Members Can Post Anonymously On This Site
Meet ESA’s SME Office at Space Tech Expo 2024
-
Similar Topics
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
By Wayne Smith
As NASA plans for humans to return to the Moon and eventually explore Mars, a laser beam welding collaboration between NASA’s Marshall Space Flight Center in Huntsville, Alabama, and The Ohio State University in Columbus aims to stimulate in-space manufacturing.
Scientists and engineers from NASA’s Marshall Space Flight Center, participating in the laser beam welding study in August, stand in front of the parabolic plane used for testing. From left, Will Evans, Louise Littles, Emma Jaynes, Andrew O’Connor, and Jeffrey Sowards. Not pictured: Zachary Courtright.Casey Coughlin/Starlab-George Washington Carver Science Park The multi-year effort seeks to understand the physical processes of welding on the lunar surface, such as investigating the effects of laser beam welding in a combined vacuum and reduced gravity environment. The goal is to increase the capabilities of manufacturing in space to potentially assemble large structures or make repairs on the Moon, which will inform humanity’s next giant leap of sending astronauts to Mars and beyond.
“For a long time, we’ve used fasteners, rivets, or other mechanical means to keep structures that we assemble together in space,” said Andrew O’Connor, a Marshall materials scientist who is helping coordinate the collaborative effort and is NASA’s technical lead for the project. “But we’re starting to realize that if we really want strong joints and if we want structures to stay together when assembled on the lunar surface, we may need in-space welding.” The ability to weld structures in space would also eliminate the need to transport rivets and other materials, reducing payloads for space travel. That means learning how welds will perform in space.
To turn the effort into reality, researchers are gathering data on welding under simulated space conditions, such as temperature and heat transfer in a vacuum; the size and shape of the molten area under a laser beam; how the weld cross-section looks after it solidifies; and how mechanical properties change for welds performed in environmental conditions mimicking the lunar surface.
“Once you leave Earth, it becomes more difficult to test how the weld performs, so we are leveraging both experiments and computer modeling to predict welding in space while we’re still on the ground,” said O’Connor.
In August 2024, a joint team from Ohio State’s Welding Engineering and Multidisciplinary Capstone Programs and Marshall’s Materials & Processes Laboratory performed high-powered fiber laser beam welding aboard a commercial aircraft that simulated reduced gravity. The aircraft performed parabolic flight maneuvers that began in level flight, pulled up to add 8,000 feet in altitude, and pushed over at the top of a parabolic arc, resulting in approximately 20 seconds of reduced gravity to the passengers and experiments.
While floating in this weightless environment, team members performed laser welding experiments in a simulated environment similar to that of both low Earth orbit and lunar gravity. Analysis of data collected by a network of sensors during the tests will help researchers understand the effects of space environments on the welding process and welded material.
NASA Marshall engineers and scientists, along with their collaborators from Ohio State University, monitor laser beam welding in a vacuum chamber during a Boeing 727 parabolic flight. From left, Andrew O’Connor, Marshall materials scientist and NASA technical lead for the project; Louise Littles, Marshall materials scientist; and Aaron Brimmer, OSU graduate student.Tasha Dixon/Zero-G “During the flights we successfully completed 69 out of 70 welds in microgravity and lunar gravity conditions, realizing a fully successful flight campaign,” said Will McAuley, an Ohio State welding engineering student.
Funded in part by Marshall and spanning more than two years, the work involves undergraduate and graduate students and professors from Ohio State, and engineers across several NASA centers. Marshall personnel trained alongside the university team, learning how to operate the flight hardware and sharing valuable lessons from previous parabolic flight experiments. NASA’s Langley Research Center in Hampton, Virginia, developed a portable vacuum chamber to support testing efforts.
The last time NASA performed welding in space was during the Skylab mission in 1973. Other parabolic tests have since been performed, using low-powered lasers. Practical welding and joining methods and allied processes, including additive manufacturing, will be required to develop the in-space economy. These processes will repurpose and repair critical space infrastructure and could build structures too large to fit current launch payload volumes. In-space welding could expedite building large habitats in low Earth orbit, spacecraft structures that keep astronauts safe on future missions, and more.
The work is also relevant to understanding how laser beam welding occurs on Earth. Industries could use data to inform welding processes, which are critical to a host of manufactured goods from cars and refrigerators to skyscrapers.
“We’re really excited about laser beam welding because it gives us the flexibility to operate in different environments,” O’Connor said.
There has been a resurgence of interest in welding as we look for innovative ways to put larger structures on the surface of the Moon and other planets.
Andrew O’Connor
Marshall Space Flight Center materials scientist
This effort is sponsored by NASA Marshall’s Research and Development funds, the agency’s Science Mission Directorate Biological and Physical Sciences Division of the agency’s Science Mission Directorate, and NASA’s Space Technology Mission Directorate, including NASA Flight Opportunities.
For more information about NASA’s Marshall Space Flight Center, visit:
https://www.nasa.gov/marshall
Joel Wallace
Marshall Space Flight Center, Huntsville, Alabama
256.544.0034
joel.w.wallace@nasa.gov
Share
Details
Last Updated Nov 07, 2024 Related Terms
Marshall Space Flight Center Explore More
5 min read NASA, Bhutan Conclude Five Years of Teamwork on STEM, Sustainability
Article 3 days ago 23 min read The Marshall Star for October 30, 2024
Article 1 week ago 4 min read NASA Technologies Named Among TIME Inventions of 2024
Article 1 week ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By Space Force
A prototype F-16 Fight Falcon cockpit collapsible ladder for agile combat employment and contingency operations emerged as the 2024 Spark Tank winner at the Pentagon.
View the full article
-
By NASA
6 Min Read Lagniappe for November 2024
Explore the November 2024 issue, highlighting a milestone for future Artemis testing, a key step to expand NASA Stennis Range Operations work, and more! Explore Lagniappe for November 2024 featuring:
NASA Stennis Takes Key Step in Expanding its Range Operations Work NASA Stennis Plants Artemis Moon Tree NASA Employees Complete Agency Leadership Program Gator Speaks
Gator SpeaksNASA/Stennis The month of October is known for becoming cooler in these parts, and there sure were plenty of recent cool moments for NASA Stennis that set the tone for the future.
Last month, the center marked a milestone for testing a new SLS (Space Launch System) rocket stage to fly on future Artemis missions to the Moon and beyond.
Crews safely lifted and installed the interstage simulator component that will be used for future testing of NASA’s exploration upper stage on the B-2 side of the Thad Cochran Test Stand.
Why does this matter?
When the new upper stage is ready to fly following testing at NASA Stennis, it will allow NASA to send astronauts and larger payloads to the Moon on a single mission.
