Members Can Post Anonymously On This Site
Philae’s extraordinary comet landing relived
-
Similar Topics
-
By European Space Agency
The European Space Agency (ESA) has selected Airbus to design and build the landing platform for the ExoMars Rosalind Franklin rover. In 2028, ESA will launch this ambitious exploration mission to search for past and present signs of life on Mars.
View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A NASA F/A-18 research aircraft flies above California near NASA’s Armstrong Flight Research Center in Edwards, California, testing a commercial precision landing technology for future space missions. The Psionic Space Navigation Doppler Lidar (PSNDL) system is installed in a pod located under the right wing of the aircraft.NASA Nestled in a pod under an F/A-18 Hornet aircraft wing, flying above California, and traveling up to the speed of sound, NASA put a commercial sensor technology to the test. The flight tests demonstrated the sensor accuracy and navigation precision in challenging conditions, helping prepare the technology to land robots and astronauts on the Moon and Mars.
The Psionic Space Navigation Doppler Lidar (PSNDL) system is rooted in NASA technology that Psionic, Inc. of Hampton, Virginia, licensed and further developed. They miniaturized the NASA technology, added further functionality, and incorporated component redundancies that make it more rugged for spaceflight. The PSNDL navigation system also includes cameras and an inertial measurement unit to make it a complete navigation system capable of accurately determining a vehicle’s position and velocity for precision landing and other spaceflight applications.
NASA engineers and technicians install the Psionic Space Navigation Doppler Lidar (PSNDL) system into a testing pod on a NASA F/A-18 research aircraft ahead of February 2025 flight tests at NASA’s Armstrong Flight Research Center in Edwards, California.NASA The aircraft departed from NASA’s Armstrong Flight Research Center in Edwards, California, and conducted a variety of flight paths over several days in February 2025. It flew a large figure-8 loop and conducted several highly dynamic maneuvers over Death Valley, California, to collect navigation data at various altitudes, velocities, and orientations relevant for lunar and Mars entry and descent. Refurbished for these tests, the NASA F/A-18 pod can support critical data collection for other technologies and users at a low cost.
Doppler Lidar sensors provide a highly accurate measurement of speed by measuring the frequency shift between laser light emitted from the sensor reflected from the ground. Lidar are extremely useful in sunlight-challenged areas that may have long shadows and stark contrasts, such as the lunar South Pole. Pairing PSNDL with cameras adds the ability to visually compare pictures with surface reconnaissance maps of rocky terrain and navigate to landing at interesting locations on Mars. All the data is fed into a computer to make quick, real-time decisions to enable precise touchdowns at safe locations.
Psionic Space Navigation Doppler Lidar (PSNDL) system installed in a testing pod on a NASA F/A-18 research aircraft ahead of February 2025 flight tests at NASA’s Armstrong Flight Research Center in Edwards, California.NASA Since licensing NDL in 2016, Psionic has received funding and development support from NASA’s Space Technology Mission Directorate through its Small Business Innovative Research program and Tipping Point initiative. The company has also tested PSNDL prototypes on suborbital vehicles via the Flight Opportunities program. In 2024, onboard a commercial lunar lander, NASA successfully demonstrated the predecessor NDL system developed by the agency’s Langley Research Center in Hampton, Virginia.
Explore More
4 min read NASA Starling and SpaceX Starlink Improve Space Traffic Coordination
Article 10 mins ago 6 min read How NASA’s Perseverance Is Helping Prepare Astronauts for Mars
Article 36 mins ago 2 min read NASA Cloud Software Helps Companies Find their Place in Space
Article 20 hours ago Facebook logo @NASATechnology @NASA_Technology Share
Details
Last Updated Mar 26, 2025 EditorLoura Hall Related Terms
Armstrong Flight Research Center Game Changing Development Program Space Communications Technology Space Technology Mission Directorate Technology Technology for Living in Space Technology for Space Travel View the full article
-
By NASA
4 Min Read NASA Cameras on Blue Ghost Capture First-of-its-Kind Moon Landing Footage
This compressed, resolution-limited video features a preliminary sequence of the Blue Ghost final descent and landing that NASA researchers stitched together from SCALPSS 1.1’s four short-focal-length cameras, which were capturing photos at 8 frames per second. Altitude data is approximate. Credits: NASA/Olivia Tyrrell A team at NASA’s Langley Research Center in Hampton, Virginia, has captured first-of-its-kind imagery of a lunar lander’s engine plumes interacting with the Moon’s surface, a key piece of data as trips to the Moon increase in the coming years under the agency’s Artemis campaign.
