Jump to content

X-59 Fires Up its Engine for First Time on Its Way to Takeoff


NASA

Recommended Posts

  • Publishers

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

View from outside a large run stall. The 100-foot-long X-59 sits in the run stall with the engine and the rest of the back of the aircraft sitting outside the run stall’s open bay door.
NASA’s X-59 quiet supersonic research aircraft sits in its run stall at Lockheed Martin’s Skunk Works facility in Palmdale, California, firing up its engine for the first time. These engine-run tests start at low power and allow the X-59 team to verify the aircraft’s systems are working together while powered by its own engine. The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to supersonic flight over land by making sonic booms quieter.
NASA/Carla Thomas

NASA’s Quesst mission marked a major milestone with the start of tests on the engine that will power the quiet supersonic X-59 experimental aircraft.

These engine-run tests, which began Oct. 30, allow the X-59 team to verify the aircraft’s systems are working together while powered by its own engine. In previous tests, the X-59 used external sources for power. The engine-run tests set the stage for the next phase of the experimental aircraft’s progress toward flight.

The X-59 team is conducting the engine-run tests in phases. In this first phase, the engine rotated at a relatively low speed without ignition to check for leaks and ensure all systems are communicating properly. The team then fueled the aircraft and began testing the engine at low power, with the goal of verifying that it and other aircraft systems operate without anomalies or leaks while on engine power.

View of an aircraft cockpit inside a run stall. The canopy atop the cockpit is open. Inside, a pilot looks at his instruments as he wears a helmet and oxygen mask. The white, gold and blue paint scheme of the NASA aircraft is prominent.
Lockheed Martin test pilot Dan Canin sits in the cockpit of NASA’s X-59 quiet supersonic research aircraft in a run stall at Lockheed Martin’s Skunk Works facility in Palmdale, California prior to its first engine run. These engine-run tests featured the X-59 powered by its own engine, whereas in previous tests, the aircraft depended on external sources for power. The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to supersonic flight over land by making sonic booms quieter.
NASA/Carla Thomas

“The first phase of the engine tests was really a warmup to make sure that everything looked good prior to running the engine,” said Jay Brandon, NASA’s X-59 chief engineer. “Then we moved to the actual first engine start. That took the engine out of the preservation mode that it had been in since installation on the aircraft. It was the first check to see that it was operating properly and that all the systems it impacted – hydraulics, electrical system, environmental control systems, etc. – seemed to be working.”

The X-59 will generate a quieter thump rather than a loud boom while flying faster than the speed of sound. The aircraft is the centerpiece of NASA’s Quesst mission, which will gather data on how people perceive these thumps, providing regulators with information that could help lift current bans on commercial supersonic flight over land.

The engine, a modified F414-GE-100, packs 22,000 pounds of thrust, which will enable the X-59 to achieve the desired cruising speed of Mach 1.4 (925 miles per hour) at an altitude of approximately 55,000 feet. It sits in a nontraditional spot – atop the aircraft — to aid in making the X-59 quieter.

Engine runs are part of a series of integrated ground tests needed to ensure safe flight and successful achievement of mission goals. Because of the challenges involved with reaching this critical phase of testing, the X-59’s first flight is now expected in early 2025. The team will continue progressing through critical ground tests and address any technical issues discovered with this one-of-a-kind, experimental aircraft. The X-59 team will have a more specific first flight date as these tests are successfully completed.

The testing is taking place at Lockheed Martin’s Skunk Works facility in Palmdale, California. During later phases, the team will test the aircraft at high power with rapid throttle changes, followed by simulating the conditions of an actual flight.

Direct view of the front of an aircraft, mostly in the shade of a run stall. Flaps on both wings are activated, moving downward. Team members wear protective ear guards and look at the aircraft from both sides.
NASA’s X-59 quiet supersonic research aircraft sits in its run stall at Lockheed Martin’s Skunk Works facility in Palmdale, California, prior to its first engine run. Engine runs are part of a series of integrated ground tests needed to ensure safe flight and successful achievement of mission goals. The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to supersonic flight over land by making sonic booms quieter.
NASA/Carla Thomas

“The success of these runs will be the start of the culmination of the last eight years of my career,” said Paul Dees, NASA’s deputy propulsion lead for the X-59. “This isn’t the end of the excitement but a small steppingstone to the beginning. It’s like the first note of a symphony, where years of teamwork behind the scenes are now being put to the test to prove our efforts have been effective, and the notes will continue to play a harmonious song to flight.”

