Members Can Post Anonymously On This Site
Operation Olympic Defender: Allied Space Operations Centers prioritize efforts for a shared Space Common Operational Picture
-
Similar Topics
-
By NASA
NASA has selected Mary Beth Schwartz as director of NASA’s Johnson Space Center Center Operations directorate. Schwartz previously served as the directorate’s deputy director.
“I’m excited to embark on my new role as director for Johnson’s Center Operations directorate,” Schwartz said. “It is an honor to lead an organization that is foundational to the center’s mission success.”
Ms. Schwartz began her NASA career as a NASA intern and has since held a variety of key roles. These include serving as a space shuttle flight controller, chair of the PSRP (Payload Safety Review Panel) for both the International Space Station and Space Shuttle programs, where she led establishment of PSRP franchises with international partners. She also served as the manager of the Safety and Mission Assurance business office, leading efforts in consolidation and budget integration, and as the associate director of Johnson engineering responsible for budget and facility functions.
Throughout her career, Schwartz has been recognized for her contributions to NASA, receiving the NASA Exceptional Service medal, as well as the NASA Honor and Silver Snoopy awards.
“Mary Beth has a unique perspective of Center Operations, not only as a mission and customer-focused organization, but as an organization that is key to employee experience,” said Vanessa Wyche, director of NASA’s Johnson Space Center. “I appreciate her vision for the organization, commitment to the mission, and overall genuine respect of the workforce. I am extremely pleased to announce her selection for this position.”
Ms. Schwartz earned her Bachelor of Science in Mechanical Engineering from the University of Houston.
View the full article
-
By NASA
6 Min Read NASA International Space Apps Challenge Announces 2024 Global Winners
The 2024 NASA Space Apps Challenge was hosted at 485 events in 163 countries and territories. Credits: NASA NASA Space Apps has named 10 global winners, recognizing teams from around the world for their exceptional innovation and collaboration during the 2024 NASA Space Apps Challenge. As the largest annual global hackathon, this event invites participants to leverage open data from NASA and its space agency partners to tackle real-world challenges on Earth and in space.
Last year’s hackathon welcomed 93,520 registered participants, including space, science, technology, and storytelling enthusiasts of all ages. Participants gathered at local events in 163 countries and territories, forming teams to address the challenges authored by NASA subject matter experts. These challenges included subjects/themes/questions in ocean ecosystems, exoplanet exploration, Earth observation, planetary seismology, and more.
The 2024 Global Winners were determined out of 9,996 project submissions and judged by subject matter experts from NASA and space agency partners.
“These 10 exceptional teams created projects that reflect our commitment to understanding our planet and exploring beyond, with the potential to transform Earth and space science for the benefit of all,” said Dr. Keith Gaddis, NASA Space Apps Challenge program scientistat NASA Headquarters in Washington. “The NASA Space Apps Challenge showcases the potential of every idea and individual. I am excited to see how these innovators will shape and inspire the future of science and exploration.”
You can watch the Global Winners Announcement here to meet these winning teams and learn about the inspiration behind their projects.
2024 NASA Space Apps Challenge Global Winners
Best Use of Science Award: WMPGang
Team Members: Dakota C., Ian C., Maximilian V., Simon S.
Challenge: Create an Orrery Web App that Displays Near-Earth Objects
Country/Territory: Waterloo,Canada
Using their skills in programming, data analysis, and visualization, WMPGang created a web app that identifies satellite risk zones using real-time data on Near-Earth Objects and meteor streams.
Learn more about WMPGang’s SkyShield: Protecting Earth and Satellites from Space Hazards project Best Use of Data Award: GaamaRamma
Team Members: Aakash H., Arun G., Arthur A., Gabriel A., May K.
Challenge: Leveraging Earth Observation Data for Informed Agricultural Decision-Making
Country/Territory: Universal Event, United States
GaamaRamma’s team of tech enthusiasts aimed to create a sustainable way to help farmers efficiently manage water availability in the face of drought, pests, and disease.
