Members Can Post Anonymously On This Site
X-59’s Engine Started for Testing
-
Similar Topics
-
By NASA
If you ask Johnson Space Center employees why they work for NASA, many will tell you it was always their dream. For others, landing a job at NASA was an unexpected stop on their career path. Here is a look at where five Johnson team members worked before NASA and how they are helping to advance the agency’s mission today.
Michelle Wood
How it started: Michelle Wood working as an American Sign Language interpreter (left). How it’s going: Wood as a flight controller in Johnson Space Center’s Mission Control Center in Houston. Images courtesy of Wood Wood worked as an American Sign Language interpreter before joining NASA about seven years ago. Today, she is an Operational Support Officer flight controller and instructor in the Mission Control Center.
***
Warnecke Miller
How it started: Miller is shown completing firearms training as a Federal Bureau of Investigation intern in the summer of 1998 (left). How it’s going: Miller emceeing a retirement celebration for a Johnson colleague in April 2024. Images courtesy of Miller Miller has been an attorney in Johnson’s Office of the General Counsel for 12 years. Before that, she served as an administrative law judge for Social Security and adjudicated disability cases.
***
Celeste Budwit-Hunter
How it started: Celeste Budwit-Hunter is pictured as a school counselor (left). How it’s going: Budwit-Hunter with NASA astronauts Mike Finke, Suni Williams, and Butch Wilmore and her Procedures Group editorial team members in Johnson’s Space Vehicle Mockup Facility. Images courtesy of Budwit-Hunter Budwit-Hunter was a technical writer in the oil and gas industry before earning a master’s degree in family therapy. She went on to work for The Council on Alcohol and Drugs (now The Council on Recovery) and then as a private school counselor for students with learning disabilities. She returned to technical writing while starting a private family therapy practice. After several years of treatment and recovery following a cancer diagnosis, Budwit-Hunter applied to become an editor in the Flight Operations Director’s Procedures Group. She is now the group’s lead editor and is training to become a book manager.
***
Don Walker
How it started: A photo of a young Don Walker standing in front of an Apollo lunar module mockup on the Johnson campus in the early 1970s (left). How it’s going: Walker’s official NASA portrait. Walker worked as a freelancer in television production before joining the Johnson team 38 years ago. Today, Walker is an engineering technician in the Office of the Chief Information Officer, working master control for the center’s television operations.
***
Donna Coyle
How it started: Donna Coyle as a college student in Rome (left). How it’s going: Coyle outside Space Center Houston prior to the Expedition 68 crew debrief and awards ceremony in 2023. Images courtesy of Coyle Coyle earned a bachelor’s degree in international relations before switching gears to work as an expeditor in the oil and gas industry. That role involved working with cross-functional teams to ensure the smooth and timely delivery of equipment and materials to worksites. After visiting locations and seeing how equipment, piping, and steel were made, she was inspired to go back to school to become an engineer. Coyle’s grandfather worked at NASA during the Apollo missions, and she decided to follow in his footsteps. She joined the Johnson team in 2021 as a crew time engineer, analyzing astronaut time as a resource to help with decision-making before and during expeditions to the International Space Station.
Do you want to join the NASA team? Visit our Careers site to explore open opportunities and find your place with us!
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Danah Tommalieh, commercial pilot and engineer at Reliable Robotics, inputs a flight plan at the control center in Mountain View, California, ahead of remotely operating a Cessna 208 aircraft at Hollister municipal airport in Hollister, California.NASA/Don Richey NASA recently began a series of flight tests with partners to answer an important aviation question: What will it take to integrate remotely piloted or autonomous planes carrying large packages and cargo safely into the U.S. airspace? Researchers tested new technologies in Hollister, California, that are helping to investigate what tools and capabilities are needed to make these kinds of flights routine.
