Jump to content

Ariane 6 upper stage visits ESA’s temple of boom


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      Chief Master Sgt. of the Air Force David Flosi visited Vandenberg SFB to emphasize the Air Force and Space Force commitment to ensuring U.S. national security and their role in Great Power Competition.

      View the full article
    • By Space Force
      An exhibit spotlighting an unheralded but vital element of America’s space capabilities was unveiled in an October ribbon-cutting ceremony at Los Angeles Air Force Base, both to celebrate the program’s achievements and inspire future Space Force Guardians.

      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Artemis II crew members (left to right) Reid Wiseman, Christina Koch, and Jeremy Hansen share information about themselves and their mission during a town hall at NASA’s Glenn Research Center in Cleveland. Credit: NASA/Sara Lowthian-Hanna  Three of the four astronauts who will venture around the Moon on Artemis II, the first crewed flight paving the way for future lunar surface missions, visited NASA’s Glenn Research Center in Cleveland, Sept. 10-11. NASA Glenn is an integral part of the development of the Orion spacecraft and a leader in propulsion, power, and communications research. 
      Commander Reid Wiseman  and Mission Specialists  Christina Koch and Jeremy Hansen (Canadian Space Agency) discussed their upcoming mission and hosted a question-and-answer session during town hall events at Lewis Field in Cleveland and NASA’s Neil Armstrong Test Facility in Sandusky, Ohio. Victor Glover, who was unable to attend, is the pilot and fourth crew member. Both events included tours and recognition of employees who have contributed to the success of Artemis missions.  
      Artemis II crew members Reid Wiseman, Christina Koch, and Jeremy Hansen (left to right, wearing blue flight suits) and other NASA personnel look down into the stainless-steel vacuum chamber in the In-Space Propulsion Facility at NASA’s Neil Armstrong Test Facility in Sandusky, Ohio. This is the world’s only facility capable of testing full-scale upper stage launch vehicles and rocket engines under simulated high-altitude conditions.Credit: NASA/Sara Lowthian-Hanna  The Artemis II crew will lift off on an approximately 10-day mission from Launch Complex 39B at NASA’s Kennedy Space Center in Florida, blazing beyond Earth’s grasp atop the agency’s mega Moon rocket. The crew will check out Orion’s systems and perform a targeting demonstration test relatively close to Earth before venturing around the Moon.  
      Back to Newsletter Explore More
      1 min read Dr. Rickey Shyne Named Crain’s Notable Black Leader 
      Article 14 mins ago 2 min read Ohio State Marching Band Performs Tribute to NASA 
      Article 14 mins ago 1 min read NASA Glenn Connects with Morehead State University  
      Article 15 mins ago View the full article
    • By NASA
      Manufacturing equipment that will be used to build components for NASA’s SLS (Space Launch System) rocket for future Artemis missions is being installed at the agency’s Michoud Assembly Facility in New Orleans, Louisiana. The tooling will be used to produce the SLS rocket’s advanced exploration upper stage, or EUS, in the factory’s new manufacturing area, picture here.NASA/Evan Deroche NASA Michoud Assembly facility technicians Cameron Shiro (foreground), Michael Roberts, and Tien Nguyen (background) install the strain gauge on the forward adapter barrel structural test article for the exploration upper stage of the SLS rocket. NASA/Eric Bordelon NASA Michoud Assembly facility quality inspectors Michael Conley (background) and Michael Kottemann perform Ultrasonic Test (UT) inspections on the mid-body V-Strut for a structural test article for the SLS rocket’s advanced exploration upper stage, or EUS, in the factory’s new manufacturing area. NASA/Evan Deroche Manufacturing equipment that will be used to build components for NASA’s SLS (Space Launch System) rocket for future Artemis missions is being installed at the agency’s Michoud Assembly Facility in New Orleans, Louisiana.
      The novel tooling will be used to produce the SLS rocket’s advanced exploration upper stage, or EUS, in the factory’s new manufacturing area. The EUS will serve as the upper, or in-space, stage for all Block 1B and Block 2 SLS flights in both crew and cargo configurations.
      In tandem, NASA and Boeing, the SLS lead contractor for the core stage and exploration upper stage, are producing structural test articles and flight hardware structures for the upper stage at Michoud and the agency’s Marshall Space Flight Center in Huntsville, Alabama. Early manufacturing is already underway at Michoud while preparations for an engine-firing test series for the upper stage are in progress at nearby Stennis Space Center in Bay St. Louis, Mississippi.
      “The newly modified manufacturing space for the exploration upper stage signifies the start of production for the next evolution of SLS Moon rockets at Michoud,” said Hansel Gill, director at Michoud. “With Orion spacecraft manufacturing and SLS core stage assembly in flow at Michoud for the past several years, standing up a new production line and enhanced capability at Michoud for EUS is a significant achievement and a reason for anticipation and enthusiasm for Michoud and the SLS Program.”
