Jump to content

X-59’s Engine Started for Testing


NASA

Recommended Posts

  • Publishers
A white airplane sits inside of a white hangar with its nose facing inward.
NASA/Carla Thomas

NASA’s X-59 quiet supersonic research aircraft sits in its run stall at Lockheed Martin’s Skunk Works facility in Palmdale, California, in this image from Oct. 30, 2024.

The engine-run tests, which began Oct. 30, allow the X-59 team to verify the aircraft’s systems are working together while powered by its own engine. In previous tests, the X-59 used external sources for power. The engine-run tests set the stage for the next phase of the experimental aircraft’s progress toward flight.

After the engine runs, the X-59 team will move to aluminum bird testing, where data will be fed to the aircraft under both normal and failure conditions. The team will then proceed with a series of taxi tests, where the aircraft will be put in motion on the ground. These tests will be followed by final preparations for first flight.

Image credit: NASA/Carla Thomas

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s X-59 quiet supersonic research aircraft sits in its run stall at Lockheed Martin’s Skunk Works facility in Palmdale, California, firing up its engine for the first time. These engine-run tests start at low power and allow the X-59 team to verify the aircraft’s systems are working together while powered by its own engine. The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to supersonic flight over land by making sonic booms quieter.NASA/Carla Thomas NASA’s Quesst mission marked a major milestone with the start of tests on the engine that will power the quiet supersonic X-59 experimental aircraft.
      These engine-run tests, which began Oct. 30, allow the X-59 team to verify the aircraft’s systems are working together while powered by its own engine. In previous tests, the X-59 used external sources for power. The engine-run tests set the stage for the next phase of the experimental aircraft’s progress toward flight.
      The X-59 team is conducting the engine-run tests in phases. In this first phase, the engine rotated at a relatively low speed without ignition to check for leaks and ensure all systems are communicating properly. The team then fueled the aircraft and began testing the engine at low power, with the goal of verifying that it and other aircraft systems operate without anomalies or leaks while on engine power.
      Lockheed Martin test pilot Dan Canin sits in the cockpit of NASA’s X-59 quiet supersonic research aircraft in a run stall at Lockheed Martin’s Skunk Works facility in Palmdale, California prior to its first engine run. These engine-run tests featured the X-59 powered by its own engine, whereas in previous tests, the aircraft depended on external sources for power. The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to supersonic flight over land by making sonic booms quieter.NASA/Carla Thomas “The first phase of the engine tests was really a warmup to make sure that everything looked good prior to running the engine,” said Jay Brandon, NASA’s X-59 chief engineer. “Then we moved to the actual first engine start. That took the engine out of the preservation mode that it had been in since installation on the aircraft. It was the first check to see that it was operating properly and that all the systems it impacted – hydraulics, electrical system, environmental control systems, etc. – seemed to be working.”
      The X-59 will generate a quieter thump rather than a loud boom while flying faster than the speed of sound. The aircraft is the centerpiece of NASA’s Quesst mission, which will gather data on how people perceive these thumps, providing regulators with information that could help lift current bans on commercial supersonic flight over land.
      The engine, a modified F414-GE-100, packs 22,000 pounds of thrust, which will enable the X-59 to achieve the desired cruising speed of Mach 1.4 (925 miles per hour) at an altitude of approximately 55,000 feet. It sits in a nontraditional spot – atop the aircraft — to aid in making the X-59 quieter.
      Engine runs are part of a series of integrated ground tests needed to ensure safe flight and successful achievement of mission goals. Because of the challenges involved with reaching this critical phase of testing, the X-59’s first flight is now expected in early 2025. The team will continue progressing through critical ground tests and address any technical issues discovered with this one-of-a-kind, experimental aircraft. The X-59 team will have a more specific first flight date as these tests are successfully completed.
      The testing is taking place at Lockheed Martin’s Skunk Works facility in Palmdale, California. During later phases, the team will test the aircraft at high power with rapid throttle changes, followed by simulating the conditions of an actual flight.
      NASA’s X-59 quiet supersonic research aircraft sits in its run stall at Lockheed Martin’s Skunk Works facility in Palmdale, California, prior to its first engine run. Engine runs are part of a series of integrated ground tests needed to ensure safe flight and successful achievement of mission goals. The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to supersonic flight over land by making sonic booms quieter.NASA/Carla Thomas “The success of these runs will be the start of the culmination of the last eight years of my career,” said Paul Dees, NASA’s deputy propulsion lead for the X-59. “This isn’t the end of the excitement but a small steppingstone to the beginning. It’s like the first note of a symphony, where years of teamwork behind the scenes are now being put to the test to prove our efforts have been effective, and the notes will continue to play a harmonious song to flight.”