The commercial industry continues to make advancements in autonomous aircraft systems aimed at making it possible for remotely operated aircraft to fly over communities – transforming the way we will transport people and goods. As the Federal Aviation Administration (FAA) develops standards for this new type of air transportation, NASA is working to ensure these uncrewed flights are safe by creating the required technological tools and infrastructure. These solutions could be scaled to support many different remotely piloted aircraft – including air taxis and package delivery drones – in a shared airspace with traditional crewed aircraft.
“Remotely piloted aircraft systems could eventually deliver cargo and people to rural areas with limited access to commercial transportation and delivery services,” said Shivanjli Sharma, aerospace engineer at NASA’s Ames Research Center in California’s Silicon Valley. “We’re aiming to create a healthy ecosystem of many different kinds of remotely piloted operations. They will fly in a shared airspace to provide communities with better access to goods and services, like medical supply deliveries and more efficient transportation.”
During a flight test in November, Reliable Robotics, a company developing an autonomous flight system, remotely flew its Cessna 208 Caravan aircraft through pre-approved flight paths in Hollister, California.
Although a safety pilot was aboard, a Reliable Robotics remote pilot directed the flight from their control center in Mountain View, more than 50 miles away.
Cockpit of Reliable Robotics’ Cessna 208 aircraft outfitted with autonomous technology for remotely-piloted operations.NASA/Brandon Torres Navarrete Congressional staffers from the United States House and Senate’s California delegation joined NASA Deputy Associate Administrator for Aeronautics Research Mission Directorate, Carol Caroll, Ames Aeronautics Director, Huy Tran, and other Ames leadership at Reliable Robotics Headquarters to view the live remote flight.
Researchers evaluated a Collins Aerospace ground-based surveillance system’s ability to detect nearby air traffic and provide the remote pilot with information in order to stay safely separated from other aircraft in the future.
Initial analysis shows the ground-based radar actively surveilled the airspace during the aircraft’s taxi, takeoff, and landing. The data was transmitted from the radar system to the remote pilot at Reliable Robotics. In the future, this capability could help ensure aircraft remain safely separated across all phases of fight.
A Reliable Robotics’ modified Cessna 208 aircraft flies near Hollister Airport. A Reliable Robotics pilot operated the aircraft remotely from the control center in Mountain View.NASA/Brandon Torres Naverrete While current FAA operating rules require pilots to physically see and avoid other aircraft from inside the cockpit, routine remotely piloted aircraft will require a suite of integrated technologies to avoid hazards and coordinate with other aircraft in the airspace.
A radar system for ground-based surveillance offers one method for detecting other traffic in the airspace and at the airport, providing one part of the capability to ensure pilots can avoid collision and accomplish their desired missions. Data analysis from this testing will help researchers understand if ground-based surveillance radar can be used to satisfy FAA safety rules for remotely piloted flights.
NASA will provide analysis and reports of this flight test to the FAA and standards bodies.
“This is an exciting time for the remotely piloted aviation community,” Sharma said. “Among other benefits, remote operations could provide better access to healthcare, bolster natural disaster response efforts, and offer more sustainable and effective transportation to both rural and urban communities. We’re thrilled to provide valuable data to the industry and the FAA to help make remote operations a reality in the near future.”
Over the next year, NASA will work with additional aviation partners on test flights and simulations to test weather services, communications systems, and other autonomous capabilities for remotely piloted flights. NASA researchers will analyze data from these tests to provide a comprehensive report to the FAA and the community on what minimum technologies and capabilities are needed to enable and scale remotely piloted operations.
This flight test data analysis is led out of NASA Ames under the agency’s Air Traffic Management Exploration project. This effort supports the agency’s Advanced Air Mobility mission research, ensuring the United States stays at the forefront of aviation innovation.