Learn more about GaamaRamma’s Waterwise project Best Use of Technology Award: 42 QuakeHeroes
Team Members: Alailton A., Ana B., Gabriel C., Gustavo M., Gustavo T., Larissa M.
Challenge: Seismic Detection Across the Solar System
Country/Territory: Maceió, Brazil
Team 42 QuakeHeroes employed a deep neural network model to identify the precise locations of seismic events within time-series data. They used advanced signal processing techniques to isolate and analyze unique components of non-stationary signals.
Learn more about 42 QuakeHeroes’ project Galactic Impact Award: NVS-knot
Team Members: Oksana M., Oleksandra M., Prokipchyn Y., Val K.
Challenge: Leveraging Earth Observation Data for Informed Agricultural Decision-Making
Country/Territory: Kyiv, Ukraine
The NVS-knot team assessed planting conditions using surface soil moisture and evapotranspiration data, then created an app that empowers farmers to manage planting risks.
Learn more about NVS-knot’s 2plant | ! 2plant project Best Mission Concept Award: AsturExplorers
Team Members: Coral M., Daniel C., Daniel V., Juan B., Samuel G., Vladimir C.
Challenge: Landsat Reflectance Data: On the Fly and at Your Fingertips
Country/Territory: Gijón, Spain
AsturExplorers created Landsat Connect, a web app that provides a simple, intuitive way to track Landast satellites and access Landsat surface reflectance data. The app also allows users to set a target location and receive notifications when Landsat satellites pass over their area.
Learn more about AsturExplorers’ Landsat Connect project Most Inspirational Award: Innovisionaries
Team Members: Rikzah K., Samira K., Shafeeqa J., Umamah A.
Challenge: SDGs in the Classroom
Country/Territory: Sharjah, United Arab Emirates
Innovisionaries developed Eco-Metropolis to inspire sustainability through gameplay. This city-building game engages players in making critical urban planning and resource management decisions based on real-world environmental data.
Learn more about Innovisionaries’ Eco-Metropolis: Sustainable City Simulation project Best Storytelling Award: TerraTales
Team Members: Ahmed R., Fatma E., Habiba A., Judy A., Maya M.
Challenge: Tell Us a Climate Story!
Country/Territory: Cairo, Egypt
TerraTales shared stories of how Earth’s changing climate affects three unique regions: Egypt, Brazil, and Germany. The web app also features an artificial intelligence (AI) model for climate forecasting and an interactive game to encourage users to make eco-friendly choices.
Learn more about TerraTale’s project Global Connection Award: Asteroid Destroyer
Team Members: Kapeesh K., Khoi N., Sathyajit L., Satyam S.
Challenge: Navigator for the Habitable Worlds Observatory (HWO): Mapping the Characterizable Exoplanets in our Galaxy
Country/Territory: Saskatoon, Canada
Team Asteroid Destroyer honed in on exoplanets, utilizing data processing and machine learning techniques to map exoplanets based on size, temperature, and distance.
Learn more about Asteroid Destroyer’s project Art & Technology Award: Connected Earth Museum
Team Members: Gabriel M., Luc R., Lucas R., Mattheus L., Pedro C., Riccardo S.
Challenge: Imagine our Connected Earth
Country/Territory: Campinas, Brazil
Team Connected Earth Museum created an immersive virtual museum experience to raise awareness of Earth’s changing climate. An AI host guides users through an interactive gallery featuring 3D and 2D visualizations, including a time series on Earth and ocean temperatures, population density, wildfires, and more.
Learn more about Connected Earth Museums’ project Local Impact Award: Team I.O.
Team Members: Frank R., Jan K., Raphael R., Ryan Z., Victoria M.
Challenge: Community Mapping
Country/Territory: Florianópolis, Brazil
Team I.O. bridges the gap between complex Geographic Information Systems data and user-friendly communication, making critical environmental information accessible to everyone, regardless of technical expertise.
Learn more about Team I.O.’s G.R.O.W. (Global Recovery and Observation of Wildfires) project Want to take part in the 2025 NASA Space Apps Challenge? Mark your calendars for October 4 and 5! Registration will open in July. At that time, participants will be able to register for a local event hosted by NASA Space Apps leads from around the world. You can stay connected with NASA Space Apps on Facebook, Instagram, and X.