After the engine runs, the X-59 team will move to aluminum bird testing, where data will be fed to the aircraft under both normal and failure conditions. The team will then proceed with a series of taxi tests, where the aircraft will be put in motion on the ground. These tests will be followed by final preparations for first flight.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA/Carla Thomas NASA’s X-59 quiet supersonic research aircraft sits in its run stall at Lockheed Martin’s Skunk Works facility in Palmdale, California, in this image from Oct. 30, 2024.
      The engine-run tests, which began Oct. 30, allow the X-59 team to verify the aircraft’s systems are working together while powered by its own engine. In previous tests, the X-59 used external sources for power. The engine-run tests set the stage for the next phase of the experimental aircraft’s progress toward flight.
      After the engine runs, the X-59 team will move to aluminum bird testing, where data will be fed to the aircraft under both normal and failure conditions. The team will then proceed with a series of taxi tests, where the aircraft will be put in motion on the ground. These tests will be followed by final preparations for first flight.
      Image credit: NASA/Carla Thomas
      View the full article
    • By NASA
      President John F. Kennedy’s national commitment to land a man on the Moon and return him safely to the Earth before the end of the decade posed multiple challenges, among them how to train astronauts to land on the Moon, a place with no atmosphere and one-sixth the gravity on Earth. The Lunar Landing Research Vehicle (LLRV) and its successor the Lunar Landing Training Vehicle (LLTV) provided the training tool to simulate the final 200 feet of the descent to the lunar surface. The ungainly aircraft made its first flight on Oct. 30, 1964, at NASA’s Flight Research Center (FRC), now NASA’s Armstrong Flight Research Center (AFRC) in California. The Apollo astronauts who completed landings on the Moon attributed their successes largely to training in these vehicles.

      The first Lunar Landing Research Vehicle silhouetted against the rising sun on the dry lakebed at Edwards Air Force Base in California’s Mojave Desert.
      In December 1961, NASA Headquarters in Washington, D.C., received an unsolicited proposal from Bell Aerosystems in Buffalo, New York, for a design of a flying simulator to train astronauts on landing a spacecraft on the Moon. Bell’s approach, using their design merged with concepts developed at NASA’s FRC, won approval and the space agency funded the design and construction of two Lunar Landing Research Vehicles (LLRV). At the time of the proposal, NASA had not yet chosen the method for getting to and landing on the Moon, but once NASA decided on Lunar Orbit Rendezvous in July 1962, the Lunar Module’s (LM) flying characteristics matched Bell’s proposed design closely enough that the LLRV served as an excellent trainer. 

      Two views of the first Lunar Landing Research Vehicle shortly after its arrival and prior to assembly at the Flight Research Center, now NASA’s Armstrong Flight Research Center, in California.
      Bell Aerosystems delivered the LLRV-1 to FRC on April 8, 1964, where it made history as the first pure fly-by-wire aircraft to fly in Earth’s atmosphere. Its design relied exclusively on an interface with three analog computers to convert the pilot’s movements to signals transmitted by wire and to execute his commands. The open-framed LLRV used a downward pointing turbofan engine to counteract five-sixths of the vehicle’s weight to simulate lunar gravity, two rockets provided thrust for the descent and horizontal translation, and 16 LM-like thrusters provided three-axis attitude control. The astronauts could thus simulate maneuvering and landing on the lunar surface while still on Earth. The LLRV pilot could use an aircraft-style ejection seat to escape from the vehicle in case of loss of control.

      Left: The Lunar Landing Research Vehicle-1 (LLRV-1) during an engine test at NASA’s Flight Research Center (FRC), now NASA’s Armstrong Fight Research Center, in California’s Mojave Desert. Right: NASA chief test pilot Joseph “Joe” A. Walker, left, demonstrates the features of LLRV-1 to President Lyndon B. Johnson during his visit to FRC.
      Engineers conducted numerous tests to prepare the LLRV for its first flight. During one of the engine tests, the thrust generated was higher than anticipated, lifting crew chief Raymond White and the LLRV about a foot off the ground before White could shut off the engines. On June 19, during an official visit to FRC, President Lyndon B. Johnson inspected the LLRV featured on a static display. The Secret Service would not allow the President to sit in the LLRV’s cockpit out of an overabundance of caution since the pyrotechnics were installed, but not yet armed, in the ejection seat. Following a Preflight Readiness Review held Aug. 13 and 14, managers cleared the LLRV for its first flight.