Share
Details
Last Updated Jan 07, 2025 Related Terms
Ames Research Center Advanced Air Mobility Aeronautics Aeronautics Research Mission Directorate Air Traffic Management – Exploration Airspace Operations and Safety Program Drones & You Explore More
3 min read How a NASA Senior Database Administrator Manifested her Dream Job
Article 2 weeks ago 16 min read NASA Ames Astrogram – December 2024
Article 3 weeks ago 5 min read NASA’s Ames Research Center Celebrates 85 Years of Innovation
Article 3 weeks ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
In-person participants L-R standing: Dave Francisco, Joanne Kaouk, Dr. Richard Moon, Dr. Tony Alleman, Dr. Sean Hardy, Sarah Childress, Kristin Coffey, Dr. Ed Powers, Dr. Doug Ebersole, Dr. Steven Laurie, Dr. Doug Ebert; L-R seated: Dr. Alejandro Garbino, Dr. Robert Sanders, Dr. Kristi Ray, Dr. Mike Gernhardt, Dr. Joseph Dervay, Dr. Matt Makowski). Not pictured: Dr. Caroline Fife In June 2024, the NASA Office of the Chief Health and Medical Officer (OCHMO) Standards Team hosted an independent assessment working group to review the status and progress of research and clinical activities intended to mitigate the risk of decompression sickness (DCS) related to patent foramen ovale (PFO) during spaceflight and associated ground testing and human subject studies.
Decompression sickness (DCS) is a condition which results from dissolved gases (primarily nitrogen) forming bubbles in the bloodstream and tissues. It is usually experienced in conditions where there are rapid decreases in ambient pressure, such as in scuba divers, high-altitude aviation, or other pressurized environments. The evolved gas bubbles have various physiological effects and can obstruct the blood vessels, trigger inflammation, and damage tissue, resulting in symptoms of DCS. NASA presently classifies DCS into two categories: Type I DCS, which is less severe, typically leads to musculoskeletal symptoms including pain in the joints or muscles, or skin rash. Type II DCS is more severe and commonly results in neurological, inner ear, and cardiopulmonary symptoms. The risk of DCS in spaceflight presents during extravehicular activities (EVAs) in which astronauts perform mission tasks outside the spaceflight vehicle while wearing a pressurized suit at a lower pressure than the cabin pressure. DCS mitigation protocols based on strategies to reduce systemic nitrogen load are implemented through the combination of habitat environmental parameters, EVA suit pressure, and breathing gas procedures (prebreathe protocols) to achieve safe and effective mission operations. The pathophysiology of DCS has still not been fully elucidated since cases occur despite the absence of detected gas bubbles but includes right to left shunting of venous gas emboli (VGE) via several potential mechanisms, one of which is a Patent Foramen Ovale (PFO).
From: Dr. Schochet & Dr. Lie, Pediatric Pulmonologists
Reference OCHMO-TB-037 Decompression Sickness (DCS) Risk Mitigation technical brief for additional information.
A PFO is a shunt between the right atrium and the left atrium of the heart, which is a persisting remnant of a physiological communication present in the fetal heart. Post-natal increases in left atrial pressure usually force the inter-septal valve against the septum secundum and within the first 2 years of life, the septae permanently fuse due to the development of fibrous adhesions. Thus, all humans are born with a PFO and approximately 75% of PFOs fuse following childbirth. For the 25% of the population’s whose PFOs do not fuse, ~6% have what is considered by some to be a large PFO (> 2 mm). PFO diameter can increase with age. The concern with PFOs is that with a right to left shunt between the atria, venous emboli gas may pass from the right atrium (venous) to the left atrium (arterial) (“shunt”), thus by-passing the normal lung filtration of venous emboli which prevent passage to the arterial system. Without filtration, bubbles in the arterial system may lead to a neurological event such as a stroke. Any activity that increases the right atrium/venous pressure over the left atrium/arterial pressure (such as a Valsalva maneuver, abdominal compression) may further enable blood and/or emboli across a PFO/shunt.
