increase the impact of scientific data. NASA’s Applied Science Program is now included under the broader umbrella of the new Earth Action program element of NASA’s Earth Science Division. This strategy has three pillars: 1) scaling existing efforts; 2) building bridges; and 3) focusing on the user. By collaborating with NASA, AEOIP can address real-world challenges to develop solutions that benefit society. Overall, the presentations on the first day highlighted the importance of collaborative, user-centered approaches and community engagement in addressing environmental challenges.
Everett Hinkley and Frenchy Morisette [both USFS] provided a practitioner’s perspective. They discussed USFS efforts to address climate adaptation, wildfire management, and incorporation of Indigenous traditional ecological knowledge. They also emphasized the application of artificial intelligence/machine learning (AI/ML) for mapping and remote sensing tools.
Both Jake Slyder and Tim Assal described their respective government agency’s management of vast (mostly western) land areas and use of remote sensing for post-fire emergency stabilization and integration with the Assessment, Inventory, and Monitoring (AIM) program.
Kevin Butler offered more of a local perspective as he discussed land stewardship in Michigan. He emphasized the importance of community involvement and respecting natural ecosystems, especially fire-dependent ones, at the local level.
Photo 3. Kira Sullivan-Wiley [Pew Institute] presents on co-production of knowledge during the first day’s plenary session. Photo credit: AEOIP DAY TWO
The presentations on the second day of the workshop highlighted the opportunities that Earth observing satellite data presents for natural resource management applications. Five presenters contributed to the panel discussion, titled “Communicating and Soliciting End User Needs: Past, Present and Future.” The second – longer – block of breakout sessions also occurred with a short report-out at the end of the day. A poster session ran concurrently with the report-outs. While this session is not described in this report, it afforded participants an opportunity to showcase their Earth observation related projects and/or interact with their peers. Highlights from the day follow below.
Notable Presentations
Pontus Olafsson [NASA’s Marshall Space Flight Center] and Natasha Sadoff [NASA HQ—Satellite Needs Program Manager] presented on the Satellite Needs Working Group (SNWG), which provides a coordinated approach to identify and communicate federal satellite Earth observation needs and develop solutions based on Earth observation data. The speakers explained that as part of this effort, SNWG facilitates a biannual survey to all civilian federal agencies. SNWG provides federal agencies a path to coordinate Earth observing needs and a mechanism to develop actionable solutions for decision makers. Solutions cover thematic areas, including air quality, land use/land cover, and water resources. They noted that NASA is also making a greater effort to engage with agency partners in the co-development of new solutions that are useful, accessible, and actionable.
Alison York [University of Alaska Fairbanks] spoke about the Joint Fire Science Program (JFSP) and Fire Science Exchange Network (FSEN). JFSP’s main function is to maintain and grow a data repository and community based on fuels, fire behavior, fire ecology, and human dimensions. The goal is to help enable informed, actionable change by policy makers and land managers with the best available scientific support. York then discussed the FSEN, which acts as a mechanism to collate research needs from a collection of regional fire exchanges. The syntheses of data and data needs provides more effective understanding and management of fire.
Training Breakout Session Takeaways
On the second day, the four breakout sessions met, beginning with four short (25-minute) trainings. The speakers each gave half-hour presentations, which they repeated twice during the hour dedicated to the training breakouts, allowing participants to engage in two of the training breakouts if desired.
Pete Robichaud [USFS] discussed training opportunities for modeling post-fire hydrological response using the Water Erosion Prediction Project (WEPP). Soil burn severity is first assessed with remote sensing and then field verified. A subsequent soil burn severity map can be created to give details on physical features, e.g., ash color, ash depth, fine roots, soil structure, water repellency, and ground cover. This resource can be used to create a risk assessment table of probability and consequence parameters. Following the risk assessment, the Forest Service Water WEPP suite of tools can be used to model the landscape. The WEPP suite includes both hillslope and watershed modeling tools. The final step in the Burned Area for Emergency Response (BAER) program is to implement and monitor solutions.