Space Apps is funded by NASA’s Earth Science Division through a contract with Booz Allen Hamilton, Mindgrub, and SecondMuse.
Share
Details
Last Updated Jan 16, 2025 Related Terms
STEM Engagement at NASA Earth View the full article
-
By NASA
This artist’s illustration represents the results from a new study that examines the effects of X-ray and other high-energy radiation unleashed on potential exoplanets from Wolf 359, a nearby red dwarf star. Researchers used Chandra and XMM-Newton to study the impact of steady X-ray and energetic ultraviolet radiation from Wolf 359 on the atmospheres of planets that might be orbiting the star. They found that only a planet with greenhouse gases like carbon dioxide in its atmosphere and at a relatively large distance away from Wolf 359 would have a chance to support life as we know it.X-ray: NASA/CXC/SAO/S.Wolk, et al.; Illustration: NASA/CXC/SAO/M.Weiss; Image processing: NASA/CXC/SAO/N. Wolk Planets around other stars need to be prepared for extreme weather conditions, according to a new study from NASA’s Chandra X-ray Observatory and ESA’s (European Space Agency’s) XMM-Newton that examined the effects of X-rays on potential planets around the most common type of stars.
Astronomers found that only a planet with greenhouse gases in its atmosphere like Earth and at a relatively large distance away from the star they studied would have a chance to support life as we know it around a nearby star.
Wolf 359 is a red dwarf with a mass about a tenth that of the Sun. Red dwarf stars are the most common stars in the universe and live for billions of years, providing ample time for life to develop. At a distance of only 7.8 light-years away, Wolf 359 is also one of the closest stars to the solar system.
“Wolf 359 can help us unlock the secrets around stars and habitability,” said Scott Wolk of the Center for Astrophysics | Harvard & Smithsonian (CfA), who led the study. “It’s so close and it belongs to such an important class of stars – it’s a great combination.”
Because red dwarfs are the most prevalent types of stars, astronomers have looked hard to find exoplanets around them. Astronomers have found some evidence for two planets in orbit around Wolf 359 using optical telescopes, but those conclusions have been challenged by other scientists.
“While we don’t have proof of planets around Wolf 359 yet, it seems very possible that it hosts multiple planets,” Wolk added. “This makes it an excellent test bed to look at what planets would experience around this kind of star.”
Wolk and his colleagues used Chandra and XMM to study the amounts of steady X-rays and extreme ultraviolet (UV) radiation – the most energetic type of UV radiation – that Wolf 359 would unleash on the possible planets around it.
They found that Wolf 359 is producing enough damaging radiation that only a planet with greenhouse gases like carbon dioxide in its atmosphere – and located at a relatively large distance from the star – would likely be able to sustain life.
“Just being far enough away from the star’s harmful radiation wouldn’t be enough to make it habitable,” said co-author Vinay Kashyap, also of CfA. “A planet around Wolf 359 would also need to be blanketed in greenhouse gases like Earth is.”
To study the effects of energetic radiation on the habitability of the planet candidates, the team considered the star’s habitable zone – the region around a star where liquid water could exist on a planet’s surface.
The outer limit of the habitable zone for Wolf 359 is about 15% of the distance between Earth and the Sun, because the red dwarf is much less bright than the Sun. Neither of the planet candidates for this system is located in Wolf 359’s habitable zone, with one too close to the star and the other too far out.
“If the inner planet is there, the X-ray and extreme UV radiation it is subjected to would destroy the atmosphere of this planet in only about a million years,” said co-author Ignazio Pillitteri of CfA and the National Institute for Astrophysics in Palermo, Italy.
The team also considered the effects of radiation on as-yet undetected planets within the habitable zone. They concluded that a planet like the Earth in the middle of the habitable zone should be able to sustain an atmosphere for almost two billion years, while one near the outer edge could last indefinitely, helped by the warming effects of greenhouse gases.
