Jump to content

NASA-Funded Study Examines Tidal Effects on Planet and Moon Interiors


NASA

Recommended Posts

  • Publishers

2 min read

NASA-Funded Study Examines Tidal Effects on Planet and Moon Interiors

NASA-supported scientists have developed a new method to compute how tides affect the interiors of planets and moons. Importantly, the new study looks at the effects of body tides on objects that don’t have a perfectly spherical interior structure, which is an assumption of most previous models.

The largest portion of the Europa's surface can be seen at the highest resolution from Galileo.
The puzzling, fascinating surface of Jupiter’s icy moon Europa looms large in this newly-reprocessed color view, made from images taken by NASA’s Galileo spacecraft in the late 1990s. This is the color view of Europa from Galileo that shows the largest portion of the moon’s surface at the highest resolution.
NASA/JPL-Caltech/SETI Institute

Body tides refer to the deformations experienced by celestial bodies when they gravitationally interact with other objects. Think of how the powerful gravity of Jupiter tugs on its moon Europa. Because Europa’s orbit isn’t circular, the crushing squeeze of Jupiter’s gravity on the moon varies as it travels along its orbit.  When Europa is at its closest to Jupiter, the planet’s gravity is felt the most. The energy of this deformation is what heats up Europa’s interior, allowing an ocean of liquid water to exist beneath the moon’s icy surface.

“The same is true for Saturn’s moon Enceladus.” says co-author Alexander Berne of CalTech in Pasadena and an affiliate at NASA’s Jet Propulsion Laboratory in Southern California. “Enceladus has an ice shell that is expected to be much more non-spherically symmetric than that of Europa.”

The body tides experienced by celestial bodies can affect how the worlds evolve over time and, in cases like Europa and Enceladus, their potential habitability for life as we know it. The new study provides a means to more accurately estimate how tidal forces affect planetary interiors.

In this movie Europa is seen in a cutaway view through two cycles of its 3.5 day orbit about the giant planet Jupiter. Like Earth, Europa is thought to have an iron core, a rocky mantle and a surface ocean of salty water. Unlike on Earth, however, this ocean is deep enough to cover the whole moon, and being far from the sun, the ocean surface is globally frozen over. Europa’s orbit is eccentric, which means as it travels around Jupiter, large tides, raised by Jupiter, rise and fall. Jupiter’s position relative to Europa is also seen to librate, or wobble, with the same period. This tidal kneading causes frictional heating within Europa, much in the same way a paper clip bent back and forth can get hot to the touch, as illustrated by the red glow in the interior of Europa’s rocky mantle and in the lower, warmer part of its ice shell. This tidal heating is what keeps Europa’s ocean liquid and could prove critical to the survival of simple organisms within the ocean, if they exist. The giant planet Jupiter is now shown to be rotating from west to east, though more slowly than its actual rate.
NASA/JPL-Caltech

The paper also discusses how the results of the study could help scientists interpret observations made by missions to a variety of different worlds, ranging from Mercury to the Moon to the outer planets of our solar system.

The study, “A Spectral Method to Compute the Tides of Laterally Heterogeneous Bodies,” was published in The Planetary Science Journal. 

For more information on NASA’s Astrobiology Program, visit:

https://science.nasa.gov/astrobiology

-end-

Karen Fox / Molly Wasser

Headquarters, Washington

202-358-1600

karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov 

Share

Details

Last Updated
Nov 07, 2024

Related Terms

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Image: Moon waves goodbye to Hera View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA employees plant an Artemis Moon Tree at NASA’s Stennis Space Center on Oct. 29 to celebrate NASA’s successful Artemis I mission as the agency prepares for a return around the Moon with astronauts on Artemis II. NASA/Danny Nowlin A tree-planting ceremony at NASA’s Stennis Space Center on Oct. 29 celebrated NASA’s successful Artemis I mission as the agency prepares for a return around the Moon with astronauts on Artemis II.
      “We already have a thriving Moon Tree from the Apollo years onsite,” NASA Stennis Director John Bailey said. “It is exciting to add trees for our new Artemis Generation as it continues the next great era of human space exploration.”
      NASA’s Office of STEM Engagement Next Gen STEM Project partnered with U.S. Department of Agriculture (USDA) Forest Service to fly five species of tree seeds aboard the Orion spacecraft during the successful uncrewed Artemis I test flight in 2022 as part of a national STEM Engagement and conservation education initiative. 
      The Artemis Moon Tree species included sweetgums, loblolly pines, sycamores, Douglas-firs, and giant sequoias. The seeds from the first Artemis mission have been nurtured by the USDA into seedlings to be a source of inspiration for the Artemis Generation.
      The Moon Tree education initiative is rooted in the legacy of Apollo 14 Moon Tree seeds flown in lunar orbit over 50 years ago by the late Stuart Roosa, a NASA astronaut and Mississippi Coast resident.
      NASA Stennis and the NASA Shared Services Center (NSSC), located at the site, planted companion trees during the Oct. 29 ceremony. Bailey and NSSC Executive Director Anita Harrell participated in a joint planting ceremony attended by a number of employees from each entity.
      The American sweetgum trees are the second and third Moon Trees at the south Mississippi site. In 2004, ASTRO CAMP participants planted a sycamore Moon Tree to honor the 35th anniversary of Apollo 11 and the first lunar landing on July 20, 1969.
      The road to space for both Apollo 14 and Artemis I went through Mississippi. Until 1970, NASA Stennis test fired first, and second stages of the Saturn V rockets used for Apollo.
      NASA Stennis now tests all the RS-25 engines powering Artemis missions to the Moon and beyond. Prior to Artemis I, NASA Stennis tested the SLS (Space Launch System) core stage and its four RS-25 engines.
      The Artemis Moon Trees have found new homes in over 150 communities and counting since last spring, and each of the 10 NASA centers also will plant one.
      As the tree grows at NASA Stennis, so, too, does anticipation for the first crewed mission with Artemis II. Four astronauts will venture around the Moon on NASA’s path to establishing a long-term presence at the Moon for science and exploration.
      The flight will test NASA’s foundational human deep space exploration capabilities – the SLS rocket and Orion spacecraft – for the first time with astronauts.
      Explore More NASA Stennis Image Articles View the full article
    • By NASA
      On Nov. 3, 1994, space shuttle Atlantis took to the skies on its 13th trip into space. During the 11-day mission, the STS-66 crew of Commander Donald R. McMonagle, Pilot Curtis L. Brown, Payload Commander Ellen Ochoa, and Mission Specialists Joseph R. Tanner, Scott E. Parazynski, and French astronaut Jean-François Clervoy representing the European Space Agency (ESA) operated the third Atmospheric Laboratory for Applications and Sciences (ATLAS-3), and deployed and retrieved the U.S.-German Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite (CRISTA-SPAS), as part of NASA’s Mission to Planet Earth. The remote sensing instruments studied the Sun’s energy output, the atmosphere’s chemical composition, and how these affect global ozone levels, adding to the knowledge gained during the ATLAS-1 and ATLAS-2 missions.

      Left: Official photo of the STS-68 crew of Jean-François Clervoy, left, Scott E. Parazynski, Curtis L. Brown, Joseph R. Tanner, Donald R. McMonagle, and Ellen Ochoa. Middle: The STS-66 crew patch. Right: The ATLAS-3 payload patch.
      In August 1993, NASA named Ochoa as the ATLAS-3 payload commander, and in January 1994, named the rest of the STS-66 crew. For McMonagle, selected as an astronaut in 1987, ATLAS-3 marked his third trip into space, having flown on STS-39 and STS-54. Brown, also from the class of 1987, previously flew on STS 47, while Ochoa, selected in 1990, flew as a mission specialist on STS-56, the ATLAS-2 mission. For Tanner, Parazynski, and Clervoy, all from the Class of 1992 – the French space agency CNES previously selected Clervoy as one of its astronauts in 1985 before he joined the ESA astronaut cadre in 1992 – STS-66 marked their first spaceflight.

      Left: Schematic illustration of ATLAS-3 and its instruments. Right: Schematic illustration of CRISTA-SPAS retrievable satellite and its instruments.
      The ATLAS-3 payload consisted of six instruments on a Spacelab pallet and one mounted on the payload bay sidewall. The pallet mounted instruments included Atmospheric Trace Molecule Spectroscopy (ATMOS), Millimeter-Wave Atmospheric Sounder (MAS), Active Cavity Radiometer Irradiance Monitor (ACRIM), Measurement of the Solar Constant (SOLCON), Solar Spectrum Measurement from 1,800 to 3,200 nanometers (SOLSCAN), and Solar Ultraviolet Spectral Irradiance Monitor (SUSIM).
      The Shuttle Solar Backscatter Ultraviolet (SSBUV) instrument constituted the payload bay sidewall mounted experiment. While the instruments previously flew on the ATLAS-1 and ATLAS-2 missions, both those flights took place during the northern hemisphere spring. Data from the ATLAS-3’s mission in the fall complemented results from the earlier missions. The CRISTA-SPAS satellite included two instruments, the CRISTA and the Middle Atmosphere High Resolution Spectrograph Investigation (MAHRSI).