From: Nuffield Department of Clinical Neurosciences
The purpose of this working group was to review and provide analysis on the status and progress of research and clinical activities intended to mitigate the risk of PFO and DCS issues during spaceflight. Identified cases of DCS during NASA exploration atmosphere ground testing conducted in pressurized chambers led to the prioritization of the given topic for external review. The main goals of the working group included:
Quantification of any increased risk associated with the presence of a PFO during decompression protocols utilized in ground testing and spaceflight EVAs, as well as unplanned decompressions (e.g., cabin depressurization, EVA suit leak). Describe risks and benefits of PFO screening in astronaut candidates, current crewmembers, and chamber test subjects. What are potential risk reduction measures that could be considered if a person was believed to be at increased risk of DCS due to a PFO? What research and/or technology development is recommended that could help inform and/or mitigate PFO-related DCS risk? The working group took place over two days at NASA’s Johnson Space Center and included NASA subject matter experts and stakeholders, as well as invited external reviewers from areas including cardiology, hypobaric medicine, spaceflight medicine, and military occupational health. During the working group, participants were asked to review past reports and evidence related to PFOs and risk of DCS, materials and information regarding NASA’s current experience and practices, and case studies and subsequent decision-making processes. The working group culminated in an open-forum discussion where recommendations for current and future practices were conferred and subsequently summarized in a final summary report, available on the public NASA OCHMO Standards Team website.
The following key findings are the main take-aways from the OCHMO independent assessment:
In an extreme exposure/high-risk scenario, excluding individuals with a PFO and treating PFOs does not necessarily decrease the risk of DCS or create a ‘safe’ environment. It may create incremental differences and slightly reduce overall risk but does not make the risk zero. There are other physiological factors that also contribute to the risk of DCS that may have a larger impact (see 7.0 Other Physiological Factors in the findings section). Based on the available evidence and the risk of current decompression exposures (based on current NASA protocols and NASA-STD-3001 requirements to limit the risk of DCS), it is not recommended to screen for PFOs in any spaceflight or ground testing participants. The best strategy to reduce the risk of DCS is to create as safe an environment as possible in every scenario, through effective prebreathe protocols, safety, and the capability to rapidly treat DCS should symptoms occur. Based on opinion, no specific research is required at this time to further characterize PFOs with DCS and altitude exposure, due to the low risk and preference to institute adequate safe protocols and ensuring treatment availability both on the ground and in spaceflight. For engineering protocols conducted on the ground, it should be ensured that the same level of treatment capability (treatment chamber in the immediate vicinity of the testing) is provided as during research protocols. The ability to immediately treat a DCS case is critical in ensuring the safety of the test subjects. The full summary report includes detailed background information, discussion points from the working group, and conclusions and recommendations. The findings from the working group and resulting summary report will help to inform key stakeholders in decision-making processes for future ground testing and spaceflight operations with the main goal of protecting crew health and safety to ensure overall mission success.
Summary Report About the Author
Sarah D. Childress
Share
Details
Last Updated Dec 31, 2024 Related Terms
Office of the Chief Health and Medical Officer (OCHMO) Human Health and Performance Humans in Space International Space Station (ISS) Explore More
2 min read Station Science Top News: Dec. 20, 2024
Article 2 weeks ago 4 min read Artemis II Core Stage Vertical Integration Begins at NASA Kennedy
Article 2 weeks ago 3 min read NASA, Axiom Space Change Assembly Order of Commercial Space Station
Article 2 weeks ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s X-59 quiet supersonic research aircraft completed its first maximum afterburner test at Lockheed Martin’s Skunk Works facility in Palmdale, California. This full-power test, during which the engine generates additional thrust, validates the additional power needed for meeting the testing conditions of the aircraft. The X-59 is the centerpiece of NASA’s Quesst mission, which aims to overcome a major barrier to supersonic flight over land by reducing the noise of sonic booms.Lockheed Martin Corporation/Garry Tice NASA completed the first maximum afterburner engine run test on its X-59 quiet supersonic research aircraft on Dec. 12. The ground test, conducted at Lockheed Martin’s Skunk Works facility in Palmdale, California, marks a significant milestone as the X-59 team progresses toward flight.
