Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Launched just two months ago and still in the process of being commissioned for service, the Copernicus Sentinel-1C satellite is, remarkably, already showing how its radar data can be used to map the shape of Earth’s land surface with extreme precision.
      These first cross-satellite ‘interferometry’ results assure its ability to monitor subsidence, uplift, glacier flow, and disasters such as landslides and earthquakes.
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s X-59 lights up the night sky with its unique Mach diamonds, also known as shock diamonds, during maximum afterburner testing at Lockheed Martin Skunk Works in Palmdale, California. The test demonstrated the engine’s ability to generate the thrust required for supersonic flight, advancing NASA’s Quesst mission.Credit: Lockheed Martin/Gary Tice NASA’s X-59 quiet supersonic research aircraft took another successful step toward flight with the conclusion of a series of engine performance tests.
      In preparation for the X-59’s planned first flight this year, NASA and Lockheed Martin successfully completed the aircraft’s engine run tests in January. The engine, a modified F414-GE-100 that powers the aircraft’s flight and integrated subsystems, performed to expectations during three increasingly complicated tests that ran from October through January at contractor Lockheed Martin’s Skunk Works facility in Palmdale, California.
      “We have successfully progressed through our engine ground tests as we planned,” said Raymond Castner, X-59 propulsion lead at NASA’s Glenn Research Center in Cleveland. “We had no major showstoppers. We were getting smooth and steady airflow as predicted from wind tunnel testing. We didn’t have any structural or excessive vibration issues. And parts of the engine and aircraft that needed cooling were getting it.”
      The tests began with seeing how the aircraft’s hydraulics, electrical, and environmental control systems performed when the engine was powered up but idling. The team then performed throttle checks, bringing the aircraft up to full power and firing its afterburner – an engine component that generates additional thrust – to maximum.
      In preparation for the X-59’s planned first flight this year, NASA and Lockheed Martin successfully completed the aircraft’s engine run tests in January. Testing included electrical, hydraulics, and environmental control systems.
      Credit: NASA/Lillianne Hammel  A third test, throttle snaps, involved moving the throttle swiftly back and forth to validate that the engine responds instantly. The engine produces as much as 22,000 pounds of thrust to achieve a desired cruising speed of Mach 1.4 (925 miles per hour) at an altitude of approximately 55,000 feet.
      The X-59’s engine, similar to those aboard the U.S. Navy’s F-18 Super Hornet, is mounted on top of the aircraft to reduce the level of noise reaching the ground. Many features of the X-59, including its 38-foot-long nose, are designed to lower the noise of a sonic boom to that of a mere “thump,” similar to the sound of a car door slamming nearby.
      Next steps before first flight will include evaluating the X-59 for potential electromagnetic interference effects, as well as “aluminum bird” testing, during which data will be fed to the aircraft under both normal and failure conditions. A series of taxi tests and other preparations will also take place before the first flight.
      The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to commercial supersonic flight over land by making sonic booms quieter.
      Explore More
      3 min read NASA Supports GoAERO University Awardees for Emergency Aircraft Prototyping
      Article 6 hours ago 2 min read Wind Over Its Wing: NASA’s X-66 Model Tests Airflow
      Article 6 days ago 9 min read Combustor Facilities
      Article 1 week ago