      Left: Space shuttle Atlantis at Launch Pad 39B at NASA’s Kennedy Space Center in Florida. Middle: Liftoff of Atlantis on STS-66. Right: Atlantis rises into the sky.
      Following its previous flight, STS-46 in August 1992, Atlantis spent one and a half years at the Rockwell plant in Palmdale, California, undergoing major modifications before arriving back at KSC on May 29, 1994. During the modification period, workers installed cables and wiring for a docking system for Atlantis to use during the first Shuttle-Mir docking mission in 1995 and equipment to allow it to fly Extended Duration Orbiter missions of two weeks or longer. Atlantis also underwent structural inspections and systems upgrades including improved nose wheel steering and a new reusable drag chute. Workers in KSC’s Orbiter Processing Facility installed the ATLAS-3 and CRISTA-SPAS payloads and rolled Atlantis over to the Vehicle Assembly Building on Oct. 4 for mating with its External Tank and Solid Rocket Boosters. Atlantis rolled out to Launch Pad 39B six days later. The six-person STS-66 crew traveled to KSC to participate in the Terminal Countdown Demonstration Test, essentially a dress rehearsal for the launch countdown, on Oct. 18.
      They returned to KSC on Oct. 31, the same day the final countdown began. Following a smooth countdown leading to a planned 11:56 a.m. EST liftoff on Nov. 3, 1994, Atlantis took off three minutes late, the delay resulting from high winds at one of the Transatlantic Abort sites. The liftoff marked the third shuttle launch in 55 days, missing a record set in 1985 by one day. Eight and a half minutes later, Atlantis delivered its crew and payloads to space. Thirty minutes later, a firing of the shuttle’s Orbiter Maneuvering System (OMS) engines placed them in a 190-mile orbit inclined 57 degrees to the equator. The astronauts opened the payload bay doors, deploying the shuttle’s radiators, and removed their bulky launch and entry suits, stowing them for the remainder of the flight.

      Left: Atlantis’ payload bay, showing the ATLAS-3 payload and the CRISTA-SPAS deployable satellite behind it. Middle: European Space Agency astronaut Jean-François Clervoy uses the shuttle’s Remote Manipulator System (RMS) to grapple the CRISTA-SPAS prior to its release. Right: Clervoy about to release CRISTA-SPAS from the RMS.
      The astronauts began to convert their vehicle into a science platform, and that included breaking up into two teams to enable 24-hour-a-day operations. McMonagle, Ochoa, and Tanner made up the Red Team while Brown, Parazynski, and Clervoy made up the Blue Team. Within five hours of liftoff, the Blue Team began their sleep period while the Red Team started their first on orbit shift by activating the ATLAS-3 instruments, the CRISTA-SPAS deployable satellite, and the Remote Manipulator System (RMS) or robotic arm in the payload bay and some of the middeck experiments. The next day, Clervoy, operating the RMS, grappled CRISTA-SPAS, lifted it from its cradle in the payload bay, and while Atlantis flew over Germany, deployed it for its eight-day free flight. McMonagle fired Atlantis’ thrusters to separate from the satellite.

      Left: Ellen Ochoa and Donald R. McMonagle on the shuttle’s flight deck. Middle: European Space Agency astronaut Jean-François Clervoy in the commander’s seat during the mission. Right: Scott E. Parazynski operates a protein crystallization experiment in the shuttle middeck.