An afterburner is a component of some jet engines that generates additional thrust. Running the engine, an F414-GE-100, with afterburner will allow the X-59 to meet its supersonic speed requirements. The test demonstrated the engine’s ability to operate within temperature limits and with adequate airflow for flight. It also showed the engine’s ability to operate in sync with the aircraft’s other subsystems.
The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to supersonic flight over land by making sonic booms quieter. The X-59’s first flight is expected to occur in 2025.
Share
Details
Last Updated Dec 20, 2024 EditorDede DiniusContactMatt Kamletmatthew.r.kamlet@nasa.gov Related Terms
Aeronautics Aeronautics Research Mission Directorate Armstrong Flight Research Center Commercial Supersonic Technology Integrated Aviation Systems Program Low Boom Flight Demonstrator Quesst (X-59) Supersonic Flight Explore More
2 min read NASA, Notre Dame Connect Students to Inspire STEM Careers
Article 4 hours ago 2 min read NASA Flight Rerouting Tool Curbs Delays, Emissions
Article 4 hours ago 3 min read Atmospheric Probe Shows Promise in Test Flight
Article 1 week ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Aeronautics
Supersonic Flight
Quesst: The Vehicle
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
From left to right: Astrolab’s FLEX, Intuitive Machines’ Moon RACER, and Lunar Outpost’s Eagle lunar terrain vehicle at NASA’s Johnson Space Center. NASA/Bill Stafford Through NASA’s Artemis campaign, astronauts will land on the lunar surface and use a new generation of spacesuits and rovers as they live, work, and conduct science in the Moon’s South Pole region, exploring more of the lunar surface than ever before. Recently, the agency completed the first round of testing on three commercially owned and developed LTVs (Lunar Terrain Vehicle) from Intuitive Machines, Lunar Outpost, and Venturi Astrolab at NASA’s Johnson Space Center in Houston.
As part of an ongoing year-long feasibility study, each company delivered a static mockup of their vehicle to Johnson at the end of September, initiated rover testing in October and completed the first round of testing in December inside the Active Response Gravity Offload System (ARGOS) test facility. Lunar surface gravity is one-sixth of what we experience here on Earth, so to mimic this, ARGOS offers an analog environment that can offload pressurized suited subjects for various reduced gravity simulations.
NASA astronauts Raja Chari (left) and Randy Bresnik (right) sit inside Lunar Outpost’s Eagle lunar terrain vehicle evaluating the seat configuration during testing at NASA’s Johnson Space Center. NASA/David DeHoyos NASA astronaut Jessica Meir grabs a lunar geology tool from a tool rack on Lunar Outpost’s Eagle lunar terrain vehicle during testing at NASA’s Johnson Space Center.NASA/James Blair NASA astronaut Joe Acaba prepares to climb on top of Intuitive Machines’ Moon RACER lunar terrain vehicle to get to a science payload during testing at NASA’s Johnson Space Center.NASA/Josh Valcarcel NASA astronaut Jessica Meir puts a science sample inside of a storage box on Intuitive Machines’ Moon RACER lunar terrain vehicle during testing at NASA’s Johnson Space Center.NASA/James Blair NASA astronaut Frank Rubio (left) and NASA spacesuit engineer Zach Tejral (right) sit inside Astrolab’s FLEX lunar terrain vehicle evaluating the display interfaces during testing at NASA’s Johnson Space Center.NASA/James Blair NASA astronaut Jessica Watkins stores science payloads on Astrolab’s FLEX lunar terrain vehicle during testing at NASA’s Johnson Space Center.NASA/Robert Markowitz This is the first major test milestone within the Lunar Terrain Vehicle Services contract and to have actual rovers delivered only four months after these companies were awarded is remarkable.
steve munday
NASA's Lunar Terrain Vehicle Project Manager
NASA’s engineering teams conducted tests where suited NASA astronauts and engineers performed tasks, maneuvers, and emergency drills on each rover. With astronauts acting as the test subjects, these human-in-the-loop tests are invaluable as crewmembers provide critical feedback on each rover’s design functionality, evaluate display interfaces and controls, and help identify potential safety concerns or design issues. This feedback is shared directly with each commercial provider, to incorporate changes based on lessons learned as they evolve their rover design.