      Left: NASA chief test pilot Joseph “Joe” A. Walker during the first flight of the Lunar Landing Research Vehicle (LLRV). Right: Walker shortly after the first LLRV flight.
      In the early morning of Oct. 30, 1964, FRC chief pilot Joseph “Joe” A. Walker arrived at Edwards Air Force Base’s (AFB) South Base to attempt the first flight of the LLRV. Walker, a winner of both the Collier Trophy and the Harmon International Trophy, had flown nearly all experimental aircraft at Edwards including 25 flights in the X-15 rocket plane. On two of his X-15 flights, Walker earned astronaut wings by flying higher than 62 miles, the unofficial boundary between the Earth’s atmosphere and space. After strapping into the LLRV’s ejection seat, Walker ran through the preflight checklist before advancing the throttle to begin the first flight. The vehicle rose 10 feet in the air, Walker performed a few small maneuvers and then made a soft landing after having flown for 56 seconds. He lifted off again, performed some more maneuvers, and landed again after another 56 seconds. On his third flight, the vehicle’s electronics shifted into backup mode and he landed the craft after only 29 seconds. Walker seemed satisfied with how the LLRV handled on its first flights.

      Left: Lunar Landing Research Vehicle-2 (LLRV-2) during one of its six flights at the Flight Research Center, now NASA’s Armstrong Flight Research Center, in California in January 1967. Right: NASA astronaut Neil A. Armstrong with LLRV-1 at Ellington Air Force Base in March 1967.
      Walker took LLRV-1 aloft again on Nov. 16 and eventually completed 35 test flights with the vehicle. Test pilots Donald “Don” L. Mallick, who completed the first simulated lunar landing profile flight during the LLRV’s 35th flight on Sept. 8, 1965, and Emil E. “Jack” Kluever, who made his first flight on Dec. 13, 1965, joined Walker to test the unique aircraft. Joseph S. “Joe” Algranti and Harold E. “Bud” Ream, pilots at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center (JSC) in Houston, travelled to FRC to begin training flights with the LLRV in August 1966. Workers at FRC assembled the second vehicle, LLRV-2, during the latter half of 1966. In December 1966, after 198 flights workers transferred LLRV-1 to Ellington AFB near MSC for the convenience of astronaut training, and LLRV-2 followed in January 1967 after completing six test flights at FRC. The second LLRV made no further flights, partly because the three Lunar Landing Training Vehicles (LLTVs), more advanced models that better simulated the LM’s flying characteristics, began to arrive at Ellington in October 1967. Neil A. Armstrong completed the first astronaut flights aboard LLRV-1 on Mar. 23, 1967, and flew 21 flights before ejecting from the vehicle on May 6, 1968, seconds before it crashed. He later completed his lunar landing certification flights using LLTV-2 in June 1969, one month before peforming the actual feat on the Moon.

      Left: Apollo 11 Commander Neil A. Armstrong prepares to fly a lunar landing profile in Lunar Landing Training Vehicle-2 (LLTV-2) in June 1969. Middle: Apollo 12 Commander Charles “Pete” Conrad prepares to fly LLTV-2 in July 1969. Right: Apollo 14 Commander Alan B. Shepard flies LLTV-3 in December 1970.
      All Apollo Moon landing mission commanders and their backups completed their lunar landing certifications using the LLTV, and all the commanders attributed their successful landings to having trained in the LLTV. Apollo 8 astronaut William A. Anders, who along with Armstrong completed some of the early LLRV test flights, called the training vehicle “a much unsung hero of the Apollo program.” During the flight readiness review in January 1970 to clear LLTV-3 for astronaut flights, Apollo 11 Commander Armstrong and Apollo 12 Commander Charles “Pete” Conrad, who had by then each completed manual landings on the Moon, spoke positively of the LLTV’s role in their training. Armstrong’s overall impression of the LLTV: “All the pilots … thought it was an extremely important part of their preparation for the lunar landing attempt,” adding “It was a contrary machine, and a risky machine, but a very useful one.” Conrad emphasized that were he “to go back to the Moon again on another flight, I personally would want to fly the LLTV again as close to flight time as possible.” During the Apollo 12 technical debriefs, Conrad stated the “the LLTV is an excellent training vehicle for the final phases. I think it’s almost essential. I feel it really gave me the confidence that I needed.” During the postflight debriefs, Apollo 14 Commander Alan B. Shepard stated that he “did feel that the LLTV contributed to my overall ability to fly the LM during the landing.”