      Left: Joseph R. Tanner operates a protein crystallization experiment. Middle: Curtis L. Brown operates a microgravity acceleration measurement system. Right: Ellen Ochoa uses the shuttle’s Remote Manipulator System to grapple CRISTA-SPAS following its eight-day free flight.
      For the next eight days, the two teams of astronauts continued work with the ATLAS instruments and several middeck and payload bay experiments such as protein crystal growth, measuring the shuttle microgravity acceleration environment, evaluating heat pipe performance, and a student experiment to study the Sun that complemented the ATLAS instruments. On November 12, the mission’s 10th day, the astronauts prepared to retrieve the CRISTA-SPAS satellite. For the retrieval, McMonagle and Brown used a novel rendezvous profile unlike previous ones used in the shuttle program. Instead of making the final approach from in front of the satellite, called the V-bar approach, Atlantis approached from below in the so-called R-bar approach. This is the profile Atlantis planned to use on its next mission, the first rendezvous and docking with the Mir space station. It not only saved fuel but also prevented contamination of the station’s delicate sensors and solar arrays. Once within 40 feet of CRISTA-SPAS, Ochoa reached out with the RMS, grappled the satellite, and then berthed it back in the payload bay.

      A selection from the 6,000 STS-66 crew Earth observation photographs. Left: Deforestation in the Brazilian Amazon. Middle left: Hurricane Florence in the North Atlantic. Middle right: The Ganges River delta. Right: The Sakurajima Volcano in southern Japan.
      As a Mission to Planet Earth, the STS-66 astronauts spent considerable time looking out the window, capturing 6,000 images of their home world. Their high inclination orbit enabled views of parts of the planet not seen during typical shuttle missions.

      Left: The inflight STS-66 crew photo. Right: Donald R. McMonagle, left, and Curtis R. Brown prepare for Atlantis’ deorbit and reentry.
      On flight day 11, with most of the onboard film exposed and consumables running low, the astronauts prepared for their return to Earth the following day. McMonagle and Brown tested Atlantis’ reaction control system thrusters and aerodynamic surfaces in preparation for deorbit and descent through the atmosphere, while the rest of the crew busied themselves with shutting down experiments and stowing away unneeded equipment.

