Members Can Post Anonymously On This Site
X-59 Fires Up its Engine for First Time on Its Way to Takeoff
-
Similar Topics
-
By Space Force
The DARC partnership is completing construction at the first of three sites that will host a global network of advanced ground-based sensors.
View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA marked a key milestone Feb. 18 with installation of RS-25 engine No. E20001, the first new production engine to help power the SLS (Space Launch System) rocket on future Artemis missions to the Moon.
The engine, built by lead SLS engines contractor L3Harris (formerly Aerojet Rocketdyne), was installed on the Fred Haise Test Stand in preparation for acceptance testing next month. It represents the first of 24 new flight engines being built for missions, beginning with Artemis V.
Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center deliver, lift, and install the first new production RS-25 engine on the Fred Haise Test Stand on Feb. 18.NASA/Danny Nowlin The NASA Stennis test team will conduct a full-duration, 500-second hot fire, providing critical performance data to certify the engine for use on a future mission. During missions to the Moon, RS-25 engines fire for about 500 seconds and up to the 111% power level to help launch SLS, with the Orion spacecraft, into orbit.
The engine arrived at the test stand from the L3Harris Engine Assembly Facility on the engine transport trailer before being lifted onto the vertical engine installer (VEI) on the west side deck. After rolling the engine into the stand, the team used the VEI to raise and secure it in place.
The upcoming acceptance test follows two certification test series that helped verify the new engine production process and components meet all performance requirements. Four RS-25 engines help launch SLS, producing up to 2 million pounds of combined thrust.
All RS-25 engines for Artemis missions are tested and proven flightworthy at NASA Stennis prior to use. RS-25 tests are conducted by a team of operators from NASA, L3Harris, and Syncom Space Services, prime contractor for site facilities and operations.
Explore More NASA Stennis Images View the full article
-
By NASA
Firefly’s Blue Ghost lunar lander captured a bright image of the Moon’s South Pole (on the far left) through the cameras on its top deck, while it travels to the Moon as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign.Credits: Firefly Aerospace With a suite of NASA science and technology on board, Firefly Aerospace is targeting no earlier than 3:45 a.m. EST on Sunday, March 2, to land the Blue Ghost lunar lander on the Moon. Blue Ghost is slated to touch down near Mare Crisium, a plain in the northeast quadrant on the near side of the Moon, as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign to establish a long-term lunar presence.
Live coverage of the landing, jointly hosted by NASA and Firefly, will air on NASA+ starting at 2:30 a.m. EST, approximately 75 minutes before touchdown on the Moon’s surface. Learn how to watch NASA content through a variety of platforms, including social media. The broadcast will also stream on Firefly’s YouTube channel. Coverage will include live streaming and blog updates as the descent milestones occur.
Accredited media interested in attending the in-person landing event hosted by Firefly in the Austin, Texas, area may request media credentials through this form by Monday, Feb. 24.
Following the landing, NASA and Firefly will host a news conference to discuss the mission and science opportunities that lie ahead as they begin lunar surface operations. The time of the briefing will be shared after touchdown.
Blue Ghost launched Jan. 15, at 1:11 a.m. EST on a SpaceX Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The lander is carrying a suite of 10 NASA scientific investigations and technology demonstrations, which will provide insights into the Moon’s environment and test technologies to support future astronauts landing safely on the lunar surface, as well as Mars.
NASA continues to work with multiple American companies to deliver science and technology to the lunar surface through the agency’s CLPS initiative. This pool of companies may bid on contracts for end-to-end lunar delivery services, including payload integration and operations, launching from Earth, and landing on the surface of the Moon. NASA’s CLPS contracts are indefinite-delivery/indefinite-quantity contracts with a cumulative maximum value of $2.6 billion through 2028. In February 2021, the agency awarded Firefly this delivery of 10 NASA science investigations and technology demonstrations to the Moon using its American-designed and -manufactured lunar lander for approximately $93.3 million (modified to $101.5 million).
Through the Artemis campaign, commercial robotic deliveries will perform science experiments, test technologies, and demonstrate capabilities on and around the Moon to help NASA explore in advance of Artemis Generation astronaut missions to the lunar surface, and ultimately crewed missions to Mars.