It is expected to fly on Artemis IV when astronauts will live and work in humanity’s first lunar space station, Gateway.
How exciting! This mission will make possible new opportunities for science and preparation for human missions to Mars.
The massive interstage simulator component lifted and installed at NASA Stennis is 103 tons, or 206,000 pounds. When you learn about the exploration upper stage, and how it functions, it makes sense. The upper stage is powered by four engines and provides more than 97,000 pounds of thrust.
Speaking of missions to the Moon, have you ever asked yourself why are we returning to the Moon?
A few goals NASA has set for Artemis missions include: preparing for future exploration missions deeper into space – including Mars – by developing and proving new technologies and capabilities, while learning how to live and operate on the lunar surface; finding and using water and other critical resources needed for long-term exploration; and investigating the Moon’s mysteries to learn more about Earth and the universe for the benefit of all.
These long-term plans build on more than 50 years of NASA’s experience and are reigniting everyone’s passion for discovery.
I believe it because the grandgators have been talking NASA nonstop lately.
All of this culminates with inspiring the Artemis Generation and encouraging young people to pursue studies and careers in science, technology, engineering, and mathematics.
Throughout the month of October, NASA Stennis representatives have been doing just that, sharing the cool ways NASA explores, innovates, and inspires all of humanity and the Artemis Generation.
Such stops have included Congressman Bennie Thompson’s College and Career Fair in Greenville, Mississippi, located in the Yazoo-Mississippi Delta area, bordering the state of Arkansas; Cruisin’ the Coast, where car enthusiasts from over 37 states and Canada drive to the Mississippi Gulf Coast annually; and various college and career fairs throughout Pearl River County and Hancock County, areas where many NASA Stennis employees live.
October indeed was a cool month, and November has started off that way, too. NASA Stennis representatives participated in the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, one of Pensacola’s largest events with more than 150,000 in attendance.
It marked just the fifth time in history that the U.S. Air Force Thunderbirds and U.S. Navy Blue Angels have flown together. This event also celebrated the 55th anniversary of NASA’s lunar landing.
Pretty cool, huh?
> Back to Top
NASA Stennis Top News
NASA Stennis Achieves Milestone in Preparation for Future Artemis Testing
NASA’s Stennis Space Center near Bay St. Louis, Mississippi, achieved a key milestone this week for testing a new SLS (Space Launch System) rocket stage to fly on future Artemis missions to the Moon and beyond.
Read More About the Interstage Simulator Lift NASA Stennis Takes Key Step in Expanding its Range Operations Work
NASA’s Stennis Space Center near Bay St. Louis, Mississippi, has entered into an agreement with Skydweller Aero Inc. for the company to operate its solar-powered autonomous aircraft in the site’s restricted airspace, a key step towards achieving a strategic center goal.
Read More About the Agreement with Skydweller Aero NASA Stennis Conducts Water Flush at Fred Haise Test Stand
Crews conduct a planned flame deflector water flow system flush on the Fred Haise Test Stand at NASA’s Stennis Space Center on Oct. 22, following the recent completion of upgrades to the High Pressure Industrial Water Facility’s underground piping network. The flush, a periodic procedure to ensure system functionality and performance, involves flowing 150,000 gallons or more per minute from the High Pressure Industrial Water Facility to the stand. It also continues stand preparations for testing RS-25 flight engines for use on future Artemis missions to the Moon and beyond. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin Crews conduct a planned flame deflector water flow system flush on the Fred Haise Test Stand at NASA’s Stennis Space Center on Oct. 22, following the recent completion of upgrades to the High Pressure Industrial Water Facility’s underground piping network. The flush, a periodic procedure to ensure system functionality and performance, involves flowing 150,000 gallons or more per minute from the High Pressure Industrial Water Facility to the stand. It also continues stand preparations for testing RS-25 flight engines for use on future Artemis missions to the Moon and beyond. NASA/Danny Nowlin Crews conduct a planned flame deflector water flow system flush on the Fred Haise Test Stand at NASA’s Stennis Space Center on Oct. 22, following the recent completion of upgrades to the High Pressure Industrial Water Facility’s underground piping network. The flush, a periodic procedure to ensure system functionality and performance, involves flowing 150,000 gallons or more per minute from the High Pressure Industrial Water Facility to the stand. It also continues stand preparations for testing RS-25 flight engines for use on future Artemis missions to the Moon and beyond. NASA/Danny Nowlin Crews conduct a planned flame deflector water flow system flush on the Fred Haise Test Stand at NASA’s Stennis Space Center on Oct. 22, following the recent completion of upgrades to the High Pressure Industrial Water Facility’s underground piping network. The flush, a periodic procedure to ensure system functionality and performance, involves flowing 150,000 gallons or more per minute from the High Pressure Industrial Water Facility to the stand. It also continues stand preparations for testing RS-25 flight engines for use on future Artemis missions to the Moon and beyond. NASA/Danny Nowlin NASA Employees Complete Agency Leadership Program
Eli Ouder, left, and Thom Rich are pictured at NASA Headquarters in Washington on Oct. 23 after graduating from the NASA ASPIRE Program. Ouder is the procurement officer for NASA’s Stennis Space Center and NASA Shared Services Center. Rich is the associate director of the NASA Stennis Center Operations Directorate. The two were part of the first cohort in the new 18-month leadership program to prepare NASA leaders for executive leadership roles in the future. NASA NASA Stennis Plants Artemis Moon Tree
NASA employees plant an Artemis Moon Tree at NASA’s Stennis Space Center on Oct. 29 to celebrate NASA’s successful Artemis I mission as the agency prepares for a return around the Moon with astronauts on Artemis II. NASA/Danny Nowlin Read More About the Artemis Moon Tree NASA Stennis Crews Continue Exploration Upper Stage Preparations
A pair of umbilical support structures needed for future testing of NASA’s exploration upper stage (EUS) were installed in the B-2 position of the Thad Cochran Test Stand on Oct. 30-31 at NASA’s Stennis Space Center. The support structures arrived from NASA’s Michoud Assembly Facility in New Orleans via the unique NASA Stennis seven-and-a-half-mile canal system in 2023. Since then, crews have prepared the structures, which will align with the EUS unit, for installation. In addition to helping secure the unit in place during hot fire testing, the umbilical support structures are where the command, control, and data electrical connections are mated to connect the ground systems to the vehicle systems, as well as most the commodity connections, such as liquid hydrogen, liquid oxygen, hydrogen vent, helium bottle fill pressure, and purges. Prior to its initial flight, the EUS unit will undergo a series of Green Run tests at NASA Stennis to ensure all systems are ready to go. The test series will culminate with a hot fire of the stage’s four RL10 engines, made by lead SLS engines contractor L3 Harris. The new upper stage will enable NASA to carry larger payloads on Artemis missions to the Moon and beyond. NASA/Danny Nowlin A pair of umbilical support structures needed for future testing of NASA’s exploration upper stage (EUS) were installed in the B-2 position of the Thad Cochran Test Stand on Oct. 30-31 at NASA’s Stennis Space Center. The support structures arrived from NASA’s Michoud Assembly Facility in New Orleans via the unique NASA Stennis seven-and-a-half-mile canal system in 2023. Since then, crews have prepared the structures, which will align with the EUS unit, for installation. In addition to helping secure the unit in place during hot fire testing, the