      Left: Atlantis makes a perfect touchdown at California’s Edwards Air Force Base. Middle: Atlantis deploys the first reusable space shuttle drag chute. Right: Mounted atop a Shuttle Carrier Aircraft, Atlantis departs Edwards for the cross-country trip to NASA’s Kennedy Space Center in Florida.
      On Nov. 14, the astronauts closed Atlantis’ payload bay doors, donned their launch and entry suits, and strapped themselves into their seats for entry and landing. Tropical Storm Gordon near the KSC primary landing site forced a diversion to Edwards Air Force Base (AFB) in California. The crew fired Atlantis’ OMS engines to drop out of orbit. McMonagle piloted Atlantis to a smooth landing at Edwards, ending the 10-day 22-hour 34-minute flight, Atlantis’ longest flight up to that time. The crew had orbited the Earth 174 times. Workers at Edwards safed the vehicle and placed it atop a Shuttle Carrier Aircraft for the ferry flight back to KSC. The duo left Edwards on Nov. 21, and after stops at Kelly Field in San Antonio and Eglin AFB in the Florida panhandle, arrived at KSC the next day. Workers there began preparing Atlantis for its next flight, STS-71 in June 1995, the first Shuttle-Mir docking mission. Meanwhile, a Gulfstream jet flew the astronauts back to Ellington Field in Houston for reunions with their families. As it turned out, STS-66 flew Atlantis’ last solo flight until STS-125 in 2009, the final Hubble Servicing Mission. The 16 intervening flights, and the three that followed, all docked with either Mir or the International Space Station.
      “The mission not only met all our expectations, but all our hopes and dreams as well,” said Mission Scientist Timothy L. Miller of NASA’s Marshall Space Flight Center in Huntsville, Alabama. “One of its high points was our ability to receive and process so much data in real time, enhancing our ability to carry out some new and unprecedented cooperative experiments.” McMonagle said of STS-66, “We are very proud of the mission we have just accomplished. If there’s any one thing we all have an interest in, it’s the health of our planet.”
      Enjoy the crew narrate a video about the STS-66 mission.
      Explore More
      3 min read Halloween on the International Space Station
      Article 4 days ago 9 min read 60 Years Ago: The First Flight of the Lunar Landing Research Vehicle
      Article 5 days ago 11 min read 35 Years Ago: STS-34 Sends Galileo on its Way to Jupiter
      Article 2 weeks ago View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A SWOT data visualization shows water on the northern side of Greenland’s Dickson Fjord at higher levels than on the southern side on Sept. 17, 2023. A huge rockslide into the fjord the previous day led to a tsunami lasting nine days that caused seismic rumbling around the world. NASA Earth Observatory Data from space shows water tilting up toward the north side of the Dickson Fjord as it sloshed from south to north and back every 90 seconds for nine days after a 2023 rockslide.
      The international Surface Water and Ocean Topography (SWOT) satellite mission, a collaboration between NASA and France’s CNES (Centre National d’Études Spatiales), detected the unique contours of a tsunami that sloshed within the steep walls of a fjord in Greenland in September 2023. Triggered by a massive rockslide, the tsunami generated a seismic rumble that reverberated around the world for nine days. An international research team that included seismologists, geophysicists, and oceanographers recently reported on the event after a year of analyzing data.
      The SWOT satellite collected water elevation measurements in Dickson Fjord on Sept. 17, 2023, the day after the initial rockslide and tsunami. The data was compared with measurements made under normal conditions a few weeks prior, on Aug. 6, 2023.
      In the data visualization (above), colors toward the red end of the scale indicate higher water levels, and blue colors indicate lower-than-normal levels. The data suggests that water levels at some points along the north side of the fjord were as much as 4 feet (1.2 meters) higher than on the south.
      “SWOT happened to fly over at a time when the water had piled up pretty high against the north wall of the fjord,” said Josh Willis, a sea level researcher at NASA’s Jet Propulsion Laboratory in Southern California. “Seeing the shape of the wave — that’s something we could never do before SWOT.”
      In a paper published recently in Science, researchers traced a seismic signal back to a tsunami that began when more than 880 million cubic feet of rock and ice (25 million cubic meters) fell into Dickson Fjord. Part of a network of channels on Greenland’s eastern coast, the fjord is about 1,772 feet (540 meters) deep and 1.7 miles (2.7 kilometers) wide, with walls taller than 6,000 feet (1,830 meters).
      Far from the open ocean, in a confined space, the energy of the tsunami’s motion had limited opportunity to dissipate, so the wave moved back and forth about every 90 seconds for nine days. It caused tremors recorded on seismic instruments thousands of miles away.