      After the engine runs, the X-59 team will move to aluminum bird testing, where data will be fed to the aircraft under both normal and failure conditions. The team will then proceed with a series of taxi tests, where the aircraft will be put in motion on the ground. These tests will be followed by final preparations for first flight.
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      1 min read NASA Awards Contract for Refuse and Recycling Services
      Article 5 days ago 5 min read We Are All Made of Cells: Space and the Immune System
      Article 6 days ago 2 min read NASA Brings Drone and Space Rover to Air Show
      Article 7 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans In Space
      Quesst: The Vehicle
      Explore NASA’s History
      Share
      Details
      Last Updated Nov 06, 2024 EditorLillian GipsonContactMatt Kamletmatthew.r.kamlet@nasa.gov Related Terms
      Aeronautics Aeronautics Research Mission Directorate Ames Research Center Armstrong Flight Research Center Glenn Research Center Langley Research Center Low Boom Flight Demonstrator Quesst (X-59) Quesst: The Vehicle Supersonic Flight View the full article
    • By NASA
      Flight operations engineer Carissa Arillo helped ensure one of the instruments on NASA’s PACE mission made it successfully through its prelaunch testing. She and her group also documented the work rigorously, to ensure the flight team had a comprehensive manual to keep this Earth-observing satellite in good health for the duration of its mission.
      Carissa M. Arillo is a flight operations engineer at NASA’s Goddard Space Flight Center in Greenbelt, Md. Photo courtesy of Carissa Arillo Name: Carissa M. Arillo
      Formal Job Classification: Flight Operations Engineer
      Organization: Environmental Test Engineering and Integration Branch (Code 549)
      What do you do and what is most interesting about your role here at Goddard?
      I developed pre-launch test procedures for the HARP-2 instrument for the Phytoplankton, Aerosol, Cloud and Ecosystem (PACE) Mission. HARP-2 is a wide angle imaging polarimeter designed to measure aerosol particles and clouds, as well as properties of land and water surfaces.
      I also developed the flight operations routine and contingency procedures that governed the spacecraft after launch. It is interesting to think about how to design procedures that can sustain the observatory in space for the life of the mission so that the flight operations team that inherits the mission will have a seamless transition.
      What is your educational background?
      In 2019, I got a Bachelor of Science in mechanical engineering from the University of Maryland, College Park. I am currently pursuing a master’s in robotics there as well.
      Why did you become an engineer?
      I like putting things together and understanding how they work. After starting my job at NASA Goddard, I became interested in coding and robotics.
      How did you come to Goddard?
      After getting my undergraduate degree, I worked at General Electric Aviation doing operations management for manufacturing aircraft engines. When I heard about an opening at Goddard, I applied and got my current position.
      What was involved in developing pre-launch test procedures for the HARP-2 instrument?
      I talked to the instrument manufacturer, which is a team from the University of Maryland, Baltimore County, and asked them what they wanted to confirm works every time we tested the instrument. We kept in constant communication while developing these test procedures to make sure we covered everything. The end product was code that was part of the comprehensive performance tests, the baseline tests throughout the prelaunch test campaign. Before, during, and after each prelaunch environmental test, we perform such a campaign. These prelaunch environmental tests include vibration, thermal (hot and cold), acoustic and radio frequency compatibility (making sure that different subsystems do not interfere with each other’s).
      What goes through your head in developing a flight operations procedure for an instrument?
      I think about a safe way of operating the instrument to accomplish the goals of the science team. I also think about not being able to constantly monitor the instrument. Every few hours, we can communicate with the instrument for about five to 10 minutes. We can, however, recover all the telemetry for the off-line time.
      When we discover an anomaly, we look at all the history that we have and consult with our contingency procedures, our failure review board and potentially the instrument manufacturer. Together we try to figure out a recovery.
      When developing a fight operations procedure, we must think of all possible scenarios. Our end product is a written book of procedures that lives with the mission and is updated as needed.
      New cars come with an owner’s manual. We create the same sort of manual for the new instrument.
      As a Flight Operations Team member, what else do you do?