“We are excited to have mockups from all three LTV commercial providers here at Johnson Space Center,” said Steve Munday, LTV project manager. “This is the first major test milestone within the Lunar Terrain Vehicle Services contract and to have actual rovers delivered only four months after these companies were awarded is remarkable.”
NASA engineer Dave Coan (left) and NASA astronaut Jessica Watkins (right) sit inside from Intuitive Machines’ Moon RACER lunar terrain vehicle evaluating the crew compartment during testing at NASA’s Johnson Space Center.NASA/James Blair Testing consisted of NASA astronauts and engineers taking turns wearing both NASA’s Exploration Extravehicular Mobility Unit planetary prototype spacesuit as well as Axiom Space’s Axiom Extravehicular Mobility Unit lunar spacesuit. The test teams performed evaluations to understand the interactions between the crew, the spacesuits, and the LTV mockups.
While wearing NASA’s prototype spacesuit, crew members were suspended from ARGOS allowing teams to mimic theone-sixth gravitational field of the lunar surface. This allowed the crew members to conduct tasks on the outside of each rover, such as gathering or storing lunar geology tools, deploying science payloads, and handling cargo equipment, as if they are walking on the Moon.
NASA astronaut Joe Acaba raises the solar array panel on Lunar Outpost’s Eagle lunar terrain vehicle during testing at NASA’s Johnson Space Center.NASA/Robert Markowitz While wearing Axiom Space’s pressurized spacesuit, teams evaluated the level of ease or difficulty in mobility crewmembers experienced when entering and exiting the rovers, the crew compartment and design, and the functionality of interacting with display interfaces and hand controls while wearing thick spacesuit gloves.
As part of testing, teams also conducted emergency drills, where engineers simulated rescuing an incapacitated crew member. As part of NASA’s requirements, each rover must have a design in place that enables an astronaut to single-handedly rescue their crewmates in the event of an emergency.
NASA astronaut Jessica Watkins picks up a lunar geology tool from a stowage drawer on Astrolab’s FLEX lunar terrain vehicle during testing at NASA’s Johnson Space Center.NASA/Robert Markowitz Since NASA selected the companies, Intuitive Machines, Lunar Outpost, and Venturi Astrolab have been working to meet NASA’s requirements through the preliminary design review. In 2025, the agency plans to issue a request for task order proposals to any eligible providers for a demonstration mission to continue developing the LTV, deliver it to the surface of the Moon, and validate its performance and safety ahead of Artemis V, when NASA intends to begin using the LTV for crewed operations.
Through Artemis, NASA will send astronauts – including the next Americans, and the first international partner astronaut – to explore the Moon for scientific discovery, technology evolution, economic benefits, and to build the foundation for future crewed missions to Mars.
Learn about the rovers, suits, and tools that will help Artemis astronauts to explore more of the Moon:
https://go.nasa.gov/3MnEfrB
Share
Details
Last Updated Dec 17, 2024 Related Terms
Humans in Space Artemis Artemis 5 Exploration Systems Development Mission Directorate Johnson Space Center xEVA & Human Surface Mobility Explore More
3 min read NASA Participates in Microgravity Science Summit
Article 18 hours ago 5 min read Orion Spacecraft Tested in Ohio After Artemis I Mission
Article 1 day ago 2 min read Station Science Top News: Dec. 13, 2024
Article 2 days ago Keep Exploring Discover More Topics From NASA
Humans In Space
Human Landing System
Commercial Space
Orion Spacecraft
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.