Rupesh Shretha [Oak Ridge National Laboratory (ORNL), Distributed Active Archive Center (DAAC)] discussed the Earth Observing System Data and Information System (EOSDIS) DAACs, which are collocated with centers of science discipline expertise and archive and distribute NASA Earth Science data products. The ORNL DAAC archives and distributes terrestrial ecology data, particularly data from field and airborne campaigns. The Terrestrial Ecology Subsetting & Visualization Services (TESViS) – formerly MODIS–VIIRS subsets tool – provide subsets of satellite data in easy-to-use formats that are particularly valuable for site-based field research. The Ecological Spectral Information System (ECOSIS) integrates spectral data with measurements of vegetation functional traits (i.e., species, foliar chemistry). ECOSIS allows users to submit spectral data and return a citable DOIs. ECOSIS also provides users application programming interface (API)-based methods to retrieve thousands of field spectra.
Jake Slyder discussed the use of remote sensing for efficient resource management over vast tracts of land with limited human and financial resources. He explained that while the vast collection of remotely sensed data makes it challenging to effectively exploit, Google Earth Engine (GEE) has become an important tool in leveraging remotely sensed information to address BLM management questions. The Change and Disturbance Event Detection Tool (CDEDT), a GEE-based application, allows users to detect and develop vector geospatial products to identify changes and disturbances to surface cover between two dates of observations [10 m (~33 ft) resolution] from the European Space Agency’s (ESA) Copernicus Sentinel-2 mission. Slyder said that the Version 2 (V2) beta product includes the National Agriculture Imagery Program (NAIP) and ESA Copernicus Sentinel-1 SAR Imagery. CDEDT supports a range of BLM monitoring applications, including disaster events, energy development, forest disturbances, and seasonal patterns and processes (e.g., vegetation, water cover). The CDEDT tool is publicly available and does not require any license or special software.
DAY THREE
The third day was dedicated to the final block of the breakout sessions and a final plenary, where a representative from each breakout group gave five to seven minute summaries of their discussions throughout the meeting. The overview was followed by a meeting wrap-up and adjournment. The sections below summarize the topical presentations given on day three and encapsulate the three days of discussions.
Breakout Session A: Focus on Carbon
The carbon breakout aimed to inform participants about carbon-related EO initiatives and spark discussion about user needs.
Aaron Piña [USFS] spoke about the Forest Service’s broad base of applied research that spans wildfire weather and behavior to dynamics of the smoke produced – see Photo 2. Recent assessments have been made for wildland fire, controlled burn smoke, and remote air monitors. Piña spoke about Bluesky Playground, a community-driven tool aimed at providing the public with information on fuels and smoke modeling. These data have been used to identify important indicators for fires and fuels (e.g., vertical plume structure).
Piña then discussed a fusion Fire Radiative Power (FRP) data product [MOD19A2] that combines data from four sources – the Visible and Infrared Scanner (VIRS) on the former Tropical Rainfall Measuring Mission (TRMM), the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (Suomi NPP), the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua platforms, and the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product.
A group discussion followed Piña’s presentation, during which several participants expressed concerns about the continuity of VIIRS and the other observations that are used in the fusion FRP product. Another topic of discussion was the potential of remotely sensed data to improve the characterization of duff (decaying vegetation) in satellite data products. NASA’s Tropospheric Emissions: Monitoring of Pollution (TEMPO) mission data have also been used to characterize the vertical structure of smoke plumes; however, these efforts have thus far been limited by personnel knowledge gaps as well as raw data formats.