umbilical support structures are where the command, control, and data electrical connections are mated to connect the ground systems to the vehicle systems, as well as most the commodity connections, such as liquid hydrogen, liquid oxygen, hydrogen vent, helium bottle fill pressure, and purges. Prior to its initial flight, the EUS unit will undergo a series of Green Run tests at NASA Stennis to ensure all systems are ready to go. The test series will culminate with a hot fire of the stage’s four RL10 engines, made by lead SLS engines contractor L3 Harris. The new upper stage will enable NASA to carry larger payloads on Artemis missions to the Moon and beyond. NASA/Danny Nowlin A pair of umbilical support structures needed for future testing of NASA’s exploration upper stage (EUS) were installed in the B-2 position of the Thad Cochran Test Stand on Oct. 30-31 at NASA’s Stennis Space Center. The support structures arrived from NASA’s Michoud Assembly Facility in New Orleans via the unique NASA Stennis seven-and-a-half-mile canal system in 2023. Since then, crews have prepared the structures, which will align with the EUS unit, for installation. In addition to helping secure the unit in place during hot fire testing, the umbilical support structures are where the command, control, and data electrical connections are mated to connect the ground systems to the vehicle systems, as well as most the commodity connections, such as liquid hydrogen, liquid oxygen, hydrogen vent, helium bottle fill pressure, and purges. Prior to its initial flight, the EUS unit will undergo a series of Green Run tests at NASA Stennis to ensure all systems are ready to go. The test series will culminate with a hot fire of the stage’s four RL10 engines, made by lead SLS engines contractor L3 Harris. The new upper stage will enable NASA to carry larger payloads on Artemis missions to the Moon and beyond. NASA/Danny Nowlin A pair of umbilical support structures needed for future testing of NASA’s exploration upper stage (EUS) were installed in the B-2 position of the Thad Cochran Test Stand on Oct. 30-31 at NASA’s Stennis Space Center. The support structures arrived from NASA’s Michoud Assembly Facility in New Orleans via the unique NASA Stennis seven-and-a-half-mile canal system in 2023. Since then, crews have prepared the structures, which will align with the EUS unit, for installation. In addition to helping secure the unit in place during hot fire testing, the umbilical support structures are where the command, control, and data electrical connections are mated to connect the ground systems to the vehicle systems, as well as most the commodity connections, such as liquid hydrogen, liquid oxygen, hydrogen vent, helium bottle fill pressure, and purges. Prior to its initial flight, the EUS unit will undergo a series of Green Run tests at NASA Stennis to ensure all systems are ready to go. The test series will culminate with a hot fire of the stage’s four RL10 engines, made by lead SLS engines contractor L3 Harris. The new upper stage will enable NASA to carry larger payloads on Artemis missions to the Moon and beyond. NASA/Danny Nowlin A pair of umbilical support structures needed for future testing of NASA’s exploration upper stage (EUS) were installed in the B-2 position of the Thad Cochran Test Stand on Oct. 30-31 at NASA’s Stennis Space Center. The support structures arrived from NASA’s Michoud Assembly Facility in New Orleans via the unique NASA Stennis seven-and-a-half-mile canal system in 2023. Since then, crews have prepared the structures, which will align with the EUS unit, for installation. In addition to helping secure the unit in place during hot fire testing, the umbilical support structures are where the command, control, and data electrical connections are mated to connect the ground systems to the vehicle systems, as well as most the commodity connections, such as liquid hydrogen, liquid oxygen, hydrogen vent, helium bottle fill pressure, and purges. Prior to its initial flight, the EUS unit will undergo a series of Green Run tests at NASA Stennis to ensure all systems are ready to go. The test series will culminate with a hot fire of the stage’s four RL10 engines, made by lead SLS engines contractor L3 Harris. The new upper stage will enable NASA to carry larger payloads on Artemis missions to the Moon and beyond. NASA/Danny Nowlin A pair of umbilical support structures needed for future testing of NASA’s exploration upper stage (EUS) were installed in the B-2 position of the Thad Cochran Test Stand on Oct. 30-31 at NASA’s Stennis Space Center. The support structures arrived from NASA’s Michoud Assembly Facility in New Orleans via the unique NASA Stennis seven-and-a-half-mile canal system in 2023. Since then, crews have prepared the structures, which will align with the EUS unit, for installation. In addition to helping secure the unit in place during hot fire testing, the umbilical support structures are where the command, control, and data electrical connections are mated to connect the ground systems to the vehicle systems, as well as most the commodity connections, such as liquid hydrogen, liquid oxygen, hydrogen vent, helium bottle fill pressure, and purges. Prior to its initial flight, the EUS unit will undergo a series of Green Run tests at NASA Stennis to ensure all systems are ready to go. The test series will culminate with a hot fire of the stage’s four RL10 engines, made by lead SLS engines contractor L3 Harris. The new upper stage will enable NASA to carry larger payloads on Artemis missions to the Moon and beyond. NASA/Danny Nowlin A pair of umbilical support structures needed for future testing of NASA’s exploration upper stage (EUS) were installed in the B-2 position of the Thad Cochran Test Stand on Oct. 30-31 at NASA’s Stennis Space Center. The support structures arrived from NASA’s Michoud Assembly Facility in New Orleans via the unique NASA Stennis seven-and-a-half-mile canal system in 2023. Since then, crews have prepared the structures, which will align with the EUS unit, for installation. In addition to helping secure the unit in place during hot fire testing, the umbilical support structures are where the command, control, and data electrical connections are mated to connect the ground systems to the vehicle systems, as well as most the commodity connections, such as liquid hydrogen, liquid oxygen, hydrogen vent, helium bottle fill pressure, and purges. Prior to its initial flight, the EUS unit will undergo a series of Green Run tests at NASA Stennis to ensure all systems are ready to go. The test series will culminate with a hot fire of the stage’s four RL10 engines, made by lead SLS engines contractor L3 Harris. The new upper stage will enable NASA to carry larger payloads on Artemis missions to the Moon and beyond. NASA/Danny Nowlin A pair of umbilical support structures needed for future testing of NASA’s exploration upper stage (EUS) were installed in the B-2 position of the Thad Cochran Test Stand on Oct. 30-31 at NASA’s Stennis Space Center. The support structures arrived from NASA’s Michoud Assembly Facility in New Orleans via the unique NASA Stennis seven-and-a-half-mile canal system in 2023. Since then, crews have prepared the structures, which will align with the EUS unit, for installation. In addition to helping secure the unit in place during hot fire testing, the umbilical support structures are where the command, control, and data electrical connections are mated to connect the ground systems to the vehicle systems, as well as most the commodity connections, such as liquid hydrogen, liquid oxygen, hydrogen vent, helium bottle fill pressure, and purges. Prior to its initial flight, the EUS unit will undergo a series of Green Run tests at NASA Stennis to ensure all systems are ready to go. The test series will culminate with a hot fire of the stage’s four RL10 engines, made by lead SLS engines contractor L3 Harris. The new upper stage will enable NASA to carry larger payloads on Artemis missions to the Moon and beyond. NASA/Danny Nowlin A pair of umbilical support structures needed for future testing of NASA’s exploration upper stage (EUS) were installed in the B-2 position of the Thad Cochran Test Stand on Oct. 30-31 at NASA’s Stennis Space Center. The support structures arrived from NASA’s Michoud Assembly Facility in New Orleans via the unique NASA Stennis seven-and-a-half-mile canal system in 2023.