      View the full article
    • By NASA
      This artist’s illustration represents the results from a new study that examines the effects of X-ray and other high-energy radiation unleashed on potential exoplanets from Wolf 359, a nearby red dwarf star. Researchers used Chandra and XMM-Newton to study the impact of steady X-ray and energetic ultraviolet radiation from Wolf 359 on the atmospheres of planets that might be orbiting the star. They found that only a planet with greenhouse gases like carbon dioxide in its atmosphere and at a relatively large distance away from Wolf 359 would have a chance to support life as we know it.X-ray: NASA/CXC/SAO/S.Wolk, et al.; Illustration: NASA/CXC/SAO/M.Weiss; Image processing: NASA/CXC/SAO/N. Wolk Planets around other stars need to be prepared for extreme weather conditions, according to a new study from NASA’s Chandra X-ray Observatory and ESA’s (European Space Agency’s) XMM-Newton that examined the effects of X-rays on potential planets around the most common type of stars.
      Astronomers found that only a planet with greenhouse gases in its atmosphere like Earth and at a relatively large distance away from the star they studied would have a chance to support life as we know it around a nearby star.  
      Wolf 359 is a red dwarf with a mass about a tenth that of the Sun. Red dwarf stars are the most common stars in the universe and live for billions of years, providing ample time for life to develop. At a distance of only 7.8 light-years away, Wolf 359 is also one of the closest stars to the solar system.
      “Wolf 359 can help us unlock the secrets around stars and habitability,” said Scott Wolk of the Center for Astrophysics | Harvard & Smithsonian (CfA), who led the study. “It’s so close and it belongs to such an important class of stars – it’s a great combination.”
      Because red dwarfs are the most prevalent types of stars, astronomers have looked hard to find exoplanets around them. Astronomers have found some evidence for two planets in orbit around Wolf 359 using optical telescopes, but those conclusions have been challenged by other scientists.  
      “While we don’t have proof of planets around Wolf 359 yet, it seems very possible that it hosts multiple planets,” Wolk added. “This makes it an excellent test bed to look at what planets would experience around this kind of star.”
      Wolk and his colleagues used Chandra and XMM to study the amounts of steady X-rays and extreme ultraviolet (UV) radiation – the most energetic type of UV radiation – that Wolf 359 would unleash on the possible planets around it.
      They found that Wolf 359 is producing enough damaging radiation that only a planet with greenhouse gases like carbon dioxide in its atmosphere – and located at a relatively large distance from the star – would likely be able to sustain life.
      “Just being far enough away from the star’s harmful radiation wouldn’t be enough to make it habitable,” said co-author Vinay Kashyap, also of CfA. “A planet around Wolf 359 would also need to be blanketed in greenhouse gases like Earth is.”
      To study the effects of energetic radiation on the habitability of the planet candidates, the team considered the star’s habitable zone – the region around a star where liquid water could exist on a planet’s surface. 
      The outer limit of the habitable zone for Wolf 359 is about 15% of the distance between Earth and the Sun, because the red dwarf is much less bright than the Sun. Neither of the planet candidates for this system is located in Wolf 359’s habitable zone, with one too close to the star and the other too far out.
      “If the inner planet is there, the X-ray and extreme UV radiation it is subjected to would destroy the atmosphere of this planet in only about a million years,” said co-author Ignazio Pillitteri of CfA and the National Institute for Astrophysics in Palermo, Italy.
      The team also considered the effects of radiation on as-yet undetected planets within the habitable zone. They concluded that a planet like the Earth in the middle of the habitable zone should be able to sustain an atmosphere for almost two billion years, while one near the outer edge could last indefinitely, helped by the warming effects of greenhouse gases.
      Another big danger for planets orbiting stars like Wolf 359 is from X-ray flares, or occasional bright bursts of X-rays, on top of the steady, everyday output from the star. Combining observations made with Chandra and XMM-Newton resulted in the discovery of 18 X-ray flares from Wolf 359 over 3.5 days.