      The flight operations team runs the Mission Operations Center — the “MOC” — for PACE. That is where we command the spacecraft for the life of the mission. My specialty is the HARP-2 instrument, but I still do many supporting functions for the MOC. For example, I helped develop procedures to automate ground station contacts to PACE. These ground stations are positioned all over the world and enable us to talk with the spacecraft during those five to 10 minutes of communication. This automation includes the standard things we do every time we talk to the spacecraft whether or not someone is in the MOC.
      Carissa developed pre-launch test procedures for the HARP-2 instrument for the Phytoplankton, Aerosol, Cloud and Ecosystem (PACE) Mission. HARP-2 is a wide angle imaging polarimeter designed to measure aerosol particles and clouds, as well as properties of land and water surfaces.NASA/Dennis Henry How does it feel to be working on such an amazing mission so early in your career?
      It is awesome, I feel very lucky to be in my position. Everything is new to me. At times it is difficult to understand where the ship is going. I rely on my experienced team members to guide me and my robotics curriculum in school to equip me with skills.
      I have learned a lot from both the flight operations team and the integration and test team. The flight operations team has years of experience building MOCs that serve the needs of each unique mission. The integration and test team also has a lot of experience developing observatory functional procedures. I wish to thank both teams for taking me under their wings and educating me on the fly to support the prelaunch, launch and post-launch campaigns. I am very grateful to everyone for giving me this unbelievable opportunity.
      Who is your engineering hero?
      I don’t have one hero in particular but I love biographical movies that tell stories about influential people’s lives, such as the movie “Hidden Figures” that details the great endeavors and accomplishments of three female African-American mathematicians at NASA.
      What do you do for fun?
      I love to go to the beach and spend time with family and friends.
      Who is your favorite author?
      I like Kristen Hannah’s storytelling abilities.
      What do you hope to be doing in five years?
      I hope to be working on another exciting mission at Goddard that will bring us never-before-seen science.
      By Elizabeth M. Jarrell
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      Explore More
      7 min read Meloë Kacenelenbogen Eyes the Future of Air Quality, Climate Research
      Article 1 week ago 6 min read Christine Knudson Uses Earthly Experience to Study Martian Geology
      Geologist Christine Knudson works with the Curiosity rover to explore Mars — from about 250…
      Article 2 weeks ago 9 min read Systems Engineer Noosha Haghani Prepped PACE for Space
      Article 3 weeks ago Share
      Details
      Last Updated Oct 29, 2024 EditorMadison OlsonContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
      Goddard Space Flight Center PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) People of Goddard People of NASA View the full article
    • By NASA
      The Rocky Mountains in Colorado, as seen from the International Space Station. Snowmelt from the mountainous western United States is an essential natural resource, making up as much as 75% of some states’ annual freshwater supply. Summer heat has significant effects in the mountainous regions of the western United States. Melted snow washes from snowy peaks into the rivers, reservoirs, and streams that supply millions of Americans with freshwater—as much as 75% of the annual freshwater supply for some states.
      But as climate change brings winter temperatures to new highs, these summer rushes of freshwater can sometimes slow to a trickle.
      “The runoff supports cities most people wouldn’t expect,” explained Chris Derksen, a glaciologist and Research Scientist with Environment and Climate Change Canada. “Big cities like San Francisco and Los Angeles get water from snowmelt.”
      To forecast snowmelt with greater accuracy, NASA’s Earth Science Technology Office (ESTO) and a team of researchers from the University of Massachusetts, Amherst, are developing SNOWWI, a dual-frequency synthetic aperture radar that could one day be the cornerstone of future missions dedicated to measuring snow mass on a global scale – something the science community lacks.
      SNOWWI aims to fill this technology gap. In January and March 2024, the SNOWWI research team passed a key milestone, flying their prototype for the first time aboard a small, twin-engine aircraft in Grand Mesa, Colorado, and gathering useful data on the area’s winter snowfields.
      “I’d say the big development is that we’ve gone from pieces of hardware in a lab to something that makes meaningful data,” explained Paul Siqueira, professor of engineering at the University of Massachusetts, Amherst, and principal investigator for SNOWWI.
      SNOWWI stands for Snow Water-equivalent Wide Swath Interferometer and Scatterometer. The instrument probes snowpack with two Ku-band radar signals: a high-frequency signal that interacts with individual snow grains, and a low-frequency signal that passes through the snowpack to the ground. 
      The high-frequency signal gives researchers a clear look at the consistency of the snowpack, while the low-frequency signal helps researchers determine its total depth.
      “Having two frequencies allows us to better separate the influence of the snow microstructure from the influence of the snow depth,” said Derksen, who participated in the Grand Mesa field campaign. “One frequency is good, two frequencies are better.”