Chris Woodall [USFS] discussed the growing emphasis on carbon metrics for a variety of sectors and applications. The USFS wants to work in tandem with other entities, especially federal organizations, to maximize efforts and workstream. USFS is seen as the in-situ carbon observer, while NASA is the remote sensor, and USGS is the lateral flux assessor. The coproduction of knowledge and data regarding carbon among these agencies is an iterative process. The USFS investment in improved Measurement, Monitoring, Reporting, and Verification (MMRV) of greenhouse gas (GHG), for example, can expand soil and land-use inventories to improve alignment with remote-sensing platforms. Challenges to implementing this cooperative approach to collecting carbon metrics include creating a workflow that incorporates a wealth of existing resources and accruing data from multiple federal agencies concerned with ecosystem carbon management to create scalable GHG knowledge. The coproduction, iteration, and dissemination of knowledge should be a major focus with all interested parties – not just the aforementioned federal agencies.
Sydney Neugebauer [NASA’s Langley Research Center] and Melanie Follette-Cook [GSFC] discussed NASA’s capacity building initiatives, which are aimed at developing and strengthening an organization or community’s skills, abilities, processes, and resources to enable them to survive, adapt, and thrive in a fast changing world. The DEVELOP, Indigenous Peoples Initiative, and SERVIR programs (all under the Earth Action program element) work towards capacity building through co-development projects, collaborative training, and data availability. The NASA Applied Remote Sensing Training (ARSET) program has offered over 100,000 training sessions since it was created in 2009 – primarily to international participants. The trainings are free and virtual for individuals interested in using remotely sensed data in a diverse suite of environmental applications. All content is archived. NASA’s Carnegie-Ames-Stanford Approach (CASA), which has contributed to global carbon dioxide (CO2) sequestration datasets for the past 30-years, will be upgraded to incorporate CO2 fluxes. The NASA cooperative interagency U.S. Greenhouse Gas Center is also looking for feedback on its beta portal.
The group discussions that followed identified and addressed AEOIP needs and questions (e.g., obtaining carbon and smoke emission estimates from prescribed wildfires and ensuring global satellite fire record continuity). Participants also identified the need for near real-time active fire and burned area mapping at medium scale and for continuity of these measurements. The group is interested in engaging federal agency end users to obtain feedback on their capacity to facilitate and elucidate capacity needs. Prominent challenges going forward include preparing for the end of the Terra and Aqua missions, which will include the decommissioning of MODIS, and ensuring the continuity of VIIRS, which is being used to allow for continuity of MODIS data products. One of the greatest unknowns identified was being able to determine wildfire fuel conditions in near-real time, and the ability to constrain estimates of fuel attributes to a focused fire event.
Andy Hudak discussed the diverse coalition of practitioners who manage more than just carbon (e.g., forest health, harvest, fires). Of the diverse group of stakeholders, Indigenous Tribes are at the cutting edge using lidar for carbon assessment. While Forest Inventory and Analysis plots are used for bias correction, they do not provide synoptic coverage for accurate carbon assessments. Lidar and other passive remote sensing satellite data provide a way to address this need. Tree lists are also highly valuable to carbon and forest managers for diverse applications. Application-specific metrics (e.g., timber volume, basal area, and density) can be weighted based on stakeholder priorities, as quantified from stakeholder surveys, to optimize data products.
Sarah Lewis [USFS] explained the needs and applications of Earth observations in a post-fire environment. The information needs to be available quickly, integrated into effective decision-making tools, and delivered in a functional product. Information is needed on water, soils, vegetation recovery, and habitat – all major metrics of interest in a data product. Areas of concern during post-fire management for water quality and erosion control include ash and soil–water transport. In addition, major concerns exist for timely data acquisition and processing, along with the fate and transport mapping of post-fire ash. Data products would benefit from end-user input to optimize relevance and accessibility of decision ready maps, models, and trusted recommendations.
The group identified the need for heavy carbon fuels and duff estimates for ecological modeling, which is critical to achieving a better understanding of smoke and carbon emissions. The heavy carbon fuel and duff estimates may be achieved through multiple means but may be most accessible currently through a new layer in the LANDFIRE database. They also identified the need for more post-fire data for model training and integration of active remote sensing data. Finally, the group identified the need for more regulation and research on prescribed fire emissions and disturbance.