      From about 560 miles (900 kilometers) above, SWOT uses its sophisticated Ka-band Radar Interferometer (KaRIn) instrument to measure the height of nearly all water on Earth’s surface, including the ocean and freshwater lakes, reservoirs, and rivers.
      “This observation also shows SWOT’s ability to monitor hazards, potentially helping in disaster preparedness and risk reduction,” said SWOT program scientist Nadya Vinogradova Shiffer at NASA Headquarters in Washington.
      It can also see into fjords, as it turns out.
      “The KaRIn radar’s resolution was fine enough to make observations between the relatively narrow walls of the fjord,” said Lee-Lueng Fu, the SWOT project scientist. “The footprint of the conventional altimeters used to measure ocean height is too large to resolve such a small body of water.”
      More About SWOT
      Launched in December 2022 from Vandenberg Space Force Base in California, SWOT is now in its operations phase, collecting data that will be used for research and other purposes.
      The SWOT satellite was jointly developed by NASA and CNES, with contributions from the Canadian Space Agency (CSA) and the UK Space Agency. NASA’s Jet Propulsion Laboratory, managed for the agency by Caltech in Pasadena, California, leads the U.S. component of the project. For the flight system payload, NASA provided the KaRIn instrument, a GPS science receiver, a laser retroreflector, a two-beam microwave radiometer, and NASA instrument operations. CNES provided the Doppler Orbitography and Radioposition Integrated by Satellite (DORIS) system, the dual frequency Poseidon altimeter (developed by Thales Alenia Space), the KaRIn radio-frequency subsystem (together with Thales Alenia Space and with support from the UK Space Agency), the satellite platform, and ground operations. CSA provided the KaRIn high-power transmitter assembly. NASA provided the launch vehicle and the agency’s Launch Services Program, based at Kennedy Space Center in Florida, managed the associated launch services.
      To learn more about SWOT, visit:
      https://swot.jpl.nasa.gov
      News Media Contacts
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-0307 / 626-379-6874
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
      2024-153
      Share
      Details
      Last Updated Oct 31, 2024 Related Terms
      SWOT (Surface Water and Ocean Topography) Earth Earth Science Earth Science Division Jet Propulsion Laboratory Explore More
      6 min read Why NASA’s SPHEREx Mission Will Make ‘Most Colorful’ Cosmic Map Ever
      Article 7 hours ago 4 min read NASA’s Perseverance Captures ‘Googly Eye’ During Solar Eclipse
      Article 1 day ago 2 min read NASA Brings Drone and Space Rover to Air Show
      Article 1 day ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      8 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Artemis I Moon Tree seedlings continue to find new homes with schools, museums, libraries, universities, and community organizations across the contiguous United States. An open call to NASA’s Artifacts Module in Fall, 2023 welcomed over 1000 organization submissions, which were reviewed and ranked by a joint USDA Forest Service and NASA panel.
      Final recipient selection and seedling assignments for each cycle are informed by rank and region, and subject to a limited inventory of trees germinated from each of the five species of seeds flown aboard Artemis I in 2022. Recipient selection and seedling distribution follows four cycles: Spring 2024, Fall 2024, Spring 2025, and Fall 2025.
      Spring 2024 Artemis I Moon Tree Stewards
      Alabama
      Fairfield City Schools – Fairfield High Preparatory School Fairfield AL American Sweetgum
      Meridianville Middle School Hazel Green AL Loblolly Pine
      Pioneer Museum of Alabama Troy AL Loblolly Pine
      Troy University Arboretum Troy AL Loblolly Pine
      Arkansas
      Baxter County Library Mountain Home AR American Sweetgum
      Arizona
      University of Arizona – Lunar and Planetary Laboratory (LPL) Tucson AZ American Sweetgum
      California
      Forestr.org Castro Valley CA Sequoia
      Girl Scout Troop 7574 Dana Point CA Sequoia
      Greenfield Union School District Greenfield CA Sequoia
      Quest Science Center Livermore CA Sequoia
      Santiago STEAM Magnet Elementary School Lake Forest CA Sequoia
      Colorado
      United States Air Force Academy USAF Academy CO American Sweetgum
      Connecticut
      New Milford High School New Milford CT American Sweetgum
      South School – New Canaan School District New Canaan CT Sycamore
      Yale University Marsh Botanical Garden New Haven CT American Sweetgum
      Washington, DC
      United States Capitol
      Washington, DC DC American Sweetgum
      Florida
      Agricultural Biotechnology Academy, West Florida High School of Advanced Technology, Escambia County School District Pensacola FL Loblolly Pine
      Cornerstone Learning Community Tallahassee FL American Sweetgum
      Dreamers Academy Sarasota FL American Sweetgum