Since then, crews have prepared the structures, which will align with the EUS unit, for installation. In addition to helping secure the unit in place during hot fire testing, the umbilical support structures are where the command, control, and data electrical connections are mated to connect the ground systems to the vehicle systems, as well as most the commodity connections, such as liquid hydrogen, liquid oxygen, hydrogen vent, helium bottle fill pressure, and purges.
Prior to its initial flight, the EUS unit will undergo a series of Green Run tests at NASA Stennis to ensure all systems are ready to go. The test series will culminate with a hot fire of the stage’s four RL10 engines, made by lead SLS engines contractor L3 Harris. The new upper stage will enable NASA to carry larger payloads on Artemis missions to the Moon and beyond. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin A pair of umbilical support structures needed for future testing of NASA’s exploration upper stage (EUS) were installed in the B-2 position of the Thad Cochran Test Stand on Oct. 30-31 at NASA’s Stennis Space Center. The support structures arrived from NASA’s Michoud Assembly Facility in New Orleans via the unique NASA Stennis seven-and-a-half-mile canal system in 2023.
Since then, crews have prepared the structures, which will align with the EUS unit, for installation. In addition to helping secure the unit in place during hot fire testing, the umbilical support structures are where the command, control, and data electrical connections are mated to connect the ground systems to the vehicle systems, as well as most the commodity connections, such as liquid hydrogen, liquid oxygen, hydrogen vent, helium bottle fill pressure, and purges.
Prior to its initial flight, the EUS unit will undergo a series of Green Run tests at NASA Stennis to ensure all systems are ready to go. The test series will culminate with a hot fire of the stage’s four RL10 engines, made by lead SLS engines contractor L3 Harris. The new upper stage will enable NASA to carry larger payloads on Artemis missions to the Moon and beyond. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin > Back to Top
Center Activities
LSU Engineering Students Visit NASA Stennis
Members of the Society for the Advancement of Material and Process Engineering at Louisiana State University stand at the Thad Cochran Test Stand during a visit to NASA Stennis on Oct. 4. The Thad Cochran Test Stand (B-2) is where future Green Run testing of NASA’s exploration upper stage will take place ahead of future Artemis missions to the Moon and beyond. The mission of the Society for the Advancement of Material and Process Engineering at LSU is to provide enhanced educational opportunities by delivering information on new and advanced materials and processing technology. NASA/Danny Nowlin U.S. Ambassador Visits NASA Stennis
Heide Fulton, U.S. Ambassador to the Oriental Republic of Uruguay, visits NASA Stennis on Oct. 8 to meet with site leadership and tour test complex facilities. During her visit, Fulton met with NASA Stennis Director John Bailey and other leaders of the center and the NASA Shared Services Center located onsite. She also toured the rocket propulsion test complex, visiting the B-2 side of the Thad Cochran Test Stand, where she was briefed by B-2 Stand Director Ryan Roberts about NASA Stennis testing for the SLS (Space Launch System) rocket and NASA’s Artemis missions to the Moon and beyond. Uruguay is one of 45 nations who have signed the Artemis Accords, which establish a practical set of principles to guide space exploration cooperation among nations. The country became the 36th nation to sign the Artemis Accords during a Washington, D.C. ceremony in February. Ambassador Fulton was joined on the visit by Cmdr. Brendan Rok, chief of the U.S. Navy Office of Defense Cooperation at the U.S. Embassy in Montevideo, Uruguay; and Leah Thorstenson, foreign policy advisor with the U.S. Marines Corps. Forces South.NASA/Danny Nowlin Heide Fulton, U.S. Ambassador to the Oriental Republic of Uruguay, visits NASA Stennis on Oct. 8 to meet with site leadership and tour test complex facilities. During her visit, Fulton met with NASA Stennis Director John Bailey and other leaders of the center and the NASA Shared Services Center located onsite. She also toured the rocket propulsion test complex, visiting the B-2 side of the Thad Cochran Test Stand, where she was briefed by B-2 Stand Director Ryan Roberts about NASA Stennis testing for the SLS (Space Launch System) rocket and NASA’s Artemis missions to the Moon and beyond. Uruguay is one of 45 nations who have signed the Artemis Accords, which establish a practical set of principles to guide space exploration cooperation among nations. The country became the 36th nation to sign the Artemis Accords during a Washington, D.C. ceremony in February. Ambassador Fulton was joined on the visit by Cmdr. Brendan Rok, chief of the U.S. Navy Office of Defense Cooperation at the U.S. Embassy in Montevideo, Uruguay; and Leah Thorstenson, foreign policy advisor with the U.S. Marines Corps. Forces South. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin Heide Fulton, U.S. Ambassador to the Oriental Republic of Uruguay, visits NASA Stennis on Oct. 8 to meet with site leadership and tour test complex facilities. During her visit, Fulton met with NASA Stennis Director John Bailey and other leaders of the center and the NASA Shared Services Center located onsite. She also toured the rocket propulsion test complex, visiting the B-2 side of the Thad Cochran Test Stand, where she was briefed by B-2 Stand Director Ryan Roberts about NASA Stennis testing for the SLS (Space Launch System) rocket and NASA’s Artemis missions to the Moon and beyond. Uruguay is one of 45 nations who have signed the Artemis Accords, which establish a practical set of principles to guide space exploration cooperation among nations. The country became the 36th nation to sign the Artemis Accords during a Washington, D.C. ceremony in February. Ambassador Fulton was joined on the visit by Cmdr. Brendan Rok, chief of the U.S. Navy Office of Defense Cooperation at the U.S. Embassy in Montevideo, Uruguay; and Leah Thorstenson, foreign policy advisor with the U.S. Marines Corps. Forces South.NASA/Danny Nowlin NASA Stennis Highlights Return to the Moon in Louisiana