Breakout Session B: Prescribed Fire
This breakout session focused on prescribed fires. Some of the major objectives and needs that emerged from this session were improved access to data, cultivating deeper public trust in the practice, creating networks of future coproduction, and assessing end-user needs, burn maps, and securing funding. The discussions emphasized knowledge and awareness gaps as a major impediment to prescribed fire implementation. Uniform capacity building is an ideal approach to engage stakeholders at a reference level appropriate to their background to optimize equity and efficacy.
Another issue that came up during discussion is that land management professionals do not have the time or resources to stay current with data sources and analysis techniques. The participants suggested the creation of a “Fire Science Library” as an iterative data tool to organize and present fire knowledge in an actionable and streamlined manner for public land managers. The interface would allow practitioners to filter unique categories (e.g., role, scope, region, ecosystem type, weather, agency affiliation) to provide the ability to search, modify, and maintain fire science knowledge as it evolves. This interface would also provide provenance through references to papers, justification for methods, and case studies. The library would guide and streamline data collection, analyses, and interpretation workflows that are needed for holistic prescribed fire planning and monitoring based on tangible needs from fire professionals.
The virtual library tool would provide a user with a fire-science knowledge graph, which is an organized representation of real-world entities and their relationships that could quickly connect fire-related management with current research questions concerning data products, processing methods, and data sources along with references and case studies. Information provided in the knowledge graph would need to be context specific but not overly prescriptive to avoid constraining users to a rigid workflow that is more common in basic data portals. Knowledge graphs are associated with semantic web technology that forms a modern version of a database. The tool establishes relationships between entities that promote new relationship discovery, search, and modification. It also provides a foundation on which other applications can be built, such as prescribed fires in the southeast and incorporating drone data. Focusing on prescribed fire may help to bound the initial product development but leave the door open for eventual expansion for wildfire.
The group identified objectives moving forward, including the need to finalize the main set of prescribed fire management questions (e.g., planning, implementation, pre/post monitoring), establish user personas based on known representatives and gaps, engage the Earth Science Information Partners (ESIP), identify cluster members (e.g., subject matter experts from local and federal agencies, private industry, and academia/research), and investigate additional funding sources. (Clusters are agile working groups within ESIP formed to focus on specific topics.)
Breakout Session C: Fractional Vegetation Cover
This breakout session focused on fractional vegetation cover (FVC) – see Photo 4. The presenters introduced three large FVC assessment efforts, and the participants contributed to a Strengths, Weakness, Opportunities, and Threats (SWOT) analysis of FVC products intended to improve the use of this data by decision makers – see Table.
Photo 4. [left to right] Amanda Armstrong, Elizabeth Hoy [both at Goddard Space Flight Center], and Timothy Assal [Bureau of Land Management] collaborating during the Fractional Vegetation Cover Breakout. Photo credit: AEOIP Tim Assal discussed the BLM’s Assessment Inventory and Monitoring (AIM) strategy. He explained that AIM has nearly 60,000 monitoring locations across the terrestrial uplands, aquatic systems, and riparian and wetland habitat of the U.S., and the data collected are being used for monitoring and restoration activities. Assai added that integration of remote sensing data with field plot data enables the generation of continuous datasets (e.g., FVC that can relate field plot-level indicators to those based on remote-sensing). He also reported that FVC data are currently being used to address numerous management decisions.
Sarah McCord [USDA] discussed V3 of the Rangeland Analysis Platform (RAP). McCord explained that V3 uses vegetation cover and rangeland production data to monitor these parameters. The model also uses species composition data. She explained that there are approximately 85,000 training/validation locations across the U.S. that have been incorporated into the modeling process. She said that enhancements to future versions of RAP are expected as data from new satellite instruments, field plots, and deep learning (i.e., application of AI/ML techniques) are all incorporated into the model. McCord chairs a working group that is actively investigating sources of error and uncertainty within individual and across different FVC products.