      Extrapolating from these observed flares, the team expects that much more powerful and damaging flares would occur over longer periods of time. The combined effects of the steady X-ray and UV radiation and the flares mean that any planet located in the habitable zone is unlikely to have a significant atmosphere long enough for multicellular life, as we know it on Earth, to form and survive. The exception is the habitable zone’s outer edge if the planet has a significant greenhouse effect.
      These results were presented at the 245th meeting of the American Astronomical Society in National Harbor, Maryland, and are being prepared for publication in a journal. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory.
      Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      mwatzke@cfa.harvard.edu
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      Explore More
      3 min read How It Started, How It’s Going: Johnson Space Center Edition
      Article 23 hours ago 6 min read Ten NASA Science, Tech Instruments Flying to Moon on Firefly Lander
      Article 2 days ago 2 min read NASA, Partners Open Applications for CubeSat Summer Program
      Article 3 days ago View the full article
    • By NASA
      Learn Home NASA HEAT Student Activity… Heliophysics Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   3 min read
      NASA HEAT Student Activity Featured in TIME’s Top 100 Photos of 2024
      On April 8, 2024, tens of millions experienced a solar eclipse from Mexico through the United States and into Canada. Astronomers, educators, and organizations had been preparing the public for this grand celestial event. Learning from engagement experiences in 2017, the NASA Heliophysics Education Activation Team (NASA HEAT) promoted an activity called “Eclipse Essentials: Safe and Stylish Solar Viewing Glasses.” The activity was first tested in Albuquerque, New Mexico during the Balloon Fiesta around the October 2023 annular eclipse. Using solar viewing glasses, a paper plate, some drawing and decoration supplies, visitors – minors and adults alike – crowded around the heliophysics tables in the NASA tent. That positive experience led NASA HEAT to modify and perfect the design of their “face shield” activity before offering trainings to numerous educators and outreach personnel in the weeks leading up to the April 2024 engagement events.
      Note: The glasses and the art activity are not only useful for solar eclipses. They can be used anytime to safely observe the Sun. While it is never safe to look directly at the sun with unprotected eyes, eclipse glasses are perfect for observing sunspots!
      One proof of positive impact can be found at the Myers Elementary School in Grand Blanc, Michigan. Students from two kindergarten classes, escorted outside by their teachers Amy Johnston and Wendy Sheridan, stared toward the sky with their solar viewing glasses using paper plates to watch the solar eclipse on Monday, April 8, 2024. The paper plates, which helped provide additional safety measures to protect their eyes, were attached to solar eclipse glasses and decorated by each student in their classrooms as a project leading up to the big day. A photo of the students was so captivating that multiple media outlets shared it on or shortly after the day of the eclipse.
      The global media brand, TIME, selected a photo of these kindergarten students wearing their NASA HEAT-designed solar eclipse-viewing “face shields” during the April 8th solar eclipse as one of “TIME’s Top 100 Photos of 2024”. When sharing about the top 100 photos on Instagram, TIME had this to say:
      “Every year the TIME photo department sits down to curate the strongest images that crossed our path over the previous 12 months. And every year, sitting with the images, we find ourselves mulling the ways this collection feels heavier than the last, how the year produced images unlike what we’ve seen before.
      But this year something else, a tautness, runs through the collection – the tension of conflict, the anxiety over outcome, anticipation of excitement or in possibility. Somehow, these photographers are able to capture that coiled feeling and hold it within the four walls of a frame. Be it by impeccable timing or intentional framing, they have created a time capsule that feels as if it’s about to be opened.”
      NASA HEAT is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn

      Kindergarten students at Myers Elementary School in Grand Blanc, Michigan watched the solar eclipse with special solar viewing glasses on Monday, April 8, 2024. The paper plates, which helped provide additional safety for their eyes, were added on and decorated by each student prior to the big day. Jake May/MLive.com/The Flint Journal Share








      Details
      Last Updated Jan 13, 2025 Editor NASA Science Editorial Team Related Terms
      2024 Solar Eclipse Heliophysics Science Activation Explore More
      2 min read First NASA Neurodiversity Network Intern to Present at the American Geophysical Union Annual Conference


      Article


      3 days ago
      2 min read NASA eClips Educator Receives 2024 VAST Science Educator Specialist Award


      Article


      6 days ago
      5 min read NASA’s LEXI Will Provide X-Ray Vision of Earth’s Magnetosphere


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      Webb Webb News Latest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 6 Min Read Webb Watches Carbon-Rich Dust Shells Form, Expand in Star System
      A portion of Webb’s 2023 observation of Wolf-Rayet 140. Credits:
      Image: NASA, ESA, CSA, STScI; Science: Emma Lieb (University of Denver), Ryan Lau (NSF NOIRLab), Jennifer Hoffman (University of Denver) Astronomers have long tried to track down how elements like carbon, which is essential for life, become widely distributed across the universe. Now, NASA’s James Webb Space Telescope has examined one ongoing source of carbon-rich dust in our own Milky Way galaxy in greater detail: Wolf-Rayet 140, a system of two massive stars that follow a tight, elongated orbit.
      As they swing past one another (within the central white dot in the Webb images), the stellar winds from each star slam together, the material compresses, and carbon-rich dust forms. Webb’s latest observations show 17 dust shells shining in mid-infrared light that are expanding at regular intervals into the surrounding space.
      Image A: Compare Observations of Wolf-Rayet 140 (MIRI Images)
      Two mid-infrared images from NASA’s James Webb Space Telescope of Wolf-Rayet 140 show carbon-rich dust moving in space. At right, the two triangles from the main images are matched up to show how much difference 14 months makes: The dust is racing away from the central stars at almost 1% the speed of light. These stars are 5,000 light-years away in our own Milky Way galaxy. Image: NASA, ESA, CSA, STScI; Science: Emma Lieb (University of Denver), Ryan Lau (NSF NOIRLab), Jennifer Hoffman (University of Denver) “The telescope not only confirmed that these dust shells are real, its data also showed that the dust shells are moving outward at consistent velocities, revealing visible changes over incredibly short periods of time,” said Emma Lieb, the lead author of the new paper and a doctoral student at the University of Denver in Colorado.
      Every shell is racing away from the stars at more than 1,600 miles per second (2,600 kilometers per second), almost 1% the speed of light. “We are used to thinking about events in space taking place slowly, over millions or billions of years,” added Jennifer Hoffman, a co-author and a professor at the University of Denver. “In this system, the observatory is showing that the dust shells are expanding from one year to the next.”
      Like clockwork, the stars’ winds generate dust for several months every eight years, as the pair make their closest approach during a wide, elongated orbit. Webb also shows how dust formation varies — look for the darker region at top left in both images.
      Video A: Fade Between 2022 and 2023 Observations of Wolf-Rayet 140
      This video alternates between two mid-infrared light observations from NASA’s James Webb Space Telescope of Wolf-Rayet 140. Over only 14 months, Webb showed the dust in the system has expanded. This two-star system has sent out more than 17 shells of dust over 130 years. Video: NASA, ESA, CSA, STScI.; Science: Emma Lieb (University of Denver), Ryan Lau (NSF NOIRLab), Jennifer Hoffman (University of Denver) Video B: Stars’ Orbits in Wolf-Rayet 140 (Visualization)
      When the two massive stars in Wolf-Rayet 140 swing past one another, their winds collide, material compresses, and carbon-rich dust forms. The stronger winds of the hotter star in the Wolf-Rayet system blow behind its slightly cooler (but still hot) companion. The stars create dust for several months in every eight-year orbit.
      Video: NASA, ESA, CSA, Joseph Olmsted (STScI). The telescope’s mid-infrared images detected shells that have persisted for more than 130 years. (Older shells have dissipated enough that they are now too dim to detect.) The researchers speculate that the stars will ultimately generate tens of thousands of dust shells over hundreds of thousands of years.
      “Mid-infrared observations are absolutely crucial for this analysis, since the dust in this system is fairly cool. Near-infrared and visible light would only show the shells that are closest to the star,” explained Ryan Lau, a co-author and astronomer at NSF NOIRLab in Tuscon, Arizona, who led the initial research about this system. “With these incredible new details, the telescope is also allowing us to study exactly when the stars are forming dust — almost to the day.”
      The dust’s distribution isn’t uniform. Though this isn’t obvious at first glance, zooming in on the shells in Webb’s images reveals that some of the dust has “piled up,” forming amorphous, delicate clouds that are as large as our entire solar system. Many other individual dust particles float freely. Every speck is as small as one-hundredth the width of a human hair. Clumpy or not, all of the dust moves at the same speed and is carbon rich.
      The Future of This System
      What will happen to these stars over millions or billions of years, after they are finished “spraying” their surroundings with dust? The Wolf-Rayet star in this system is 10 times more massive than the Sun and nearing the end of its life. In its final “act,” this star will either explode as a supernova — possibly blasting away some or all of the dust shells — or collapse into a black hole, which would leave the dust shells intact.
      Though no one can predict with any certainty what will happen, researchers are rooting for the black hole scenario. “A major question in astronomy is, where does all the dust in the universe come from?” Lau said. “If carbon-rich dust like this survives, it could help us begin to answer that question.”
      “We know carbon is necessary for the formation of rocky planets and solar systems like ours,” Hoffman added. “It’s exciting to get a glimpse into how binary star systems not only create carbon-rich dust, but also propel it into our galactic neighborhood.”
      These results have been published in the Astrophysical Journal Letters and were presented in a press conference at the 245th meeting of the American Astronomical Society in National Harbor, Maryland.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.
      Downloads
      Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the research results from the Astrophysical Journal Letters.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Claire Blome – cblome@stsci.edu, Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Science – Emma Lieb (University of Denver)
      Related Information
      Webb Blog: Learn more about WR 140
      Infographic: Choose your path: Destiny of Dust
      SVS Graphic: Periodic Table of the Elements: Origins of the Elements
      3D Resource for WR140
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Stars



      Stars Stories



      Universe


      Share








      Details
      Last Updated Jan 13, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      Astrophysics Binary Stars Goddard Space Flight Center James Webb Space Telescope (JWST) Nebulae Science & Research Stars The Milky Way The Universe View the full article
  • Check out these Videos

×
×
  • Create New...