      Left: Apollo 15 Commander David R. Scott flies Lunar Landing Training Vehicle-3 (LLTV-3) in June 1971. Middle: Apollo 16 Commander John W. Young prepares to fly LLTV-3 in March 1972. Right: Apollo 17 Commander Eugene A. Cernan prepares for a flight aboard LLTV-3 in October 1972.
      David R. Scott, Apollo 15 commander, stated in the final mission report that “the combination of visual simulations and LLTV flying provided excellent training for the actual lunar landing. Comfort and confidence existed throughout this phase.” In the Apollo 15 postflight debrief, Scott stated that he “felt very comfortable flying the vehicle (LM) manually, because of the training in the LLTV, and there was no question in my mind that I could put it down where I wanted to. I guess I can’t say enough about that training. I think the LLTV is an excellent simulation of the vehicle.” Apollo 16 Commander John W. Young offered perhaps the greatest praise for the vehicle just moments after landing on the lunar surface: “Just like flying the LLTV. Piece of cake.” Young reiterated during the postflight debriefs that “from 200 feet on down, I never looked in the cockpit. It was just like flying the LLTV.” Apollo 17 Commander Eugene A. Cernan stated in the postflight debrief that “the most significant part of the final phases from 500 feet down, … was that it was extremely comfortable flying the bird. I contribute (sic) that primarily to the LLTV flying operations.”