      The SNOWWI team in Grand Mesa, preparing to flight test their instrument. From an altitude of 4 kilometers (2.5 miles), SNOWWI can map 100 square kilometers (about 38 square miles) in just 30 minutes.
      As both of those scattered signals interact with the snowpack and bounce back towards the instrument, they lose energy. SNOWWI measures that lost energy, and researchers later correlate those losses to features within the snowpack, especially its depth, density, and mass.
      From an airborne platform with an altitude of 2.5 miles (4 kilometers), SNOWWI could map 40 square miles (100 square kilometers) of snowy terrain in just 30 minutes. From space, SNOWWI’s coverage would be even greater. Siqueira is working with Capella Space to develop a space-ready SNOWWI for satellite missions.
      But there’s still much work to be done before SNOWWI visits space. Siqueira plans to lead another field campaign, this time in the mountains of Idaho. Grand Mesa is relatively flat, and Siqueira wants to see how well SNOWWI can measure snowpack tucked in the folds of complex, asymmetrical terrain.
      For Derksen, who spends much of his time quantifying the freshwater content of snowpack in Canada, having a reliable database of global snowpack measurements would be game-changing.
      “Snowmelt is money. It has intrinsic economic value,” he said. “If you want your salmon to run in mountain streams in the spring, you must have snowmelt. But unlike other natural resources, at this time, we really can’t monitor it very well.”
      For information about opportunities to collaborate with NASA on novel, Earth-observing instruments, see ESTO’s catalog of open solicitations with its Instrument Incubator Program here.
      Project Leads: Dr. Paul Siqueira, University of Massachusetts (Principal Investigator); Hans-Peter Marshall, University of Idaho (Co-Investigator)
      Sponsoring Organizations: NASA’s Earth Science Technology Office (ESTO), Instrument Incubator Program (IIP)
      Share