Another big danger for planets orbiting stars like Wolf 359 is from X-ray flares, or occasional bright bursts of X-rays, on top of the steady, everyday output from the star. Combining observations made with Chandra and XMM-Newton resulted in the discovery of 18 X-ray flares from Wolf 359 over 3.5 days.
Extrapolating from these observed flares, the team expects that much more powerful and damaging flares would occur over longer periods of time. The combined effects of the steady X-ray and UV radiation and the flares mean that any planet located in the habitable zone is unlikely to have a significant atmosphere long enough for multicellular life, as we know it on Earth, to form and survive. The exception is the habitable zone’s outer edge if the planet has a significant greenhouse effect.
These results were presented at the 245th meeting of the American Astronomical Society in National Harbor, Maryland, and are being prepared for publication in a journal. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
Read more from NASA’s Chandra X-ray Observatory.
Learn more about the Chandra X-ray Observatory and its mission here:
https://www.nasa.gov/chandra
https://chandra.si.edu
News Media Contact
Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998
mwatzke@cfa.harvard.edu
Lane Figueroa
Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
lane.e.figueroa@nasa.gov
Explore More
3 min read How It Started, How It’s Going: Johnson Space Center Edition
Article 23 hours ago 6 min read Ten NASA Science, Tech Instruments Flying to Moon on Firefly Lander
Article 2 days ago 2 min read NASA, Partners Open Applications for CubeSat Summer Program
Article 3 days ago View the full article
-
By NASA
If you ask Johnson Space Center employees why they work for NASA, many will tell you it was always their dream. For others, landing a job at NASA was an unexpected stop on their career path. Here is a look at where five Johnson team members worked before NASA and how they are helping to advance the agency’s mission today.
Michelle Wood
How it started: Michelle Wood working as an American Sign Language interpreter (left). How it’s going: Wood as a flight controller in Johnson Space Center’s Mission Control Center in Houston. Images courtesy of Wood Wood worked as an American Sign Language interpreter before joining NASA about seven years ago. Today, she is an Operational Support Officer flight controller and instructor in the Mission Control Center.
***
Warnecke Miller
How it started: Miller is shown completing firearms training as a Federal Bureau of Investigation intern in the summer of 1998 (left). How it’s going: Miller emceeing a retirement celebration for a Johnson colleague in April 2024. Images courtesy of Miller Miller has been an attorney in Johnson’s Office of the General Counsel for 12 years. Before that, she served as an administrative law judge for Social Security and adjudicated disability cases.
***
Celeste Budwit-Hunter
How it started: Celeste Budwit-Hunter is pictured as a school counselor (left). How it’s going: Budwit-Hunter with NASA astronauts Mike Finke, Suni Williams, and Butch Wilmore and her Procedures Group editorial team members in Johnson’s Space Vehicle Mockup Facility. Images courtesy of Budwit-Hunter Budwit-Hunter was a technical writer in the oil and gas industry before earning a master’s degree in family therapy. She went on to work for The Council on Alcohol and Drugs (now The Council on Recovery) and then as a private school counselor for students with learning disabilities. She returned to technical writing while starting a private family therapy practice. After several years of treatment and recovery following a cancer diagnosis, Budwit-Hunter applied to become an editor in the Flight Operations Director’s Procedures Group. She is now the group’s lead editor and is training to become a book manager.
***
Don Walker
How it started: A photo of a young Don Walker standing in front of an Apollo lunar module mockup on the Johnson campus in the early 1970s (left). How it’s going: Walker’s official NASA portrait. Walker worked as a freelancer in television production before joining the Johnson team 38 years ago. Today, Walker is an engineering technician in the Office of the Chief Information Officer, working master control for the center’s television operations.
***
Donna Coyle
How it started: Donna Coyle as a college student in Rome (left). How it’s going: Coyle outside Space Center Houston prior to the Expedition 68 crew debrief and awards ceremony in 2023. Images courtesy of Coyle Coyle earned a bachelor’s degree in international relations before switching gears to work as an expeditor in the oil and gas industry. That role involved working with cross-functional teams to ensure the smooth and timely delivery of equipment and materials to worksites. After visiting locations and seeing how equipment, piping, and steel were made, she was inspired to go back to school to become an engineer. Coyle’s grandfather worked at NASA during the Apollo missions, and she decided to follow in his footsteps. She joined the Johnson team in 2021 as a crew time engineer, analyzing astronaut time as a resource to help with decision-making before and during expeditions to the International Space Station.