The Stereo Cameras for Lunar-Plume Surface Studies (SCALPSS) 1.1 instrument took the images during the descent and successful soft landing of Firefly Aerospace’s Blue Ghost lunar lander on the Moon’s Mare Crisium region on March 2, as part of NASA’s Commercial Lunar Payload Services (CLPS) initiative.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
This compressed, resolution-limited video features a preliminary sequence of the Blue Ghost final descent and landing that NASA researchers stitched together from SCALPSS 1.1’s four short-focal-length cameras, which were capturing photos at 8 frames per second. Altitude data is approximate.NASA/Olivia Tyrrell The compressed, resolution-limited video features a preliminary sequence that NASA researchers stitched together from SCALPSS 1.1’s four short-focal-length cameras, which were capturing photos at 8 frames per second during the descent and landing.
The sequence, using approximate altitude data, begins roughly 91 feet (28 meters) above the surface. The descent images show evidence that the onset of the interaction between Blue Ghost’s reaction control thruster plumes and the surface begins at roughly 49 feet (15 meters). As the descent continues, the interaction becomes increasingly complex, with the plumes vigorously kicking up the lunar dust, soil and rocks — collectively known as regolith. After touchdown, the thrusters shut off and the dust settles. The lander levels a bit and the lunar terrain beneath and immediately around it becomes visible.
Although the data is still preliminary, the 3000-plus images we captured appear to contain exactly the type of information we were hoping for…
Rob Maddock
SCALPSS project manager
“Although the data is still preliminary, the 3000-plus images we captured appear to contain exactly the type of information we were hoping for in order to better understand plume-surface interaction and learn how to accurately model the phenomenon based on the number, size, thrust and configuration of the engines,” said Rob Maddock, SCALPSS project manager. “The data is vital to reducing risk in the design and operation of future lunar landers as well as surface infrastructure that may be in the vicinity. We have an absolutely amazing team of scientists and engineers, and I couldn’t be prouder of each and every one of them.”
As trips to the Moon increase and the number of payloads touching down in proximity to one another grows, scientists and engineers need to accurately predict the effects of landings. Data from SCALPSS will better inform future robotic and crewed Moon landings.
The SCALPSS 1.1 technology includes six cameras in all, four short focal length and two long focal length. The long-focal-length cameras allowed the instrument to begin taking images at a higher altitude, prior to the onset of the plume-surface interaction, to provide a more accurate before-and-after comparison of the surface. Using a technique called stereo photogrammetry, the team will later combine the overlapping images – one set from the long-focal-length cameras, another from the short focal length – to create 3D digital elevation maps of the surface.
This animation shows the arrangement of the six SCALPSS 1.1 cameras and the instrument’s data storage unit. The cameras are integrated around the base of the Blue Ghost lander. Credit: NASA/Advanced Concepts Lab The instrument is still operating on the Moon and as the light and shadows move during the long lunar day, it will see more surface details under and immediately around the lander. The team also hopes to capture images during the transition to lunar night to observe how the dust responds to the change.
“The successful SCALPSS operation is a key step in gathering fundamental knowledge about landing and operating on the Moon, and this technology is already providing data that could inform future missions,” said Michelle Munk, SCALPSS principal investigator.
The successful SCALPSS operation is a key step in gathering fundamental knowledge about landing and operating on the Moon, and this technology is already providing data that could inform future missions
Michelle Munk
SCALPSS principal investigator
It will take the team several months to fully process the data from the Blue Ghost landing. They plan to issue raw images from SCALPSS 1.1 publicly through NASA’s Planetary Data System within six months.
The team is already preparing for its next flight on Blue Origin’s Blue Moon lander, scheduled to launch later this year. The next version of SCALPSS is undergoing thermal vacuum testing at NASA Langley ahead of a late-March delivery to Blue Origin.
The SCALPSS 1.1 project is funded by the Space Technology Mission Directorate’s Game Changing Development program.
NASA is working with several American companies to deliver science and technology to the lunar surface under the CLPS initiative. Through this opportunity, various companies from a select group of vendors bid on delivering payloads for NASA including everything from payload integration and operations, to launching from Earth and landing on the surface of the Moon.