      Florida Forest Service Tallahassee FL Loblolly Pine
      Florida Polytechnic University Lakeland FL American Sweetgum
      Gulfside Community Partnership School Holiday FL Loblolly Pine
      H.B. Plant High School Tampa FL American Sweetgum
      Hobbs Middle School Milton FL American Sweetgum
      Lawton Environmental Study Area (LESA), T.W. Lawton Elementary Oviedo FL American Sweetgum
      Montverde Academy Montverde FL American Sweetgum
      Museum of Archaeology, Paleontology & Science New Port Richey FL American Sweetgum
      Museum of Science and Industry Tampa FL American Sweetgum
      North Andrews Gardens Elementary Oakland Park FL American Sweetgum
      Orange Park Elementary Orange Park FL American Sweetgum
      Pine Crest School Fort Lauderdale FL American Sweetgum
      Port Malabar Elementary School Palm Bay FL American Sweetgum
      St. Peter Catholic School Deland FL Loblolly Pine
      UF/IFAS Extension Clay County 4-H Green Cove Springs FL Loblolly Pine
      University of West Florida Pensacola FL Loblolly Pine
      West Navarre Intermediate School Navarre FL American Sweetgum
      Georgia
      Berrien Elementary School Nashville GA Loblolly Pine
      East Georgia State College Swainsboro GA Loblolly Pine
      Lilburn Elementary School Lilburn GA Loblolly Pine
      Park Elementary School Hamilton GA Loblolly Pine
      Sagamore Hills Elementary School Atlanta GA Loblolly Pine
      United States Air Force Moody Air Force Base GA American Sweetgum
      Iowa
      Cedar Rapids Community School District, Metro High School Cedar Rapids IA Sycamore
      Idaho
      American Falls High School American Falls ID Sycamore
      Illinois
      Eagle Pointe Elementary School Plainfield IL Sycamore
      Marion Community Unit #2 School District, Marion Junior High School Marion IL Sycamore
      Monmouth College Monmouth IL American Sweetgum
      Indiana
      Franklin Community High School Franklin IN American Sweetgum
      Hayes Arboretum Richmond IN American Sweetgum
      Kansas
      Tecumseh South Elementary School Tecumseh KS American Sweetgum
      Kentucky
      Christian County Middle School Hopkinsville KY American Sweetgum
      FIND Outdoors Gladie Visitor Center, Red River Gorge Stanton KY American Sweetgum
      Graves County High School Mayfield KY American Sweetgum
      Martha Layne Collins High School Shelbyville KY American Sweetgum
      Louisiana
      Shreve Island Elementary, Caddo Parish Schools Shreveport LA American Sweetgum
      YMCA of Bogalusa Bogalusa LA Loblolly Pine
      Massachusetts
      Bernardston Elementary School Bernardston MA American Sweetgum
      Michigan
      The Botanic Garden at Historic Barns Park Traverse City MI Sycamore
      Minnesota
      Forest Lake Area High School Forest Lake MN Sycamore
      Missouri
      Columbia Public Schools Elementary Gifted Program Columbia MO American Sweetgum
      Trailridge Elementary Lee’s Summit MO American Sweetgum
      Mississippi
      Bayou Academy Cleveland MS American Sweetgum
      Clinton Community Nature Center Clinton MS American Sweetgum
      North Carolina
      Cardinal Gibbons High School Raleigh NC American Sweetgum
      FIND Outdoors Cradle of Forestry Pisgah National Forest NC American Sweetgum
      Mars Hill University Mars Hill NC American Sweetgum
      Montgomery County NC Extension Master Gardener Volunteers; The Gathering Garden Mount Gilead NC Loblolly Pine
      North Carolina Executive Mansion – Governor’s Residence
      Raleigh NC Loblolly Pine
      North Carolina School of Science and Mathematics – Morganton Morganton NC American Sweetgum
      White Oak High School Jacksonville NC American Sweetgum
      North Carolina School of Science and Mathematics – Durham Durham NC Sycamore
      Nebraska
      Hastings College Hastings NE American Sweetgum
      University of Nebraska-Lincoln Lincoln NE American Sweetgum
      New Hampshire
      Barnstead Elementary School Center Barnstead NH Sycamore
      Nashua Community College Nashua NH Sycamore
      New Jersey
      Edelman Planetarium at Rowan University Glassboro NJ American Sweetgum
      Information Age Learning Center Wall Township NJ American Sweetgum
      New Mexico
      New Mexico Farm & Ranch Heritage Museum Las Cruces NM Loblolly Pine
      New York
      Baldwinsville Central School District Baldwinsville NY Sycamore
      Bronx Community College Bronx NY Sycamore
      Franklin Middle School, Kenmore-Town of Tonawanda School District Town of Tonawanda NY Sycamore
      Pembroke Junior/Senior High School Corfu NY American Sweetgum
      Rome City School District Rome NY Sequoia
      State University of New York (SUNY) – New Paltz New Paltz NY American Sweetgum
      Suffolk County Vanderbilt Museum and Planetarium Centerport NY American Sweetgum
      Ohio
      Claymont High School Uhrichsville OH Sycamore
      Coldwater Exempted Village Schools Coldwater OH American Sweetgum
      Copley-Fairlawn Middle School, Copley-Fairlawn City Schools Copley OH Sycamore