Do you want to join the NASA team? Visit our Careers site to explore open opportunities and find your place with us!
View the full article
-
By NASA
NASA’s 2024 AI Use Case inventory highlights the agency’s commitment to integrating artificial intelligence in its space missions and operations. The agency’s updated inventory consists of active AI use cases, ranging from AI-driven autonomous space operations, such as navigation for the Perseverance Rover on Mars, to advanced data analysis for scientific discovery.
AI Across NASA
NASA’s use of AI is diverse and spans several key areas of its missions:
Autonomous Exploration and Navigation
AEGIS (Autonomous Exploration for Gathering Increased Science): AI-powered system designed to autonomously collect scientific data during planetary exploration. Enhanced AutoNav for Perseverance Rover: Utilizes advanced autonomous navigation for Mars exploration, enabling real-time decision-making. MLNav (Machine Learning Navigation): AI-driven navigation tools to enhance movement across challenging terrains. Perseverance Rover on Mars – Terrain Relative Navigation: AI technology supporting the rover’s navigation across Mars, improving accuracy in unfamiliar terrain. Mission Planning and Management
ASPEN Mission Planner: AI-assisted tool that helps streamline space mission planning and scheduling, optimizing mission efficiency. AWARE (Autonomous Waiting Room Evaluation): AI system that manages operational delays, improving mission scheduling and resource allocation. CLASP (Coverage Planning & Scheduling): AI tools for resource allocation and scheduling, ensuring mission activities are executed seamlessly. Onboard Planner for Mars2020 Rover: AI system that helps the Perseverance Rover autonomously plan and schedule its tasks during its mission. Environmental Monitoring and Analysis
SensorWeb for Environmental Monitoring: AI-powered system used to monitor environmental factors such as volcanoes, floods, and wildfires on Earth and beyond. Volcano SensorWeb: Similar to SensorWeb, but specifically focused on volcanic activity, leveraging AI to enhance monitoring efforts. Global, Seasonal Mars Frost Maps: AI-generated maps to study seasonal variations in Mars’ atmosphere and surface conditions. Data Management and Automation
NASA OCIO STI Concept Tagging Service: AI tools that organize and tag NASA’s scientific data, making it easier to access and analyze. Purchase Card Management System (PCMS): AI-assisted system for streamlining NASA’s procurement processes and improving financial operations. Aerospace and Air Traffic Control
NextGen Methods for Air Traffic Control: AI tools to optimize air traffic control systems, enhancing efficiency and reducing operational costs. NextGen Data Analytics: Letters of Agreement: AI-driven analysis of agreements within air traffic control systems, improving management and operational decision-making. Space Exploration
Mars2020 Rover (Perseverance): AI systems embedded within the Perseverance Rover to support its mission to explore Mars. SPOC (Soil Property and Object Classification): AI-based classification system used to analyze soil and environmental features, particularly for Mars exploration. Ethical AI: NASA’s Responsible Approach
NASA ensures that all AI applications adhere to Responsible AI (RAI) principles outlined by the White House in its Executive Order 13960. This includes ensuring AI systems are transparent, accountable, and ethical. The agency integrates these principles into every phase of development and deployment, ensuring AI technologies used in space exploration are both safe and effective.
Looking Forward: AI’s Expanding Role
As AI technologies evolve, NASA’s portfolio of AI use cases will continue to grow. With cutting-edge tools currently in development, the agency is poised to further integrate AI into more aspects of space exploration, from deep space missions to sustainable solutions for planetary exploration.
By maintaining a strong commitment to both technological innovation and ethical responsibility, NASA is not only advancing space exploration but also setting an industry standard for the responsible use of artificial intelligence in scientific and space-related endeavors.
View the AI Inventory View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.