Matt Rigge [USGS Earth Resources Observation and Science (EROS) Center] discussed V3 of the Rangeland Condition Monitoring Assessment and Projection (RCMAP), which will provide current and future condition using Landsat time series. Data available includes cover maps and potential cover. The platform uses various training data in addition to AIM plot data. In the future RCMAP plans to incorporate data from synthetic NASA-Indian Space Research Organization Synthetic Aperture Radar (NISAR), from NASA’s Earth Surface Mineral Dust Source (EMIT) mission, and from convolution neural network-based (CNN) algorithms.
Bo Zhou [University of California, Los Angeles (UCLA)] discussed V2 of the Landscape Cover Analysis and Reporting Tool (LandCART). V3 will be different and coming in the future. He explained that the BLM uses V3 to make legally defensible decisions. He then discussed the training data, which come mostly from AIM. The training dataset includes 71 Level-4 (L4) Ecoregions, as defined by the U.S. Environmental Protection Agency, with at least 100 observations. Zhou noted that these training data are used to define spatial extent, the temporal extent is defined by available satellite imagery, and uncertainty estimates are based on CNN and random forest (RF) machine-learning algorithms.
Eric Jensen [Desert Research Institute] discussed how ClimateEngine.org uses cloud-based tools, such as GEE, to access, visualize, and share Earth observation datasets to overcome computational limitations of big data in a real-time environment. It encompasses over 85 datasets, including RAP and RCMAP, and the group is working to add LandCART. Two core functionalities of the ClimateEngine app are producing maps and making graphs. Jensen provided a brief demonstration of the app using a juniper removal project in sage grouse habitat in southern Idaho.
Strengths
• Tools available for accessing and processing data are user-friendly and widely accessible, making it easy to compile, use, and display data for users of all expertise levels across a range of management activities.
• Tools provide a comprehensive view of an area, offering both current and retrospective insights that are highly regarded by the restoration community.
• Tool format supports integration of new datasets, ensuring inclusivity and consistency over time and space. Weaknesses
• Training data exhibits spatial and temporal biases.
• Training data is biased towards federal data, lacking global representation.
• Sensors have limitations for both temporal and spatial accuracy. Opportunities
• Managers can use these tools to make informed decisions and evaluate the effectiveness of their treatments.
• Additional training (e.g., training in how to process new data types, such as hyperspectral data) could institutionalize remote sensing and reach more end users.
• Future expansion of AI/ML techniques and cloud-based services could reduce error, enhance data quality, and increase user reach. Threats
• Stability of funding could threaten continuity of measurements.
• Falling into a “one size fits all” mentality could stifle innovation.
• Variation in land management organizations’ willingness to update data and lack of cohesion could prevent obtaining full potential of FVC.
• Transition from research to operations could hinder collaboration and tool development and weaken the community of practice.
• Poor performance, misuse of information, and data sovereignty could diminish the community’s trust in the tools.
• Rapid technological advancements could displace smaller businesses. Table. Results of a Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis of the current state of Fractional Vegetation Cover (FVC) data analysis tools and techniques. Breakout Session D: Post-fire Effects and Recovery
This session focused on assessing, predicting, remediating, and monitoring areas in the aftermath of fires. The focus was on “shovel-ready” ideas, such as improving operational soil burn severity maps to connect post-fire ground conditions and soil properties. The participants highlighted the need to leverage information (e.g., active fire thermal data) to better detect changes in post-fire cover and soil properties. Such information would be beneficial to USFS’s Burned Area for Emergency Response (BAER) program as well as to researchers, data providers, decision makers, and community leaders. The group discussed steps that would aid in this collaboration (e.g., incorporating thermal imagery into mapping soil burn severity, developing and validating products, getting first-look data to field teams, monitoring threats by conducting rapid burn severity assessment before official soil burn severity maps are made available, and sharing outputs quickly with decision makers).