NASA Stennis representatives inspire the Artemis Generation Oct. 12 at the Wild Things event celebrating National Wildlife Refuge Week in Lacombe, Louisiana. Participants played a game to identify different phases of the Moon and learned more about NASA’s return to the Moon. The event was hosted by Friends of Louisiana Wildlife Refuges, Inc. and Southeast Louisiana National Wildlife Refuges Complex at Bayou Lacombe Center, headquarters for the nine National Wildlife Refuges in southeast Louisiana.NASA/Lacy Thompson NASA Stennis representatives inspire the Artemis Generation Oct. 12 at the Wild Things event celebrating National Wildlife Refuge Week in Lacombe, Louisiana. Participants played a game to identify different phases of the Moon and learned more about NASA’s return to the Moon. The event was hosted by Friends of Louisiana Wildlife Refuges, Inc. and Southeast Louisiana National Wildlife Refuges Complex at Bayou Lacombe Center, headquarters for the nine National Wildlife Refuges in southeast Louisiana.NASA/Lacy Thompson NASA Stennis representatives inspire the Artemis Generation Oct. 12 at the Wild Things event celebrating National Wildlife Refuge Week in Lacombe, Louisiana. Participants played a game to identify different phases of the Moon and learned more about NASA’s return to the Moon. The event was hosted by Friends of Louisiana Wildlife Refuges, Inc. and Southeast Louisiana National Wildlife Refuges Complex at Bayou Lacombe Center, headquarters for the nine National Wildlife Refuges in southeast Louisiana. NOTE: Right click on photo to open full image in new tab.NASA/Lacy Thompson NASA Stennis representatives inspire the Artemis Generation Oct. 12 at the Wild Things event celebrating National Wildlife Refuge Week in Lacombe, Louisiana. Participants played a game to identify different phases of the Moon and learned more about NASA’s return to the Moon. The event was hosted by Friends of Louisiana Wildlife Refuges, Inc. and Southeast Louisiana National Wildlife Refuges Complex at Bayou Lacombe Center, headquarters for the nine National Wildlife Refuges in southeast Louisiana. NOTE: Right click on photo to open full image in new tab.NASA/Lacy Thompson NASA Stennis representatives inspire the Artemis Generation Oct. 12 at the Wild Things event celebrating National Wildlife Refuge Week in Lacombe, Louisiana. Participants played a game to identify different phases of the Moon and learned more about NASA’s return to the Moon. The event was hosted by Friends of Louisiana Wildlife Refuges, Inc. and Southeast Louisiana National Wildlife Refuges Complex at Bayou Lacombe Center, headquarters for the nine National Wildlife Refuges in southeast Louisiana. NOTE: Right click on photo to open full image in new tab.NASA/Lacy Thompson NASA Stennis Hosts Office of the Chief Information Officer Teams
The NASA Office of the Chief Information Officer Integrated Design and Assurance Systems team are shown at the Thad Cochran Test Stand during a tour of NASA Stennis on Oct. 9. To accomplish NASA’s vision, the agency depends heavily on many things and information technology is key among them. Information technology capabilities enable NASA’s discoveries, allow sharing of mission data, improve workforce productivity, and increase mission quality, resilience, and cost-effectiveness. To enable success for NASA’s mission portfolio, the Office of the Chief Information Officer goals are to deliver great customer experiences; achieve consistent operational excellence; transform NASA through information and technology; and ensure proactive, resilient cybersecurity – all delivered by an exceptional team.NASA/Danny Nowlin Members of the NASA Office of the Chief Information Officer Strategy and Architecture Office team are shown at the Thad Cochran Test Stand during a tour of NASA Stennis on Oct. 31. The NASA team visited NASA Stennis as part of an annual face-to-face meeting. The Strategy and Architecture Office collaboratively develops and manages Information Technology strategy and architecture to meet NASA’s current and future needs, driving transformation, innovation, informed investment planning, and processes to measure and communicate results. Development includes NASA’s Information Technology Strategic Plan, integrated roadmaps, future-state business capabilities and services, and data-driven investment guidance. NASA/Danny Nowlin Start Your Engines: NASA Stennis Cruises on the Coast
NASA Stennis representatives inspire the Artemis Generation and share NASA Stennis’ rich history of propulsion testing with attendees from over 37 U.S. states and Canada during the 28th Annual Cruisin’ the Coast car show along the Mississippi Gulf Coast Oct. 10-12. NASA provided a virtual reality space experience, and participants were welcomed to the exhibit by life size cardboard cutouts of the Artemis II crew. Artemis II, targeted for 2025, is the first crewed test of the SLS (Space Launch System) rocket and Orion spacecraft, which will carry NASA astronauts Reid Wiseman (commander), Victor Glover (pilot), and Christina Koch (mission specialist), and Canadian Space Agency astronaut Jeremy Hansen (mission specialist) around the Moon. All RS-25 engines that help power NASA’s SLS rocket are tested and proven flightworthy at NASA Stennis prior to use on Artemis missions.NASA/Samone Wilson NASA Stennis representatives inspire the Artemis Generation and share NASA Stennis’ rich history of propulsion testing with attendees from over 37 U.S. states and Canada during the 28th Annual Cruisin’ the Coast car show along the Mississippi Gulf Coast Oct. 10-12. NASA provided a virtual reality space experience, and participants were welcomed to the exhibit by life size cardboard cutouts of the Artemis II crew. Artemis II, targeted for 2025, is the first crewed test of the SLS (Space Launch System) rocket and Orion spacecraft, which will carry NASA astronauts Reid Wiseman (commander), Victor Glover (pilot), and Christina Koch (mission specialist), and Canadian Space Agency astronaut Jeremy Hansen (mission specialist) around the Moon. All RS-25 engines that help power NASA’s SLS rocket are tested and proven flightworthy at NASA Stennis prior to use on Artemis missions. NOTE: Right click on photo to open full image in new tab.NASA/Samone Wilson NASA Stennis representatives inspire the Artemis Generation and share NASA Stennis’ rich history of propulsion testing with attendees from over 37 U.S. states and Canada during the 28th Annual Cruisin’ the Coast car show along the Mississippi Gulf Coast Oct. 10-12. NASA provided a virtual reality space experience, and participants were welcomed to the exhibit by life size cardboard cutouts of the Artemis II crew. Artemis II, targeted for 2025, is the first crewed test of the SLS (Space Launch System) rocket and Orion spacecraft, which will carry NASA astronauts Reid Wiseman (commander), Victor Glover (pilot), and Christina Koch (mission specialist), and Canadian Space Agency astronaut Jeremy Hansen (mission specialist) around the Moon. All RS-25 engines that help power NASA’s SLS rocket are tested and proven flightworthy at NASA Stennis prior to use on Artemis missions.NASA/Samone Wilson NASA Stennis representatives inspire the Artemis Generation and share NASA Stennis’ rich history of propulsion testing with attendees from over 37 U.S. states and Canada during the 28th Annual Cruisin’ the Coast car show along the Mississippi Gulf Coast Oct. 10-12. NASA provided a virtual reality space experience, and participants were welcomed to the exhibit by life