      Left: Workers move Lunar Landing Research Vehicle-2 from NASA’s Armstrong Flight Research Center for display at the Air Force Test Flight Museum at Edwards Air Force Base. Right: Lunar Landing Training Vehicle-3 on display outside the Teague Auditorium at NASA’s Johnson Space Center in Houston.
      In addition to playing a critical role in the Moon landing program, these early research and test vehicles aided in the development of digital fly-by-wire technology for future aircraft. LLRV-2 is on display at the Air Force Flight Test Museum at Edwards AFB (on loan from AFRC). Visitors can view LLTV-3 suspended from the ceiling in the lobby of the Teague Auditorium at JSC.
      The monograph Unconventional, Contrary, and Ugly: The Lunar Landing Research Vehicle provides an excellent and detailed history of the LLRV.
      Explore More
      11 min read 35 Years Ago: STS-34 Sends Galileo on its Way to Jupiter
      Article 1 week ago 12 min read Five Years Ago: First All Woman Spacewalk
      Article 2 weeks ago 6 min read Cassini Mission: 5 Things to Know About NASA Lewis’ Last Launch
      Article 2 weeks ago View the full article
    • By NASA
      As NASA continues to innovate for the benefit of humanity, agency inventions that use new structures to harness sunlight for space travel, enable communications with spacecraft at record-breaking distances, and determine the habitability of a moon of Jupiter, were named Wednesday among TIME’s Inventions of 2024.
      “The NASA workforce — wizards, as I call them — have been at the forefront of invention and technology for more than 65 years,” said NASA Administrator Bill Nelson. “From developing Europa Clipper, the largest satellite for a planetary mission that NASA has ever launched, to the Advanced Composite Solar Sail System, and communicating with lasers from deep space, NASA is improving our understanding of life on Earth — and the cosmos — for the benefit of all.”
      Solar Sailing with Composite Booms
      Mario Perez, back, holds a deployable solar panel as Craig Turczynski, left, secures it to the Advanced Composite Solar Sail System (ACS3) spacecraft in the Integration Facility of NASA Ames Research Center.Credit: NASA/Don Richey NASA’s Advanced Composite Solar Sail System is testing technologies that could allow spacecraft to “sail on sunlight,” using the Sun’s rays for propulsion. Like a sailboat turning to catch the wind, a solar sail adjusts its trajectory by angling its sail supported by booms deployed from the spacecraft. This demonstration uses a composite boom technology that is stiffer, lighter, and more stable in challenging thermal environments than previous designs. After launching on April 23, aboard Rocket Lab’s Electron rocket, the mission team met its primary objective by deploying the boom and sail system in space in August. Next, they will work to prove performance by using the sail to maneuver in orbit.  
      Results from this mission could provide an alternative to chemical and electric propulsion systems and inform the design of future larger-scale missions that require unique vantage points, such as space weather early warning satellites.
      Communicating with Lasers from Deep Space
      The Deep Space Optical Communications (DSOC) technology demonstration’s flight laser transceiver is seen attached to NASA’s Psyche spacecraft inside a clean room at the agency’s Jet Propulsion Laboratory in Southern California. DSOC’s tube-like gray/silver sunshade can be seen protruding from the side of the spacecraft. The bulge to which the sunshade is attached is DSOC’s transceiver, which consists of a near-infrared laser transmitter to send high-rate data to Earth and a sensitive photon-counting camera to receive ground-transmitted low-rate data.Credits: NASA/JPL-Caltech Since launching aboard NASA’s Psyche spacecraft on Oct. 13, 2023, a Deep Space Optical Communications technology demonstration has delivered record-breaking downlink data rates to ground stations as the Psyche spacecraft travels through deep space. To demonstrate the high data rates that are possible with laser communications, photos, telemetry data from the spacecraft, and ultra-high-definition video, including a streamed video of Taters the cat chasing a laser pointer, have been downlinked over hundreds of millions of miles. The mission, which is managed by NASA’s Jet Propulsion Laboratory in Southern California, has also sent and received optical communications out to Mars’ farthest distance from Earth, fulfilling one of the project’s primary goals.
      Searching for Life’s Ingredients at Jupiter’s Icy Moon Europa
      Technicians prepare to encapsulate NASA’s Europa Clipper spacecraft inside SpaceX’s Falcon Heavy payload fairing in the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida on Oct. 2, 2024. Credit: SpaceX The largest NASA spacecraft ever built for a mission headed to another planet, Europa Clipper also is the agency’s first mission dedicated to studying an ocean world beyond Earth. Using a suite of nine science instruments and a gravity experiment, the mission seeks to determine whether Jupiter’s moon, Europa, has conditions that could support life. There’s strong evidence that under Europa’s ice lies an enormous, salty ocean. Scientists also have found evidence that Europa may host organic compounds and energy sources under its surface. Managed by NASA’s Jet Propulsion Laboratory, the spacecraft launched on Oct. 14, and will begin orbiting Jupiter in 2030, flying by the icy moon 49 times to learn more about it.
      Europa Clipper’s main science objectives are to determine the thickness of the moon’s icy shell and its interactions with the ocean below, to investigate its composition, and to characterize its geology. The detailed exploration will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.
      NASA’s Ames Research Center in California’s Silicon Valley manages the Advanced Composite Solar Sail System, and NASA’s Langley Research Center in Hampton, Virginia, designed and built the deployable composite booms and solar sail system. Within NASA’s Space Technology Mission Directorate (STMD), the Small Spacecraft Technology program funds and manages the mission and the Game Changing Development program developed the deployable composite boom technology.