      Liberty-Benton High School Findlay OH Sycamore
      Marshall STEMM Academy Toledo OH American Sweetgum
      Portsmouth City Schools Portsmouth OH American Sweetgum
      Pymatuning Valley High School Andover OH American Sweetgum
      Wayne National Forest Nelsonville OH American Sweetgum
      Oklahoma
      Centennial Middle School Broken Arrow OK Loblolly Pine
      Jenks Northwest Elementary School Tulsa OK American Sweetgum
      Perkins Public Library: Thomas – Wilhite Memorial Library Perkins OK American Sweetgum
      Oregon
      Crow Middle School Eugene OR American Sweetgum
      Friends of Myrtle Creek Library Myrtle Creek OR American Sweetgum
      Lent Elementary School Portland OR American Sweetgum
      Tamarack Elementary School Hillsboro OR American Sweetgum
      Willamette Elementary School, McMinnville School District McMinnville OR American Sweetgum
      Pennsylvania
      Allegheny Observatory, University of Pittsburgh Pittsburgh PA American Sweetgum
      Montour High School McKees Rocks PA American Sweetgum
      Penn State University, Penn State Erie – The Behrend College Erie PA American Sweetgum
      Penn State University, Penn State Schuylkill University Park PA Sycamore
      Perkiomen Valley Middle School East Collegeville PA American Sweetgum
      The Reading Public Museum Reading PA Sycamore
      Rhode Island
      Tiverton Public Library Tiverton RI American Sweetgum
      South Carolina
      Academy for the Arts, Science, & Technology Myrtle Beach SC Loblolly Pine
      Conway Elementary School Conway SC American Sweetgum
      Manning Early Childhood Center, Clarendon School District Manning SC American Sweetgum
      Spartanburg Community College Horticulture Program Spartanburg SC American Sweetgum
      Tennessee
      Great Smoky Mountain Council, Boy Scouts of America Knoxville TN American Sweetgum
      Lipscomb Academy Nashville TN American Sweetgum
      Pellissippi State Community College Knoxville TN Loblolly Pine
      Sumner Academy Gallatin TN American Sweetgum
      Texas
      Atlanta Public Library Atlanta TX American Sweetgum
      Beaumont Children’s Museum & Beaumont Botanical Gardens Beaumont TX Loblolly Pine
      Bonham Pre-Kindergarten School San Marcos TX Loblolly Pine
      Charles W. Young Junior High School Arlington TX Loblolly Pine
      Clear Creek Intermediate, Clear Creek Independent School District (CCISD) League City TX American Sweetgum
      Dallas Arboretum and Botanical Garden – Children’s Adventure Garden Dallas TX American Sweetgum
      DeKalb Independent School District De Kalb TX Loblolly Pine
      Doss Consolidated Common School District (CCSD) Doss TX American Sweetgum
      Fort Worth Botanic Garden Fort Worth TX Loblolly Pine
      Galveston County 4H Texas A&M AgriLife Extension Program (Houston Botanic Gardens) Houston TX American Sweetgum
      Goliad Independent School District Goliad TX Loblolly Pine
      Greens Prairie Elementary School College Station TX American Sweetgum
      Groves Elementary School Humble TX Loblolly Pine
      Kay Granger Elementary School Fort Worth TX Loblolly Pine
      Leadership Big Bend, Nopalitos Park Alpine TX American Sweetgum
      Science Hall Elementary School Kyle TX American Sweetgum
      Scobee Education Center at San Antonio College San Antonio TX Loblolly Pine
      Space Center Intermediate, Clear Creek Independent School District (CCISD) Houston TX Loblolly Pine
      Texas A&M Forest Service Conroe TX American Sweetgum
      Texas A&M University, Physics & Astronomy Department College Station TX American Sweetgum
      University of Texas at Arlington Arlington TX American Sweetgum
      Uplift Summit International Preparatory Middle School Arlington TX Loblolly Pine
      Westside Elementary School Cedar Park TX Loblolly Pine
      Zilker Botanical Garden Conservancy Austin TX Loblolly Pine
      Utah
      Southern Utah University STEM Center Cedar City UT American Sweetgum
      Virginia
      Essex County Museum Tappahannock VA American Sweetgum
      Virginia Living Museum Newport News VA Loblolly Pine
      Virginia Zoo Norfolk VA Loblolly Pine
      Washington
      Innovation Lab High School Bothell WA Sycamore
      Orchard Prairie School District Spokane WA Sycamore
      Richland School District Richland WA Sycamore
      Upper Columbia Resource Conservation & Development Council Spokane Valley WA Sycamore
      Yakima Area Arboretum Yakima WA Sycamore
      Wisconsin
      Dunn County Historical Society Menomonie WI Sycamore

      Fall 2024 Artemis I Moon Tree Stewards
      Distribution is underway through November 2024. This list will be updated once distribution is complete. Previously notified recipients who have not received a seedling may be deferred to a later cycle based on current ready-to-ship seedling inventory.
      Spring 2025 Artemis I Moon Tree Stewards
      Selection is in progress.
      Fall 2025 Artemis I Moon Tree Stewards
      Selection is in progress.
      Explore Moon Trees Website View the full article
  • Check out these Videos

×
×
  • Create New...