size cardboard cutouts of the Artemis II crew. Artemis II, targeted for 2025, is the first crewed test of the SLS (Space Launch System) rocket and Orion spacecraft, which will carry NASA astronauts Reid Wiseman (commander), Victor Glover (pilot), and Christina Koch (mission specialist), and Canadian Space Agency astronaut Jeremy Hansen (mission specialist) around the Moon. All RS-25 engines that help power NASA’s SLS rocket are tested and proven flightworthy at NASA Stennis prior to use on Artemis missions. NOTE: Right click on photo to open full image in new tab.NASA/Samone Wilson NASA Stennis representatives inspire the Artemis Generation and share NASA Stennis’ rich history of propulsion testing with attendees from over 37 U.S. states and Canada during the 28th Annual Cruisin’ the Coast car show along the Mississippi Gulf Coast Oct. 10-12. NASA provided a virtual reality space experience, and participants were welcomed to the exhibit by life size cardboard cutouts of the Artemis II crew. Artemis II, targeted for 2025, is the first crewed test of the SLS (Space Launch System) rocket and Orion spacecraft, which will carry NASA astronauts Reid Wiseman (commander), Victor Glover (pilot), and Christina Koch (mission specialist), and Canadian Space Agency astronaut Jeremy Hansen (mission specialist) around the Moon. All RS-25 engines that help power NASA’s SLS rocket are tested and proven flightworthy at NASA Stennis prior to use on Artemis missions.NASA/Samone Wilson Stennis Hosts Family Day at INFINITY
NASA Stennis’ sitewide employees and their guests attend the annual NASA Stennis Family Day at INFINITY Science Center, the official visitor center of NASA Stennis, on Oct. 19. Attendees had the opportunity to journey through the INFINITY exhibits and enjoy additional activities provided by participating organizations of the NASA Stennis federal city. NASA/Danny Nowlin NASA Stennis’ sitewide employees and their guests attend the annual NASA Stennis Family Day at INFINITY Science Center, the official visitor center of NASA Stennis, on Oct. 19. Attendees had the opportunity to journey through the INFINITY exhibits and enjoy additional activities provided by participating organizations of the NASA Stennis federal city. NASA/Danny Nowlin NASA Stennis’ sitewide employees and their guests attend the annual NASA Stennis Family Day at INFINITY Science Center, the official visitor center of NASA Stennis, on Oct. 19. Attendees had the opportunity to journey through the INFINITY exhibits and enjoy additional activities provided by participating organizations of the NASA Stennis federal city. NASA/Danny Nowlin NASA Stennis’ sitewide employees and their guests attend the annual NASA Stennis Family Day at INFINITY Science Center, the official visitor center of NASA Stennis, on Oct. 19. Attendees had the opportunity to journey through the INFINITY exhibits and enjoy additional activities provided by participating organizations of the NASA Stennis federal city. NASA/Danny Nowlin NASA Stennis’ sitewide employees and their guests attend the annual NASA Stennis Family Day at INFINITY Science Center, the official visitor center of NASA Stennis, on Oct. 19. Attendees had the opportunity to journey through the INFINITY exhibits and enjoy additional activities provided by participating organizations of the NASA Stennis federal city. NASA/Danny Nowlin NASA Stennis’ sitewide employees and their guests attend the annual NASA Stennis Family Day at INFINITY Science Center, the official visitor center of NASA Stennis, on Oct. 19. Attendees had the opportunity to journey through the INFINITY exhibits and enjoy additional activities provided by participating organizations of the NASA Stennis federal city. NASA/Danny Nowlin Java with John: Brewing Conversations and Connection with NASA Stennis Employees
NASA Stennis Director John Bailey hosts a Java with John session with Office of Procurement employees on Oct. 15. Java with John is an employee-led discussion in a casual environment aimed at fostering a culture in which employees are welcome to share what matters most to them at work.NASA/Danny Nowlin NASA Stennis Director John Bailey hosts a Java with John session with Office of Procurement employees on Oct. 15. Java with John is an employee-led discussion in a casual environment aimed at fostering a culture in which employees are welcome to share what matters most to them at work.NASA/Danny Nowlin NASA Stennis Director John Bailey hosts a Java with John session with Office of Procurement employees on Oct. 15. Java with John is an employee-led discussion in a casual environment aimed at fostering a culture in which employees are welcome to share what matters most to them at work.NASA/Danny Nowlin NASA Stennis Director John Bailey hosts a Java with John session with Center Operations Directorate and Office of Communications employees on Oct. 23. Java with John is an employee-led discussion in a casual environment aimed at fostering a culture in which employees are welcome to share what matters most to them at work.NASA/Danny Nowlin NASA Stennis Director John Bailey hosts a Java with John session with Center Operations Directorate and Office of Communications employees on Oct. 23. Java with John is an employee-led discussion in a casual environment aimed at fostering a culture in which employees are welcome to share what matters most to them at work.NASA/Danny Nowlin NASA Attends Blue Angels Airshow
NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NOTE: Right click on photo to open full image in new tab.NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NOTE: Right click on photo to open full image in new tab.NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Attends Picayune Street Fair
NASA Stennis representatives engage with the Artemis Generation at the Picayune Street Fair in Picayune, Mississippi on Nov. 2-3. The south Mississippi NASA center is located less than 15 miles from Picayune with many employees living in the community. NASA Stennis tests all RS-25 engines to help power NASA’s SLS (Space Launch System) rocket on Artemis missions. The NASA center is also preparing to conduct a full series of tests on the agency’s exploration upper stage to demonstrate it is ready to fly on future Artemis missions. With the Artemis campaign, NASA will land the first woman and the first person of color on the Moon, using innovative technologies to explore more of the lunar surface than ever. NOTE: Right click on photo to open full image in new tab.NASA/Stennis NASA Stennis representatives engage with the Artemis Generation at the Picayune Street Fair in Picayune, Mississippi on Nov. 2-3. The south Mississippi NASA center is located less than 15 miles from Picayune with many employees living in the community. NASA Stennis tests all RS-25 engines to help power NASA’s SLS (Space Launch System) rocket on Artemis missions. The NASA center is also preparing to conduct a full series of tests on