      Details
      Last Updated Oct 29, 2024 Related Terms
      Earth Science Earth Science Technology Office Science-enabling Technology Technology Highlights Explore More
      3 min read Autumn Leaves – Call for Volunteers


      Article


      4 days ago
      3 min read Kites in the Classroom: Training Teachers to Conduct Remote Sensing Missions


      Article


      4 days ago
      8 min read Revealing the Hidden Universe with Full-shell X-ray Optics at NASA MSFC


      Article


      2 weeks ago
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Stennis Space Center near Bay St. Louis, Mississippi, achieved a key milestone this week for testing a new SLS (Space Launch System) rocket stage to fly on future Artemis missions to the Moon and beyond.
      Over a two-week period beginning Oct. 10, crews completed a safe lift and installation of the interstage simulator component needed for future testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand. The component will function like the SLS interstage section that helps protect the upper stage during Artemis launches.
      “NASA Stennis is at the front end of the critical path for future space exploration,” said Barry Robinson, project manager for exploration upper stage Green Run testing on the Thad Cochran Test Stand. “Installing the interstage simulator is a significant step in our preparation to ensure the new, more powerful upper stage is ready to safely fly on future Artemis missions.”
      Teams at NASA’s Stennis Space Center complete a safe lift and install of an interstage simulator unit needed for future testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand. The lift and install, completed over a two-week period that began Oct. 10, marks a milestone for testing the new SLS (Space Launch System) rocket stage that will fly on future Artemis missions to the Moon and beyond. The EUS will undergo a series of Green Run tests of its integrated systems prior to its first flight. During testing, the interstage simulator component will function like the SLS interstage section that helps protect the upper stage during Artemis launches. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center complete a safe lift and install of an interstage simulator unit needed for future testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand. The lift and install, completed over a two-week period that began Oct. 10, marks a milestone for testing the new SLS (Space Launch System) rocket stage that will fly on future Artemis missions to the Moon and beyond. The EUS will undergo a series of Green Run tests of its integrated systems prior to its first flight. During testing, the interstage simulator component will function like the SLS interstage section that helps protect the upper stage during Artemis launches. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center complete a safe lift and install of an interstage simulator unit needed for future testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand. The lift and install, completed over a two-week period that began Oct. 10, marks a milestone for testing the new SLS (Space Launch System) rocket stage that will fly on future Artemis missions to the Moon and beyond. The EUS will undergo a series of Green Run tests of its integrated systems prior to its first flight. During testing, the interstage simulator component will function like the SLS interstage section that helps protect the upper stage during Artemis launches. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center complete a safe lift and install of an interstage simulator unit needed for future testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand. The lift and install, completed over a two-week period that began Oct. 10, marks a milestone for testing the new SLS (Space Launch System) rocket stage that will fly on future Artemis missions to the Moon and beyond. The EUS will undergo a series of Green Run tests of its integrated systems prior to its first flight. During testing, the interstage simulator component will function like the SLS interstage section that helps protect the upper stage during Artemis launches. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center complete a safe lift and install of an interstage simulator unit needed for future testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand. The lift and install, completed over a two-week period that began Oct. 10, marks a milestone for testing the new SLS (Space Launch System) rocket stage that will fly on future Artemis missions to the Moon and beyond. The EUS will undergo a series of Green Run tests of its integrated systems prior to its first flight. During testing, the interstage simulator component will function like the SLS interstage section that helps protect the upper stage during Artemis launches. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center complete a safe lift and install of an interstage simulator unit needed for future testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand. The lift and install, completed over a two-week period that began Oct. 10, marks a milestone for testing the new SLS (Space Launch System) rocket stage that will fly on future Artemis missions to the Moon and beyond. The EUS will undergo a series of Green Run tests of its integrated systems prior to its first flight. During testing, the interstage simulator component will function like the SLS interstage section that helps protect the upper stage during Artemis launches. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin The EUS unit, built by Boeing at NASA’s Michoud Assembly Facility in New Orleans, which will be the upper stage for the evolved Block 1B version of SLS and will enable NASA to launch its most ambitious deep space missions. The new stage will replace the current interim cryogenic propulsion stage on the Block 1 version of SLS, which features a single engine and is capable of lifting 27 tons of crew and cargo to lunar orbit.
      The new exploration upper stage will be powered by four RL10 engines, manufactured by SLS engines contractor L3Harris. It will increase payload capacity by 40%, enabling NASA to send 38 tons of cargo with a crew to the Moon or 42 tons of cargo without a crew.
      In the first two weeks of October 2024, crews at NASA’s Stennis Space Center completed a successful lift and installation of an interstage simulator unit on the B-2 side of the Thad Cochran test Stand. The interstage simulator is a key component for future testing of NASA’s new exploration upper stage that will fly on Artemis missions to the Moon and beyond. Before the first flight of the exploration upper stage on the Artemis IV mission, the stage will undergo a series of Green Run tests of its integrated systems at NASA Stennis. The test series will culminate with a hot fire of the stage’s four RL10 engines, just as during an actual mission.