      The advanced upper stage for SLS is planned to make its first flight with Artemis IV and replaces the single-engine Interim Cryogenic Propulsion Stage (ICPS) that serves as the in-space stage on the initial SLS Block 1 configuration of the rocket. With its larger liquid hydrogen and liquid oxygen propellant tanks feeding four L3 Harris Technologies- built RL10C-3 engines, the EUS generates nearly four times the thrust of the ICPS, providing unrivaled lift capability to the SLS Block 1B and Block 2 rockets and making a new generation of crewed lunar missions possible.
      This upgraded and more powerful rocket will increase the SLS rocket’s payload to the Moon by 40%, from 27 metric tons (59,525 lbs.) with Block 1 to 38 metric tons (83,776 lbs.) in the crew configuration.  Launching crewed missions along with other large payloads enables multiple large-scale objectives to be accomplished in a single mission.
      Through the Artemis campaign, NASA will land the first woman, first person of color, and its first international partner astronaut on the Moon. The rocket is part of NASA’s deep space exploration plans, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, Gateway in orbit around the Moon, and commercial human landing systems. NASA’s SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.
      NASA’s Marshall Space Flight Center manages the SLS Program and Michoud.
      For more on SLS, visit: 
      https://www.nasa.gov/humans-in-space/space-launch-system
      News Media Contact
      Jonathan Deal
      Marshall Space Flight Center
      Huntsville, Ala.
      256-544-0034
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
      Sols 4302-4303: West Side of Upper Gediz Vallis, From Tungsten Hills to the Next Rocky Waypoint
      This photo taken by NASA’s Mars rover Curiosity of ‘Balloon Dome’ covers a low dome-like structure formed by the light-toned slab-like rocks. This image was taken by Left Navigation Camera aboard Curiosity on Sol 4301 — Martian day 4,301 of the Mars Science Laboratory mission — on Sept. 11, 2024, at 09:14:42 UTC. NASA/JPL-Caltech Earth planning date: Wednesday, Sept. 11, 2024
      The rover is on its way from the Tungsten Hills site to the next priority site for Gediz Vallis channel exploration, in which we plan to get in close enough for arm science to one of the numerous large dark-toned “float” blocks in the channel and also to one of the light-toned slabs.  We have seen some dark blocks in the channel that seem to be related to the Stimson formation material that the rover encountered earlier in the mission, but some seem like they could be something different. We don’t think any of them originated in the channel so they have to come from somewhere higher up that the rover hasn’t been, and we’re interested in how they were transported down into the channel.
      We aren’t there yet, but the 4302-4303 plan’s activities include some important longer-range characterization of the dark-toned and light-toned materials via imaging. Context for the future close-up science on the dark-toned blocks will be provided by the Mastcam mosaics named “Bakeoven Meadow” and “Balloon Dome.”  The broad Balloon Dome mosaic also covers a low dome-like structure formed by the light-toned slab-like rocks (pictured).  Smaller mosaics will cover a pair of targets that include contacts where other types of light-toned and dark-toned material occur next to each other in the same block: “Rattlesnake Creek” which appears to be in place, and “Casa Diablo Hot Springs,” which is a float.
      The rover’s arm workspace provided an opportunity for present-day aeolian science on the sandy-looking ripple, Sandy Meadow. Mastcam stereo imaging will document the shape of the ripple, while a suite of high-resolution MAHLI images will tell us something about the particle size of the grains in it.  The modern environment will also be monitored via a suprahorizon observation, a dust devil survey, and imaging of the rover deck to look for dust movement.
      The workspace included small examples of the dark float blocks, so the composition of one of them will be measured by both APXS and ChemCam LIBS as targets “Lucy’s Foot Pass” and “Colt Lake” respectively.
      In the meantime, the Mastcam Boneyard Meadow mosaic will provide a look back at the Tungsten Hills dark rippled block along its bedding plane to try to narrow down the origin of the ripples and the potential roles of water vs. wind in their formation.
      Communication remains a challenge for the rover in this location. During planning, the rover’s drive was shifted from the second sol to the first sol in order to increase the downlink data volume available for the post-drive imaging, thereby enabling better planning at the science waypoint we expect to reach in the weekend plan. However, maintaining communications will require the rover to end its drive in a narrow range of orientations, which could make approaching our next science target a bit tricky.  We’ll find out on Friday!
      Written by: Lucy Lim, Planetary Scientist at NASA Goddard Space Flight Center
      Edited by: Abigail Fraeman, Planetary Geologist at NASA’s Jet Propulsion Laboratory
      Share








      Details
      Last Updated Sep 13, 2024 Related Terms
      Blogs Explore More
      2 min read Margin’ up the Crater Rim!


      Article


      3 days ago
      3 min read Sols 4300-4301: Rippled Pages


      Article


      3 days ago
      2 min read Sols 4297-4299: This Way to Tungsten Hills


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...