the agency’s exploration upper stage to demonstrate it is ready to fly on future Artemis missions. With the Artemis campaign, NASA will land the first woman and the first person of color on the Moon, using innovative technologies to explore more of the lunar surface than ever. NASA/Stennis NASA Stennis representatives engage with the Artemis Generation at the Picayune Street Fair in Picayune, Mississippi on Nov. 2-3. The south Mississippi NASA center is located less than 15 miles from Picayune with many employees living in the community. NASA Stennis tests all RS-25 engines to help power NASA’s SLS (Space Launch System) rocket on Artemis missions. The NASA center is also preparing to conduct a full series of tests on the agency’s exploration upper stage to demonstrate it is ready to fly on future Artemis missions. With the Artemis campaign, NASA will land the first woman and the first person of color on the Moon, using innovative technologies to explore more of the lunar surface than ever. NOTE: Right click on photo to open full image in new tab.NASA/Stennis NASA Stennis representatives engage with the Artemis Generation at the Picayune Street Fair in Picayune, Mississippi on Nov. 2-3. The south Mississippi NASA center is located less than 15 miles from Picayune with many employees living in the community. NASA Stennis tests all RS-25 engines to help power NASA’s SLS (Space Launch System) rocket on Artemis missions. The NASA center is also preparing to conduct a full series of tests on the agency’s exploration upper stage to demonstrate it is ready to fly on future Artemis missions. With the Artemis campaign, NASA will land the first woman and the first person of color on the Moon, using innovative technologies to explore more of the lunar surface than ever. NASA/Stennis > Back to Top
NASA in the News
Liftoff! NASA’s Europa Clipper Sails Toward Ocean Moon of Jupiter – NASA NASA Activates Resources to Help Assess Impacts from Hurricane Milton – NASA NASA Welcomes Estonia as Newest Artemis Accords Signatory – NASA How NASA Astronauts Vote from Space Aboard International Space Station – NASA NASA: New Insights into How Mars Became Uninhabitable – NASA Science > Back to Top
Employee Profile: Tessa Keating
Tessa Keating is a public affairs specialist in the Office of Communications at NASA’s Stennis Space Center. Keating plans onsite logistics, serves as a protocol officer, and coordinates the Space Flight Awareness Program for NASA Stennis and the NASA Shared Services Center.NASA/Danny Nowlin Every task at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, is not simply work for Tessa Keating – it is a meaningful step toward a part of something great.
Read More About Tessa Keating > Back to Top
Additional Resources
WXXV: Developing autonomous space technology at NASA Stennis FOX8: NASA Astro Camp Community Partners Program WXXV: Catching up with Stennis Space Center’s new director New and Notables: John Bailey – Biz New Orleans Good Things with Rebecca Turner – SuperTalk Mississippi (interview with NASA Stennis employees Lee English Jr. and Noah English) Certifying Artemis Rocket Engines – NASA (Houston We Have a Podcast segment featuring NASA Stennis engineers Chip Ellis and Bradley Tyree) NASA Stennis Overview – Going Further video Subscription Info
Lagniappe is published monthly by the Office of Communications at NASA’s Stennis Space Center. The NASA Stennis office may be contacted by at 228-688-3333 (phone); ssc-office-of-communications@mail.nasa.gov (email); or NASA OFFICE OF COMMUNICATIONS, Attn: LAGNIAPPE, Mail code IA00, Building 1111 Room 173, Stennis Space Center, MS 39529 (mail).
The Lagniappe staff includes: Managing Editor Lacy Thompson, Editor Bo Black, and photographer Danny Nowlin.
To subscribe to the monthly publication, please email the following to ssc-office-of-communications@mail.nasa.gov – name, location (city/state), email address.
Explore More
4 min read Lagniappe for October 2024
Article 1 month ago 7 min read Lagniappe for September 2024
Article 2 months ago 5 min read Lagniappe for August 2024
Article 3 months ago View the full article
-
By NASA
Bioprinted patches could help wounds heal
Researchers successfully demonstrated the function of a handheld bioprinter that could provide a simple and effective way to treat wounds in space using human skin cells. Crews could use this technology to treat their own injuries and protect crew health and mission success in the future.
Spaceflight can affect how wounds heal. The Bioprint FirstAid device tested a process for bioprinting a patch to cover a wound and accelerate healing. In the future, a crew member’s own cells may be used to create personalized patches for treating an injury. The bioprinting device is easy to use, can be tailored to specific needs, has a low failure rate, and its mechanics are electronics- and maintenance-free. This ESA (European Space Agency) investigation was coordinated by the German Aerospace Center (DLR).
ESA (European Space Agency) astronaut Matthias Maurer demonstrates the Bioprint FirstAid prototype during preflight training. German Aerospace Center/European Space Agency Countering post-flight proficiency challenges
The day they return from spaceflight, astronauts demonstrate significant impairments in fine motor control and the ability to multitask in simulated flying and driving challenges. This finding could help develop countermeasures so crew members can safely land and conduct early operations on the Moon and Mars.
Manual Control used a battery of tests to examine how spaceflight affects cognitive, sensory, and motor function after landing. Researchers concluded that subtle physiological changes that occur during spaceflight degrade post-flight performance. Subsequent tests showed recovery of performance once exposed to the task, suggesting that simulation training immediately before a task could be an effective countermeasure. Researchers also suggest limiting dual or competing tasks during mission-critical phases.
A simulator used to test crew members’ ability to fly and drive after spaceflight. NASA Gamma-ray telescope resilient to space radiation
Researchers found that the station’s Glowbug gamma-ray telescope could perform in the space radiation environment for multi-year missions. Radiation can affect these types of instruments, but Glowbug regularly detected gamma ray bursts (GRBs) during its one-year operation. Studying GRBs can help scientists better understand the universe and its origins.
Glowbug demonstrated technology to detect and characterize cosmic GRBs, primarily short GRBs, which result from mergers of compact binary star systems containing either two neutron stars or a neutron star and a black hole. Short GRBs produce gravitational waves, ripples in space that travel at the speed of light. Studying these gravitational waves could provide insight into the star systems where they originate and the behavior of matter during the mergers.