Watch, engage on social media
Let people know you’re following the mission on X, Facebook, and Instagram by using the hashtag #Artemis. You can also stay connected by following and tagging these accounts:
X: @NASA, @NASA_Johnson, @NASAArtemis, @NASAMoon
Facebook: NASA, NASAJohnsonSpaceCenter, NASAArtemis
Instagram: @NASA, @NASAJohnson, @NASAArtemis
For more information about the agency’s Commercial Lunar Payload Services initiative:
https://www.nasa.gov/clps
-end-
Karen Fox / Alise Fisher
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / alise.m.fisher@nasa.gov
Natalia Riusech / Nilufar Ramji
Johnson Space Center, Houston
281-483-5111
natalia.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
Share
Details
Last Updated Feb 14, 2025 LocationNASA Headquarters Related Terms
Commercial Lunar Payload Services (CLPS) Artemis Earth's Moon View the full article
-
By NASA
Artistic rendering of Intuitive Machines’ Nova-C lander on the surface of the Moon.Credit: Intuitive Machines NASA’s Polar Resources Ice Mining Experiment-1 (PRIME-1) is preparing to explore the Moon’s subsurface and analyze where lunar resources may reside. The experiment’s two key instruments will demonstrate our ability to extract and analyze lunar soil to better understand the lunar environment and subsurface resources, paving the way for sustainable human exploration under the agency’s Artemis campaign for the benefit of all.
Its two instruments will work in tandem: The Regolith and Ice Drill for Exploring New Terrains (TRIDENT) will drill into the Moon’s surface to collect samples, while the Mass Spectrometer Observing Lunar Operations (MSOLO) will analyze these samples to determine the gas composition released across the sampling depth. The PRIME-1 technology will provide valuable data to help us better understand the Moon’s surface and how to work with and on it.
“The ability to drill and analyze samples at the same time allows us to gather insights that will shape the future of lunar resource utilization,” said Jackie Quinn, PRIME-1 project manager at NASA’s Kennedy Space Center in Florida. “Human exploration of the Moon and deep space will depend on making good use of local resources to produce life-sustaining supplies necessary to live and work on another planetary body.”
The PRIME-1 experiment is one of the NASA payloads aboard the next lunar delivery through NASA’s CLPS (Commercial Lunar Payload Services) initiative, set to launch from the agency’s Kennedy Space Center no earlier than Wednesday, Feb. 26, on Intuitive Machines’ Athena lunar lander and explore the lunar soil in Mons Mouton, a lunar plateau near the Moon’s South Pole.
Developed by Honeybee Robotics, a Blue Origin Company, TRIDENT is a rotary percussive drill designed to excavate lunar regolith and subsurface material up to 3.3 feet (1 meter) deep. The drill will extract samples, each about 4 inches (10 cm) in length, allowing scientists to analyze how trapped and frozen gases are distributed at different depths below the surface.
The TRIDENT drill is equipped with carbide cutting teeth to penetrate even the toughest lunar materials. Unlike previous lunar drills used by astronauts during the Apollo missions, TRIDENT will be controlled from Earth. The drill may provide key information about subsurface soil temperatures as well as gain key insight into the mechanical properties of the lunar South Pole soil. Learning more about regolith temperatures and properties will greatly improve our understanding of the environments where lunar resources may be stable, revealing what resources may be available for future Moon missions.
A commercial off-the-shelf mass spectrometer, MSOLO, developed by INFICON and made suitable for spaceflight at Kennedy, will analyze any gas released from the TRIDENT drilled samples, looking for the potential presence of water ice and other gases trapped beneath the surface. These measurements will help scientists understand the Moon’s potential for resource utilization.
Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA is one of many customers on future flights. PRIME-1 was funded by NASA’s Space Technology Mission Directorate Game Changing Development program.
Learn more about CLPS and Artemis at:
https://www.nasa.gov/clps
View the full article
-
By NASA
X-ray: NASA/CXC/Penn State Univ./L. Townsley et al.; Infrared: NASA/JPL-CalTech/SST; Optical: NASA/STScI/HST; Radio: ESO/NAOJ/NRAO/ALMA; Image Processing: NASA/CXC/SAO/J. Schmidt, N. Wolk, K. Arcand A bouquet of thousands of stars in bloom has arrived. This composite image contains the deepest X-ray image ever made of the spectacular star forming region called 30 Doradus.