About the Author
Joe Atkinson
Public Affairs Officer, NASA Langley Research Center
Share
Details
Last Updated Mar 13, 2025 Related Terms
General Explore More
4 min read Five Facts About NASA’s Moon Bound Technology
Article 2 weeks ago 6 min read Ten NASA Science, Tech Instruments Flying to Moon on Firefly Lander
Article 2 months ago 3 min read Electrodynamic Dust Shield Heading to Moon on Firefly Lander
Article 2 months ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Intuitive Machines’ IM-2 mission lunar lander, Athena, entering lunar orbit on Monday, March 3. Credit: Intuitive Machines Carrying NASA technology demonstrations and science investigations, Intuitive Machines is targeting their Moon landing no earlier than 12:32 p.m. EST on Thursday, March 6. The company’s Nova-C lunar lander is slated to land in Mons Mouton, a lunar plateau near the Moon’s South Pole, as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign to establish a long-term lunar presence.
Watch live landing coverage of the Intuitive Machines 2 (IM-2) landing, hosted by NASA and Intuitive Machines, on NASA+ starting no earlier than 11:30 a.m., approximately 60 minutes before touchdown. Beginning at 11 a.m. the agency will share blog updates as landing milestones occur.
Following the Moon landing, NASA and Intuitive Machines will host a news conference from NASA’s Johnson Space Center in Houston to discuss the mission, technology demonstrations, and science opportunities that lie ahead as lunar surface operations. begin.
U.S. media interested in participating in person must request accreditation by 4 p.m. Wednesday, March 5, by contacting the NASA Johnson newsroom at 281-483-5111 or jsccommu@mail.nasa.gov. A copy of NASA’s media accreditation policy is online. To ask questions via phone, all media must RSVP by 4 p.m. March 5 to the NASA Johnson Newsroom, and dial in at least 15 minutes before the briefing begins.
Full coverage of the IM-2 mission includes (all times Eastern):
Thursday, March 6
11:30 a.m. – Landing coverage begins on NASA+ 12:32 p.m. – Landing 4 p.m. – Post-landing news conference on NASA+ After landing, NASA and Intuitive Machines leaders will participate in the news conference:
Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters Clayton Turner, associate administrator, Space Technology Mission Directorate, NASA Headquarters Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters Steve Altemus, CEO, Intuitive Machines Tim Crain, chief growth officer, Intuitive Machines The IM-2 mission launched at 7:16 p.m. Feb. 26 on a SpaceX Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The lander is carrying NASA technology that will measure the potential presence of resources from lunar soil that could be extracted and used by future explorers to produce fuel or breathable oxygen.
In addition, a passive Laser Retroreflector Array on the top deck of the lander will bounce laser light back at any orbiting or incoming spacecraft to give future spacecraft a permanent reference point on the lunar surface. Other technologies on this delivery will demonstrate a robust cellular network to help future astronauts communicate and deploy a propulsive drone that can hop across the lunar surface to navigate its challenging terrain.
NASA continues to work with multiple American companies to deliver technology and science to the lunar surface through the agency’s CLPS initiative. This pool of companies may bid on contracts for end-to-end lunar delivery services, including payload integration and operations, launching from Earth, and landing on the surface of the Moon. NASA’s CLPS contracts are indefinite-delivery/indefinite-quantity contracts with a cumulative maximum value of $2.6 billion through 2028. The agency awarded Intuitive Machines the contract to send NASA science investigations and technology demonstrations to the Moon using its American-designed and -manufactured lunar lander for approximately $62.5 million.
Through the Artemis campaign, commercial robotic deliveries will test technologies, perform science experiments, and demonstrate capabilities on and around the Moon to help NASA explore in advance of Artemis Generation astronaut missions to the lunar surface, and ultimately crewed missions to Mars.
Learn how to watch NASA content on various platforms, including social media, and follow all events at:
https://www.plus.nasa.gov
Let people know you’re following the mission on X, Facebook, and Instagram by using the hashtag #Artemis. You can also stay connected by following and tagging these accounts:
X: @NASA, @NASA_Johnson, @NASAArtemis, @NASAMoon, @NASA_Technology
Facebook: NASA, NASAJohnsonSpaceCenter, NASAArtemis, NASATechnology
Instagram: @NASA, @NASAJohnson, @NASAArtemis
For more information about the agency’s Commercial Lunar Payload Services initiative:
https://www.nasa.gov/clps
-end-
Karen Fox / Jasmine Hopkins
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / jasmine.s.hopkins@nasa.gov
Natalia Riusech / Nilufar Ramji
Johnson Space Center, Houston
281-483-5111
natalia.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
Share
Details
Last Updated Mar 04, 2025 LocationNASA Headquarters Related Terms
Commercial Lunar Payload Services (CLPS) Artemis Earth's Moon Johnson Space Center Science Mission Directorate View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.