Learn more about GRB research here.
View the full article
-
By NASA
Born and raised in Mexico City, Carlos Fontanot has dedicated 34 years to NASA. He supports the International Space Station Mission Integration and Operations Office, ensuring that high-quality imagery enhances mission objectives and operations.
Fontanot is known for conceiving and leading the High Definition Earth Viewing (HDEV) project, which has brought stunning live visuals of Earth to millions around the globe. As he approaches his well-deserved retirement, we are excited to spotlight Fontanot’s remarkable career, celebrating his contributions to NASA and the lasting impact he has made on the agency’s mission to share the wonders of space.
Carlos Fontanot (left) receives the Great Minds in STEM Lifetime Achievement Award from Joel Montelbano, NASA at the Hispanic Engineer National Achievement Award Conference. What does your position entail?
Integrate all aspects of station imagery, from initial requirements to acquisition, processing, cataloging, archiving, and distribution of station imagery to multiple stakeholders, our clients.
How would you describe your job to family or friends who may not be as familiar with NASA?
I manage an array of television and digital still imagery cameras on the International Space Station. Each day we receive eight channels of high definition (HD) video and thousands of digital images that allow the ground team to see what the crew is doing in their daily lives and as part of scientific activities. In today’s age of social media and high-quality imagery, having these images is crucial for effectively conveying the station narrative.
I also chair the International Space Station’s Multilateral Imagery Working Group. Our team captures and processes the video and still images on a large server, where they are cataloged, archived, and distributed to our clients. Additionally, we are responsible for the photo and TV hardware aboard the space station and provide training to astronauts on how to use this equipment.
Carlos Fontanot with Liam Kennedy at the International Space Station Research and Development Conference. How do you feel the imagery and public affairs teams contribute to the overall mission of NASA?
Imagery is critical for communication in today’s visual environment. If people can’t see it, they won’t believe it! Effective communication through multimedia and pointed messaging is essential for securing continued support for NASA missions from both Congress and the public.
What was your path to NASA?
I was always interested in photography and film, so I studied radio, TV, and film in college. My first job after graduation was with a local TV station, and I also managed a media center for a multinational company. Then, I joined Johnson Space Center’s television and film division, where I managed space shuttle and institutional imagery.
Once at Johnson, I worked in the Office of Public Affairs as the audiovisual manager and served for two years as the public affairs officer in Moscow at the start of the International Space Station Program, including the launch of the first station crew.
What advice would you give to young individuals aspiring to work in the space industry or at NASA?
NASA is not just about astronauts, flight controllers, and engineers—there are countless disciplines and job opportunities here. Take imagery, for example: in today’s digital age, having the highest resolution imagery of our incredible orbiting laboratory environment and our home planet is essential.
For those aspiring to join the NASA team, I encourage you be open-minded and a team player. We need well-educated and talented individuals from diverse backgrounds across all disciplines to help us achieve our goals and explore the wonders of space.
Is there a space figure you’ve looked up to?
The space figure I will always remember and look up to is John Glenn. I had the fortune and privilege to meet him during his training. He was an extraordinary human being with incredibly high goals throughout his career.
I was assigned to escort John Glenn and the STS-95 crew on a two-week official visit to several European countries. John was by far the most inspiring and dedicated crew member that I’d ever met. He was always ready and willing to engage with dignitaries, politicians, leaders, journalists, and the public to share the NASA story and promote future programs to gain support from various governments and the public.
What do you love sharing about the International Space Station to general audiences?
I love sharing the wonders of life in space, especially the unique and breathtaking views of our planet Earth that can only be appreciated from space. I like to tell audiences about the observations and inspiration our astronauts share upon returning from their missions. I emphasize our thin and fragile atmosphere that sustains life as we know it, the beauty of Earth’s deserts, mountains, jungles, and oceans, and most importantly, the absence of borders. There’s always a profound realization that we are all human and that Earth belongs to all of us.
How has the technology for capturing images and video in space evolved over the years?
There was no digital imagery when I started my professional career. Photographs were taken on film that had to be processed in a dark room using chemicals to produce images. Video was recorded on two-inch magnetic tape at low resolution. We even flew film on our spacecraft that had to be brought back and processed on the ground.
Today, in the digital world, images can be streamed directly from our spacecraft and almost instantaneously shared with the entire globe. The evolution of technology has truly transformed how we capture and share the wonders of space!
Carlos Fontanot (left) sets up a NASA imagery exhibit in the Houston Downtown Tunnel System. What are some of the key projects you’ve worked on during your time at NASA? What have been your favorites?
During my time at NASA, I co-led the High Definition Earth Viewing (HDEV) project, which deployed four Earth-viewing cameras on the International Space Station, reaching over 318 million viewers globally. I also contributed to designing Johnson’s new PAO studio, collaborated on upgrading the space station’s downlink system from four standard-definition to eight high-definition channels, and advanced television technology, including the first HD and later UHD live downlinks from the station. These projects have allowed me to enhance NASA’s capacity for sharing space imagery with the world.
What are your plans for retirement, and how do you hope to stay connected to the space community?
I plan to travel across the U.S. in a travel trailer with my wife and dog and enjoying my hobbies I will now have time for, such as photography and spending quality time with my family.
Carlos and Pat Fontanot at the Grand Canyon South Rim in Arizona. How do you believe NASA’s imagery can continue to inspire future generations?
Astronaut John Young would come to the photo lab after every shuttle mission to review the film shot onboard. He would say, “A picture is worth a thousand words.” What can inspire more than a breathtaking image of a sunset captured from space or the aurora borealis over the polar regions?
What legacy do you hope to leave behind after your time at NASA?
I hope to leave behind a legacy of passion and dedication to acquiring and making pristine, high-resolution imagery from space available for the public to enjoy.
If you could have dinner with any astronaut, past or present, who would it be?
I would choose John Young. He flew during both the Apollo and shuttle eras, was an imagery expert, and had a deep understanding of the space station.
Favorite space movie?
Interstellar
NASA Worm or Meatball logo?
Worm
***
Every day we are conducting exciting research aboard our orbiting laboratory that will help us explore farther into space and bring benefits back to people on Earth. You can keep up with the latest news, videos, and pictures about space station science on the Station Research & Technology news page. It is a curated hub of space station research and digital media from Johnson and other centers and space agencies.
Sign up for our weekly email newsletter to get the updates delivered directly to you.
Follow updates on social media at @ISS_Research on X, and on the space station accounts on Facebook and Instagram.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.