By combining X-ray data from NASA’s Chandra X-ray Observatory (blue and green) with optical data from NASA’s Hubble Space Telescope (yellow) and radio data from the Atacama Large Millimeter/submillimeter Array (orange), this stellar arrangement comes alive.
X-ray: NASA/CXC/Penn State Univ./L. Townsley et al.; Infrared: NASA/JPL-CalTech/SST; Optical: NASA/STScI/HST; Radio: ESO/NAOJ/NRAO/ALMA; Image Processing: NASA/CXC/SAO/J. Schmidt, N. Wolk, K. Arcand Otherwise known as the Tarantula Nebula, 30 Dor is located about 160,000 light-years away in a small neighboring galaxy to the Milky Way known as the Large Magellanic Cloud (LMC). Because it one of the brightest and populated star-forming regions to Earth, 30 Dor is a frequent target for scientists trying to learn more about how stars are born.
With enough fuel to have powered the manufacturing of stars for at least 25 million years, 30 Dor is the most powerful stellar nursery in the local group of galaxies that includes the Milky Way, the LMC, and the Andromeda galaxy.
The massive young stars in 30 Dor send cosmically strong winds out into space. Along with the matter and energy ejected by stars that have previously exploded, these winds have carved out an eye-catching display of arcs, pillars, and bubbles.
A dense cluster in the center of 30 Dor contains the most massive stars astronomers have ever found, each only about one to two million years old. (Our Sun is over a thousand times older with an age of about 5 billion years.)
This new image includes the data from a large Chandra program that involved about 23 days of observing time, greatly exceeding the 1.3 days of observing that Chandra previously conducted on 30 Dor. The 3,615 X-ray sources detected by Chandra include a mixture of massive stars, double-star systems, bright stars that are still in the process of forming, and much smaller clusters of young stars.
There is a large quantity of diffuse, hot gas seen in X-rays, arising from different sources including the winds of massive stars and from the gas expelled by supernova explosions. This data set will be the best available for the foreseeable future for studying diffuse X-ray emission in star-forming regions.
The long observing time devoted to this cluster allows astronomers the ability to search for changes in the 30 Dor’s massive stars. Several of these stars are members of double star systems and their movements can be traced by the changes in X-ray brightness.
A paper describing these results appears in the July 2024 issue of The Astrophysical Journal Supplement Series. NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
Read more from NASA’s Chandra X-ray Observatory.
Learn more about the Chandra X-ray Observatory and its mission here:
https://www.nasa.gov/chandra
https://chandra.si.edu
Visual Description
This release features a highly detailed composite image of a star-forming region of space known as 30 Doradus, shaped like a bouquet, or a maple leaf.
30 Doradus is a powerful stellar nursery. In 23 days of observation, the Chandra X-ray telescope revealed thousands of distinct star systems. Chandra data also revealed a diffuse X-ray glow from winds blowing off giant stars, and X-ray gas expelled by exploding stars, or supernovas.
In this image, the X-ray wind and gas takes the shape of a massive purple and pink bouquet with an extended central flower, or perhaps a leaf from a maple tree. The hazy, mottled shape occupies much of the image, positioned just to our left of center, tilted slightly to our left. Inside the purple and pink gas and wind cloud are red and orange veins, and pockets of bright white light. The pockets of white light represent clusters of young stars. One cluster at the heart of 30 Doradus houses the most massive stars astronomers have ever found.
The hazy purple and pink bouquet is surrounded by glowing dots of green, white, orange, and red. A second mottled purple cloud shape, which resembles a ring of smoke, sits in our lower righthand corner.
News Media Contact
Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998
mwatzke@cfa.harvard.edu
Lane Figueroa
Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
lane.e.figueroa@nasa.gov
Explore More
4 min read NASA Successfully Joins Sunshade to Roman Observatory’s ‘Exoskeleton’
Article 20 mins ago 5 min read NASA Scientists Spot Candidate for Speediest Exoplanet System
Article 2 days ago 5 min read Euclid Discovers Einstein Ring in Our Cosmic Backyard
Article 2 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.