The breakout participants also noted the challenge of ash load mapping, which they suggested might be constrained by using information on pre-fire fuels (e.g., biomass, understory, and canopy vegetation) to constrain potential ash production. Derived information products [e.g., Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI), LANDFIRE fuels layers, and RAP] may improve this process. The group noted the limitations of the VIIRS instrument for mapping fire duration and soil heating. The group proposed adding supplemental data through the use of National Infrared Operations (NIROPS) raw infrared imagery – see Figure 1.
Fire tools currently available – and under consideration for improving maps – include VIIRS active fire data through NASA’s Fire Information for Resource Management System (FIRMS), fire event tracking through NASA’s Earth Information System Fire Event Data Suite (FEDS), the burn severity prediction model at MTRI, and Rapid Differenced Normalized Burn Ratio Mapping at the University of Wisconsin, Madison. The group identified VIIRS L1 image capture to detect smoldering fires as a potential improvement in wildfire characterization. The group also suggested more frequent observations of moderate resolution satellites, GOES Integration [0.5–2 km (0.3–1.2 mi) spatial resolution], and comprehensive field data. They identified possible ways to improve post-fire soil burn severity maps (e.g., information on pre-fire fuels, soil characteristics, and thermal properties, such as fire heating, residence time, spread rate), optical characteristic (e.g., vegetation mortality, ash production), and lidar canopy metrics.
Presently, burn severity is assessed using a simple spectral index derived from remote sensing data, driven by necessity, data access, and computing power. The group presented the need to break this single number into ecologically meaningful components for better post-fire assessment and remediation. Improvements could involve incorporating additional information (e.g., peak soil temperature, heat residence time, and fuel moisture). Coupling atmospheric fire behavior models could address temporal gaps, necessitating high-spatial and temporal resolution thermal data sets.
The participants agreed that future strategies should include monitoring warmer areas and smoldering zones instead of just flaming fronts, as well as exploring temperature differences across burn severities. Additionally, post-fire assessments would benefit from using other spectral bands and post-fire Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) products. They also added that access to more field information is crucial for scientific post-fire observations. Efforts are underway to make the SBS S123 survey system a national standard, though surveys currently reside with local units that have good record-keeping practices.
Figure 1. Optical [left and right] and thermal [right, overlay] images of participants at the 2024 AEOIP workshop obtained by an unpiloted aerial vehicle (UAV). Image credit: Colin Brooks Conclusion
The 2024 AEOIP workshop addressed a wide range of geospatial data tool and training needs and forums. The meeting centered on coproduction of knowledge and community-of-practice building as key needs for the geospatial data topics. Participants identified capacity building – through awareness, accessibility, and utility of data and tools – as the top priority for processing and technological advancement initiatives.
The breakout session topics selected (e.g., carbon concentrations, wildfires, prescribed fires, and landscape dynamics) were chosen to promote dialogue between data users and scientists, leading to plans for action and change in data and tool utility in four areas of interest for land managers. Following the meeting, the organizers submitted a spreadsheet detailing the data and tool needs identified during the breakouts to the Earth Action Program. The SNWG has also been made aware of the most compelling needs that participants identified. The AEOIP believes that by bridging two groups – data users and research and development – it will be possible to bolster user provenance and efficacy of NASA resources moving forward.
Severin Scott
Washington State University
severin.scott@wsu.edu
Alan B. Ward
NASA’s Goddard Space Flight Center (GSFC)/Global Science and Technology (GST)
alan.b.ward@nasa.gov
Alexis O’Callahan
University of Arkansas
aocallah@uark.edu
Share
Details
Last Updated Jan 03, 2025 Related Terms
Earth Science View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.