      The simulator component installed on the Thad Cochran Test Stand (B-2) at NASA Stennis weighs 103 tons and measures 31 feet in diameter and 33 feet tall. It will function like the SLS interstage section to protect EUS electrical and propulsion systems during Green Run testing. The top portion of the simulator also will serve as a thrust takeout system to absorb the thrust of the EUS hot fire and transfer it back to the test stand. The four-engine EUS provides more than 97,000 pounds of thrust.
      Teams at NASA’s Stennis Space Center complete a safe lift and install of an interstage simulator unit needed for future testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand. The lift and install, completed over a two-week period that began Oct. 10, marks a milestone for testing the new SLS (Space Launch System) rocket stage that will fly on future Artemis missions to the Moon and beyond. The EUS will undergo a series of Green Run tests of its integrated systems prior to its first flight. During testing, the interstage simulator component will function like the SLS interstage section that helps protect the upper stage during Artemis launches. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center complete a safe lift and install of an interstage simulator unit needed for future testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand. The lift and install, completed over a two-week period that began Oct. 10, marks a milestone for testing the new SLS (Space Launch System) rocket stage that will fly on future Artemis missions to the Moon and beyond. The EUS will undergo a series of Green Run tests of its integrated systems prior to its first flight. During testing, the interstage simulator component will function like the SLS interstage section that helps protect the upper stage during Artemis launches. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center complete a safe lift and install of an interstage simulator unit needed for future testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand. The lift and install, completed over a two-week period that began Oct. 10, marks a milestone for testing the new SLS (Space Launch System) rocket stage that will fly on future Artemis missions to the Moon and beyond. The EUS will undergo a series of Green Run tests of its integrated systems prior to its first flight. During testing, the interstage simulator component will function like the SLS interstage section that helps protect the upper stage during Artemis launches. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center complete a safe lift and install of an interstage simulator unit needed for future testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand. The lift and install, completed over a two-week period that began Oct. 10, marks a milestone for testing the new SLS (Space Launch System) rocket stage that will fly on future Artemis missions to the Moon and beyond. The EUS will undergo a series of Green Run tests of its integrated systems prior to its first flight. During testing, the interstage simulator component will function like the SLS interstage section that helps protect the upper stage during Artemis launches. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center complete a safe lift and install of an interstage simulator unit needed for future testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand. The lift and install, completed over a two-week period that began Oct. 10, marks a milestone for testing the new SLS (Space Launch System) rocket stage that will fly on future Artemis missions to the Moon and beyond. The EUS will undergo a series of Green Run tests of its integrated systems prior to its first flight. During testing, the interstage simulator component will function like the SLS interstage section that helps protect the upper stage during Artemis launches. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center complete a safe lift and install of an interstage simulator unit needed for future testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand. The lift and install, completed over a two-week period that began Oct. 10, marks a milestone for testing the new SLS (Space Launch System) rocket stage that will fly on future Artemis missions to the Moon and beyond. The EUS will undergo a series of Green Run tests of its integrated systems prior to its first flight. During testing, the interstage simulator component will function like the SLS interstage section that helps protect the upper stage during Artemis launches. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center complete a safe lift and install of an interstage simulator unit needed for future testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand. The lift and install, completed over a two-week period that began Oct. 10, marks a milestone for testing the new SLS (Space Launch System) rocket stage that will fly on future Artemis missions to the Moon and beyond. The EUS will undergo a series of Green Run tests of its integrated systems prior to its first flight. During testing, the interstage simulator component will function like the SLS interstage section that helps protect the upper stage during Artemis launches. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin NASA Stennis crews previously lifted the interstage simulator to measure and align it relative to the test stand. It is now outfitted with all piping, tubing, and electrical systems necessary to support future Green Run testing.
      Installation onto the test stand enables NASA Stennis crews to begin fabricating the mechanical and electrical systems connecting the facility to the simulator. As fabrication of the systems are completed, crews will conduct activation flows to ensure the test stand can operate to meet test requirements.
      Through Artemis, NASA will establish the foundation for long-term scientific exploration at the Moon; land the first woman, first person of color and first international partner astronaut on the lunar surface; and prepare for human expeditions to Mars for the benefit of all.
      For information about NASA’s Stennis Space Center, visit:
      https://www.nasa.gov/stennis
      Explore More
      4 min read Lagniappe for October 2024
      Article 3 weeks ago 4 min read NASA Stennis Completes Key Test Complex Water System Upgrade
      Article 4 weeks ago 7 min read Lagniappe for September 2024
      Article 2 months ago Share
      Details
      Last Updated Oct 25, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Stennis Test Facility and Support Infrastructure Keep Exploring Discover More Topics From NASA Stennis
      Multi-User Test Complex
      Propulsion Test Engineering
      NASA Stennis Front Door
      NASA Stennis Media Resources
      View the full article
    • By European Space Agency
      With all instruments integrated, the first MetOp Second Generation-A, MetOp-SG-A1, weather satellite is now fully assembled and on schedule for liftoff next year. Meanwhile, its sibling, MetOp-SG-B1, is undergoing rigorous testing to ensure that it will withstand the vacuum and extreme temperature swings of space.
      View the full article
  • Check out these Videos

×
×
  • Create New...