      The Deep Space Optical Communications experiment is funded by STMD’s Technology Demonstration Missions Program managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, and the agency’s Space Communications and Navigation program within the Space Operations Mission Directorate. Some of the technology was developed through NASA’s Small Business Innovation Research program.
      Managed by Caltech in Pasadena, California, NASA’s Jet Propulsion Laboratory leads the development of the Europa Clipper mission in partnership with Johns Hopkins Applied Physics Laboratory in Laurel, Maryland for NASA’s Science Mission Directorate. The Applied Physics Laboratory designed the main spacecraft body in collaboration with the Jet Propulsion Laboratory as well as NASA’s Goddard Space Flight Center in Greenbelt, Maryland, NASA Marshall, and NASA Langley.
      For more information about the agency’s missions, visit:
      https://www.nasa.gov
      Share
      Details
      Last Updated Oct 30, 2024 LocationNASA Headquarters Related Terms
      General Ames Research Center Deep Space Optical Communications (DSOC) Europa Clipper Game Changing Development Program Goddard Space Flight Center Jet Propulsion Laboratory Langley Research Center Marshall Space Flight Center Science & Research Small Business Innovation Research / Small Business Small Spacecraft Technology Program Space Communications & Navigation Program Space Operations Mission Directorate Space Technology Mission Directorate Technology Technology Demonstration Technology Demonstration Missions Program View the full article
    • By NASA
      The SpaceX Dragon spacecraft carrying NASA astronaut Nick Hague and Roscosmos cosmonaut Aleksandr Gorbunov approaches the International Space Station as it orbits 259 miles above Oregon.Credit: NASA In preparation for the arrival of NASA’s SpaceX 31st commercial resupply services mission, four crew members aboard the International Space Station will relocate the agency’s SpaceX Crew-9 Dragon spacecraft to a different docking port Sunday, Nov. 3.
      Live coverage begins at 6:15 a.m. EDT on NASA+ and will end shortly after docking. Learn how to watch NASA content through a variety of platforms, including social media. 
      NASA astronauts Nick Hague, Suni Williams, and Butch Wilmore, as well as Roscosmos cosmonaut Aleksandr Gorbunov, will undock the spacecraft from the forward-facing port of the station’s Harmony module at 6:35 a.m., and redock to the module’s space-facing port at 7:18 a.m.
      The relocation, supported by flight controllers at NASA’s Johnson Space Center in Houston and the Mission Control team at SpaceX in Hawthorne, California, will free Harmony’s forward-facing port for a Dragon cargo spacecraft mission scheduled to launch no earlier than Monday, Nov. 4.
      This will be the fifth port relocation of a Dragon spacecraft with crew aboard following previous moves during the Crew-1, Crew-2, Crew-6, and Crew-8 missions.
      Learn more about space station activities by following @space_station and @ISS_Research on X, as well as the ISS Facebook, ISS Instagram, and the space station blog.
      NASA’s SpaceX Crew-9 mission launched Sept. 28 from NASA’s Kennedy Space Center in Florida and docked to the space station Sept. 29. Crew-9, targeted to return February 2025, is the company’s ninth rotational crew mission as a part of the agency’s Commercial Crew Program.
      Find NASA’s commercial crew blog and more information about the Crew-9 mission at:
      https://www.nasa.gov/commercialcrew
      -end-
      Jimi Russell / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      james.j.russell@nasa.gov / claire.a.o’shea@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Oct 29, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Commercial Crew Humans in Space International Space Station (ISS) Johnson Space Center Kennedy Space Center View the full article
    • By European Space Agency
      Image: The construction phase of ESA’s Ariel mission has started at Airbus Defence and Space in Toulouse (France) with the assembly of the spacecraft’s structural model. This marks a significant step forward for this mission designed to meticulously inspect the atmospheres of a thousand exoplanets and uncover their nature.
      In the image we see Ariel’s structural model coming together at the Airbus facilities. This model replicates the mechanical framework of the spacecraft and the mass of its various units for a first round of tough testing.
      The Ariel’s structural model consists of two main components: a flight-like replica of the service module (bottom right) and a simplified mechanical mock-up of the payload module (top right). This assembly mimics the structure of the flight spacecraft, where the science instruments make up the payload while the service module houses the essential components for the functioning of the spacecraft, such as the propulsion, and the power and communication systems.
      The goal for the end of the year is to complete the mechanical test campaign of the spacecraft’s structural model. This will ensure that Ariel’s design is up-to-spec and can withstand the mechanical strains expected during launch.
      The testing phase will include vibration and acoustic test campaigns. During vibration tests the model will be progressively shaken at different strengths on a vibrating table, or 'the shaker'. During acoustic tests, it will be placed in a reverberating chamber and ‘bombarded’ with very intense noise, like it will encounter during launch.
      This model will also be used to assess how the loads are distributed and to perform a first ‘separation and shock’ test using the same mounting system as will be used to mount the spacecraft on the Ariane 6.
      When ready, Ariel will be launched by an Ariane 6.2 rocket and journey to the second Lagrangian Point from where it will carry out its uniquely detailed studies of remote worlds.
      Image description: A collage of three photographs that show the assembly of the model of a spacecraft in a large white hall. The first image on the left shows the entire model, with a person next to it who is nearly equal in height. The second image on the upper right zooms in on the top part of the mock science instrument: a circular fan-like structure with a big rectangular silver box on top. The third image on the lower right focuses on the bottom of the model, which looks like a large round silver box.
      View the full article
  • Check out these Videos

×
×
  • Create New...